- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Comparison of performance based engineering approaches
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Comparison of performance based engineering approaches Bohl, Alejandro
Abstract
The structural engineering community is currently exploring the concept of performance-based earthquake engineering (PBEE). In an effort to amend the code-oriented practice, in which life safety is the primary concern, predictions are made regarding the cost and downtime associated with damage. A typical result is the “loss curve,” which represents the annual probability of exceeding various cost thresholds. Such predictions are useful to improve decision making related to structural design by enabling stakeholders to consider the cost of possible future damage, in addition to the construction costs. Substantial progress has been made in the field of PBEE in the last few years. Most of these developments use structural response parameters, such as inter-storey drifts, as performance measures. This first generation PBEE is now being used by some engineers in the practicing community. However, most practicing engineers are unfamiliar with second generation PBEE, which focuses on economic loss. In this paper, PBEE is first contrasted with code-oriented design, with emphasis on how it helps engineers communicate with different stakeholders. Next, a comparison between two different PBEE methods, namely the ATC-58 approach and the unified reliability approach, is made. An example with a three-storey office building is presented, with detailed description of the hazard, structure, damage, and loss modeling. The different approaches to PBEE are contrasted along several axes, including accuracy, computational cost and convergence. It is found that each approach has unique merits, and that the synergy from combining certain aspects from different approaches can be significant.
Item Metadata
Title |
Comparison of performance based engineering approaches
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
The structural engineering community is currently exploring the concept of performance-based earthquake engineering (PBEE). In an effort to amend the code-oriented practice, in which life safety is the primary concern, predictions are made regarding the cost and downtime associated with damage. A typical result is the “loss curve,” which represents the annual probability of exceeding various cost thresholds. Such predictions are useful to improve decision making related to structural design by enabling stakeholders to consider the cost of possible future damage, in addition to the construction costs.
Substantial progress has been made in the field of PBEE in the last few years. Most of these developments use structural response parameters, such as inter-storey drifts, as performance measures. This first generation PBEE is now being used by some engineers in the practicing community. However, most practicing engineers are unfamiliar with second generation PBEE, which focuses on economic loss. In this paper, PBEE is first contrasted with code-oriented design, with emphasis on how it helps engineers communicate with different stakeholders. Next, a comparison between two different PBEE methods, namely the ATC-58 approach and the unified reliability approach, is made.
An example with a three-storey office building is presented, with detailed description of the hazard, structure, damage, and loss modeling. The different approaches to PBEE are contrasted along several axes, including accuracy, computational cost and convergence. It is found that each approach has unique merits, and that the synergy from combining certain aspects from different approaches can be significant.
|
Extent |
1037366 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-08-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0063147
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International