UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The Eastgate-Whipsaw metamorphic belt as Paleozoic underpinnings to the Nicola Group Oliver, Shelley Louise 2011

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2011_fall_oliver_shelley.pdf [ 23.89MB ]
Metadata
JSON: 24-1.0053137.json
JSON-LD: 24-1.0053137-ld.json
RDF/XML (Pretty): 24-1.0053137-rdf.xml
RDF/JSON: 24-1.0053137-rdf.json
Turtle: 24-1.0053137-turtle.txt
N-Triples: 24-1.0053137-rdf-ntriples.txt
Original Record: 24-1.0053137-source.json
Full Text
24-1.0053137-fulltext.txt
Citation
24-1.0053137.ris

Full Text

The Eastgate-Whipsaw metamorphic belt as Paleozoic underpinnings to the Nicola Group by Shelley L. Oliver B.Sc., The University of British Columbia, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)  May 2011 © Shelley L. Oliver, 2011  Abstract The enigmatic Eastgate-Whipsaw metamorphic belt (EWm belt) is located on the western margin of the Late Triassic to Early Jurassic Nicola Group’s southernmost exposure in the Princeton area of south-central B.C. (NTS 092H/SE). Previously affiliated to the Nicola Group, new Early Permian ages of 281.3 ± 3.3 Ma and 282.7 ± 3.7 Ma show the EWm belt to be significantly older and is likely a southern manifestation of the Late Paleozoic Harper Ranch Group. This suggests a previously unrecognized potential in the Harper Ranch for hosting VHMS-style mineralization. The belt comprises metamorphically deformed, upper greenschist to lower amphibolite facies volcanic and volcanic-derived sedimentary rocks as well as pre- to syn-deformational intrusive phases. These rock types are divided into: 1) mafic volcanic amphibole-rich schists defining the western margin of the belt; 2) a thick, south-central package of quartzofeldspathic volcanic-derived sedimentary schists that transition northward into 3) a series of intercalated volcanic-derived sedimentary schists; 4) mafic volcanic amphibole (chlorite)-epidote schists on the south-east margin of the EWm belt; 5) a north-eastern package of felsic volcanic and volcanically-derived sedimentary schists that contain relict quartz and plagioclase phenocrysts, and 6) consanguinous meta-gabbro and foliated plagioclase porphyry intrusions of unknown ages. The EWm belt originated within an intra-arc or back-arc marine setting, as two geochemically distinct volcanic types.  The eastern type 1 volcanic rocks comprise  calkalkaline and tholeiitic compositions from LREE-enriched island arc basalts. The western type 2 volcanic rocks comprise a suite of back (or intra)-arc basin basalts. A complex set of foliations, the result of strong metamorphic deformation, is preserved within minor rock types of the EWm belt. The foliation set includes: 1) a dominant N-S, steeply westward dipping S2 foliation that is predominantly continuous but also develops into differentiated crenulation cleavages, 2) a shallow east-dipping S1 that is crenulated and progressively dextrally rotated by S2-associated deformation, 3) a poorly-developed S3 fabric that shallows the dominant S2 foliation on the eastern side of the EWm belt.  Equal  metamorphic temperatures, equivalent to the greenschist to amphibolite facies transition, were established across the width of the EWm belt.  ii  Table of Contents Abstract.................................................................................................................................... ii! Table of Contents ................................................................................................................... iii! List of Tables .......................................................................................................................... vi! List of Figures........................................................................................................................ vii! Acknowledgements ................................................................................................................ ix! 1. Introduction......................................................................................................................... 1! 2. Regional Geological Framework ....................................................................................... 3! 2.1! Tectonic Setting ........................................................................................................................ 3! 2.2! Geological History.................................................................................................................... 3! 2.3! Fieldwork .................................................................................................................................. 6!  3. Geology of the EWm Belt ................................................................................................... 7! 3.1! Introduction............................................................................................................................... 7! 3.2! Lithologies of the EWm Belt .................................................................................................. 11! 3.2.1! Amphibole-rich schist group ........................................................................................... 11! 3.2.2! Quartzofeldspathic schist group ...................................................................................... 