UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An analytical model of logic resource utilization for FPGA architecture development Lam, Andrew H.

Abstract

Designers constantly strive to improve Field-Programmable Gate Array (FPGA) performance through innovative architecture design. To evaluate performance, an understanding of the effects of modifying logic blocks structures and routing fabrics on performance is needed. Current architectures are evaluated via computer-aided design (CAD) simulations that are labourious and computationally-expensive experiments to perform. A more scientific method, based on understanding the relationships between architectural parameters and performance will enable the rapid evaluation of new architectures, even before the development of a CAD tool. This thesis presents an analytical model that describes such relationships and is based principally on Rent’s Rule. Specifically, it relates logic architectural parameters to the area efficiency of an FPGA. Comparison to experimental results show that our model is accurate. This accuracy combined with the simple form of the model’s equations make it a powerful tool for FPGA architects to better understand and guide the development of future FPGA architectures.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International