11! 3.2.3! Interbedded schist group.................................................................................................. 12! "#$#%! Amphibole (chlorite)-epidote schist group ..................................................................... 15! 3.2.5! Plagioclase +/- quartz schist group.................................................................................. 17! 3.2.6! Foliated plagioclase porphyry ......................................................................................... 19! 3.2.7! Meta-gabbro .................................................................................................................... 20! 3.3! U-Pb Geochronology .............................................................................................................. 22! 3.3.1! Analytical methods.......................................................................................................... 22! 3.3.2! Geochronological results ................................................................................................. 23! 3.3.3! Age implications.............................................................................................................. 24!  4. Geochemistry..................................................................................................................... 26! 4.1! Analytical Methods................................................................................................................. 26! 4.2! Interpretation of Geochemical Data........................................................................................ 28! 4.2.1! Type 1 meta-volcanic rocks............................................................................................. 28!  iii  4.2.2! Type 2 meta-volcanic rocks............................................................................................. 36! 4.2.3! Paleoenvironment ............................................................................................................ 37! 4.3! Possible Affiliates ................................................................................................................... 37!  5. Structural Deformation .................................................................................................... 41! 5.1! Introduction............................................................................................................................. 41! 5.2! Microstructure Study .............................................................................................................. 41! 5.2.1! Amphibole/chlorite-bearing schist .................................................................................. 44! 5.2.2! Felsic schist ..................................................................................................................... 47! 5.2.3! Graphite-bearing schist.................................................................................................... 47! 5.2.4! Evidence for pre-S1 foliations ......................................................................................... 52! 5.3! Effects of Graphite on Foliation Preservation ........................................................................ 52! 5.4! Spatial Distribution of the Foliations...................................................................................... 54!  6. Variations in Metamorphic Gradients............................................................................ 57! 6.1! Introduction............................................................................................................................. 57! 6.2! Analytical Methods................................................................................................................. 58! 6.3! Amphibole Data...................................................................................................................... 59! 6.4! Plagioclase Data...................................................................................................................... 63! 6.5! Distribution of Metamorphic Temperature Variation............................................................. 66! 6.6! Source of Heat – Relationship to the Eagle Plutonic Complex .............................................. 69! 6.7! Structural Juxtaposition of Metamorphic Zones..................................................................... 72!  7. Discussion .......................................................................................................................... 74! 7.1! Significance of Harper Ranch Affinity................................................................................... 74! 7.2! Relating EWm Belt Metamorphic Deformation to Nicola Group Rocks............................... 77!  8. Conclusions........................................................................................................................ 78! 8.1! Current Architecture – Understanding Metamorphic Deformation Events............................ 78! 8.2! Primary Architecture – Understanding Origins ...................................................................... 78!  References.............................................................................................................................. 81! Appendices............................................................................................................................. 91! Appendix A LA-ICP-MS U-Pb Analytical Data ............................................................................. 91! Appendix B Major and Trace Element Bulk Geochemistry ............................................................ 92! B.1! Major and Trace Element Bulk Geochemistry Data.......................................................... 92! B.2! Standard Reference and Duplicate Geochemical Data ...................................................... 94! iv  Appendix C Electron Microprobe Data and Structural Formula Calculations ................................ 95! C.1! Amphibole Results............................................................................................................. 95! C.2! Plagioclase Results ............................................................................................................ 99!  v  List of Tables Table 3.1 Common lithologies of the rock groups ................................................................ 9! Table 4.1 Geochemistry of potential affiliates to the EWm belt ......................................... 38! Table 5.1 Definitions and descriptions of structural fabrics ................................................ 42! Table 6.1 Amphibole compositions in mafic schist............................................................. 60! Table 6.2 Textures and anorthite content of plagioclase in mafic schist ............................. 65!  vi  List of Figures Figure 2.1  Map of British Columbia...................................................................................... 4!  Figure 2.2  EWm belt study area ............................................................................................ 5!  Figure 3.1  Geological map of the EWm belt ....................................................................... 10!  Figure 3.2  Amphibole-rich schist group .............................................................................. 13!  Figure 3.3  Quartzofeldspathic schist group ......................................................................... 13!  Figure 3.4  Interbedded schist group..................................................................................... 14!  Figure 3.5  Amphibole(chlorite)-epidote schist group.......................................................... 16!  Figure 3.6  Plagioclase+quartz schist group ......................................................................... 18!  Figure 3.7  Intrusive phases .................................................................................................. 21!  Figure 3.8  Plot of 206Pb/238U ages for the EWm belt ........................................................... 25!  Figure 4.1  Distribution of geochemical samples from the EWm belt ................................. 27!  Figure 4.2  Total alkalis vs. SiO2 and Nb/Y vs. Zr/TiO2 classification diagrams ................ 31!  Figure 4.3  SiO2 vs. K2O and AFM classification diagrams................................................. 32!  Figure 4.4  Chondrite-normalized trace element spider diagrams........................................ 33!  Figure 4.5  Paleotectonic discrimination diagrams for mafic meta-volcanic rocks.............. 34!  Figure 4.6  Paleotectonic discrimination diagrams for felsic meta-volcanic rocks .............. 35!  Figure 5.1  Distribution of EWm belt samples containing multiple foliations..................... 43!  Figure 5.2  Foliation preservation in amphibole-rich, coarse-grained mafic schists ............ 45!  Figure 5.3  Foliation preservation in a chlorite-rich, coarse-grained mafic schist ............... 46!  Figure 5.4  Foliation preservation in quartz-rich, graphite bearing schist, central EWm belt  ................................................................................................................................................. 49! Figure 5.5  Foliation preservation of a graphite-rich, quartz-bearing schist......................... 50!  Figure 5.6  Foliation preservation of graphite-rich, carbonate-bearing schists .................... 51!  Figure 5.7  Indications of a pre-S1 foliation.......................................................................... 53!  Figure 5.8  Schematic cross-section of foliations in the EWm belt...................................... 55!  Figure 6.1  Amphibole textures in mafic schist from the EWm belt .................................... 60!  Figure 6.2  Plots of amphibole cation contents..................................................................... 62!  Figure 6.3  Spatial distribution of metamorphic gradients from amphibole study ............... 64!  Figure 6.4  Textures of plagioclase in mafic schist from the EWm belt .............................. 65!  vii  Figure 6.5  Metamorphic gradient ranking of anorthite content from plagioclase study ..... 67!  Figure 6.6  Distribution of deformed rocks relative to the Eagle Pluton.............................. 68!  Figure 6.7  Heat transfer model for the Eagle tonalite and the EWm belt............................ 71!  Figure 7.1  Schematic diagram of Early Permian paleotectonic environment ..................... 75!  viii  1. Introduction The southernmost exposure of the Late Triassic to Early Jurassic Nicola Group in the Princeton area of south-central British Columbia (NTS 092H/SE) contains an enigmatic belt of medium-grade metamorphic rocks along its western margin. This belt is composed of varying packages of mafic to felsic volcanic/volcaniclastic schists that are strongly deformed. Herein, these rocks are termed the Eastgate-Whipsaw metamorphic belt and abbreviated to the ‘EWm belt’. This belt is distinguished from the adjoining, and historically affiliated, Nicola Group by its higher metamorphic grade, stronger deformation, and its different lithological facies. The EWm belt also hosts volcanogenic-hosted massive sulphide (VHMS) deposits (i.e. the Red Star and S&M VHMS properties), which are not typically associated to the Nicola Group (Massey et al. 2009a). These differences bring into question the Nicola Group affinity of these rocks. Conversely, the EWm belt bears a notable resemblance to several of the Late Paleozoic volcanic arcs of the Intermontane belt, including the Permo–Triassic Sitlika– Kutcho Formation and the Devonian-Triassic Harper Ranch Group. Rocks of the SitlikaKutcho assemblage are similar to the EWm belt rocks in lithology, metamorphic grade, and presence of VHMS-hosted deposits (e.g., Kutcho Creek). The Sitlika Formation has been proven to extend further south as far as Ashcroft (NTS 092I) (Childe et al. 1997), located 150 km NNW of the EWm belt and along strike with the EWm belt’s dominant foliation. The Harper Ranch Group also has similarities in lithology, metamorphic grade and deformational textures with the EWm belt. The Harper Ranch Group forms the basement to the Nicola Group and can be easily correlated geographically and tectonically to the fault-bounded contacts of the EWm belt with Nicola Group volcanic rocks. Here, I investigate the tectonic affinity and origins of the Eastgate-Whipsaw metamorphic belt and explore the implications of this belt for the evolution of the Canadian cordillera. This research is built on detailed study and analysis of the lithostratigraphy, the metamorphic and deformational history, and the relative and absolute age relationships of the rock units comprising the EWm belt. Specifically, the program comprised: i) field mapping of an area 22 km2 to establish mappable units and lithostratigraphic relationships, ii) detailed sampling of map units for petrographic study and geochemical classification, 1  iii) measurement of mineral chemical compositions to recover metamorphic paleo-pressuretemperature gradient variation, and iv) microstructural study of oriented thin sections from samples collected along a west-toeast trending transect of the Eastgate-Whipsaw metamorphic belt. The field component of this research was carried out under the auspices of the British Columbia Geological Survey with Dr. Nick Massey in 2008 and 2009. Lastly, this research was supported by geochronometric study of two select felsic volcaniclastic units located in sections of the stratigraphic sequence. The main result of this multifaceted study is that the EWm belt rocks are shown to be unrelated to Nicola Group rocks. Indeed, they are substantially older than the TriassicJurassic rocks of the Nicola group. It is most likely that the EWm belt is a southern exposure of the Harper Ranch Group; this has substantial implications for both understanding the tectonic origins and mineralization potential of this southern portion of the Canadian Cordillera. A Nicola Group affinity would support an exploration program directed at skarn and alkalic porphyry copper-gold deposits (i.e., Copper Mountain, Highland Valley, Mount Milligan and Mount Polley), whilst the more probable affinity to Harper Ranch rocks suggest a new potential for hosting VHMS mineral deposits, previously unrecognized in the Harper Ranch Group.  2  2. Regional Geological Framework 2.1  Tectonic Setting During the Late Triassic to Early Jurassic, two island arcs were located off-board but  proximal to the western margin of ancestral North America (Nixon et al., 1993; Mihalynuk et al. 2004). Eastward subduction led to the collision and accretion of these two arc systems, which were amalgamated to ancestral North America between 185 and 173 Ma (Nixon et al., 1993; Mihalynuk et al. 2004). Today, the two allochthonous arcs are the Stikine and Quesnel terranes of the Intermontane Superterrane in the Canadian Cordillera. The Quesnel terrane is situated further east than the Stikine terrane, closer to the original cratonic North America (Figure 2.1). The Stikine terrane is situated to the west of the Quesnel terrane; the Cache Creek oceanic terrane is wedged between the two. The Late Triassic–Early Jurassic Nicola Group in south-central British Columbia and its northern continuation, the Takla Group, constitute the later and more abundant island-arc assemblage that defines the extent of the Quesnel terrane. These were emplaced upon the Devonian-Triassic Harper Ranch basement. The Nicola Group rocks dominate the eastern side of the Intermontane Belt of the Canadian Cordillera. This research is focused on a succession of anomalous Nicola Group rocks on the south-western edge of Quesnellia, located approximately 35 km southwest of Princeton, B.C., alongside the eastern edge of Manning Park (NTS 092H/SE) (Figure 2.2). 2.2  Geological History Past geological mapping of the Nicola Group in the Princeton area by Rice (1947),  Preto (1972), Mortimer (1987) and Monger (1989) established its distribution and divided it into three north-west trending belts. The belts are differentiated by lithostratigraphic facies and geochemistry. The main lithologies of the Nicola arc are submarine to subaerial, predominantly mafic volcaniclastic and volcanic units, equivalent intrusives and derived sediments (Preto 1972; Monger 1989). The three belts show an east to west chemical variation from alkaline to calc-alkaline, which has been interpreted to indicate east-verging subduction (Mortimer 1987). However, the southwestern edge of the Nicola Group rocks as mapped by Monger (1989) has a number of anomalous characteristics, including mediumgrade metamorphism and strong deformation textures. These characteristics prevented it 3  Study Area  Figure 2.1 Map of British Columbia showing the distribution of volcanic arcs, Sitlika-Kutcho formation and the Nicola Group volcanics, and the host terranes: Cache Creek terrane and Quesnel terranes. The EWm belt study area is highlighted. Modified map from the BCGS Mapplace GIS internet mapping system (2006).  4  Eocene Princeton Group Cretaceous Intrusions Jurassic Eagle Pluton  Triassic Nicola Group  Late Permian EWm belt  Figure 2.2 The EWm belt study area. Simplified geological map of the southern Nicola project from Massey et al. (2009a) with the Eastgate-Whipsaw metamorphic belt study area highlighted by a box. Note abbreviations: BF, Boundary fault; SFF, Similkameen Falls fault; WF, Whipsaw Creek fault; BBF, Baby buggy fault; FF, Frenchy Creek fault.  5  from being assigned to one of the three major Nicola belts. On the basis of these anomalous attributes this package of "Nicola-like" rocks was instead labelled as strongly foliated and metamorphosed Nicola Group rocks of unknown affinity (Preto 1972; Monger 1989). 2.3  Fieldwork Fieldwork for this study was performed in conjunction with Dr. Nick Massey of the  British Columbia Geological Survey (in the summers of 2008-2009). Focus in 2008 was on distinguishing between definite deformed Nicola Group exposures to deformed rocks of unknown affinity. This determined the boundaries of the study area and established the lithologies to be included in the Eastgate-Whipsaw metamorphic belt. In the Whipsaw creek area (see Figure 2.2) and further north, the rocks were confirmed to be true deformed Nicola Group volcanic rocks (Massey et al. 2009a, 2009b). This confirmed past observations of a gradual E-W decrease in deformation and metamorphic grade back into ‘typical’ Nicola rocks, as previously noted by Preto (1972) and Monger (1989). Recent geochemical studies by Massey (2011) further refined these observations by determining that the deformed Nicola rocks have the calcalkaline signature of Preto’s Nicola ‘Western Belt’ (1972). However, further south and closer to Manning Park, the deformed rocks comprise different lithologies than are normally associated with the Nicola Group. These rocks also have strongly developed metamorphic deformation, which occurs over the entire belt. These units are truncated to the east by the Similkameen Falls fault and immediately adjacent to mildly to undeformed, augite-phyric Nicola Group volcanic rocks. Owing to the varying lithologies and the abrupt juxtaposition to dissimilar Nicola Group outcrops, these rocks were reassigned as the Eastgate-Whipsaw metamorphic belt (Massey et al. 2009a). The EWm belt was divided into three general units: the eastern amphibolite belt, the central quartzite belt and the western metavolcanic-metasedimentary belt (Massey et al. 2009a). In this study, different nomenclature has been used in order to describe the rocks in terms of their metamorphic assemblages, highlighting this project’s focus on the deformational and metamorphic events. These new units are discussed further in Chapter 3. Fundamentally, this detailed study of the EWm belt investigates the tectonic history of these rocks and how they differ from the bounding geology.  6  3. Geology of the EWm Belt 3.1  Introduction The bounding geology of the EWm belt comprises the Jurassic to Cretaceous Eagle  Plutonic Complex on the western boundary; the recently-described Similkameen Falls fault on the eastern boundary (Massey et al. 2009a, b) separating the EWm belt rocks from undeformed augite-phyric Nicola Group volcanic rocks (Massey et al. 2009a, b); and the Eocene Princeton Group volcanic rocks which overlie the northern boundary (see Figure 2.2). There is a southern continuation of EWm belt equivalent rocks described on recent large-scale maps (Monger 1989). The rock types of the EWm belt have been strongly deformed and metamorphosed to greenschist-amphibolite facies conditions (further discussed in chapters 5 and 6). The rocks are grouped and renamed in terms of the dominant metamorphic schist assemblage (Table 3.1). Common rock types of each map unit are listed in Table 3.1 as names that include a list of minerals in order of decreasing modal abundance. The lithologies present in the EWm belt have been assigned to one of five schist groups (Figure 3.1): (1) a mafic package of amphibole-rich schists outcropping on the western margin of the map-area, (2) a southcentral package of quartzofeldspathic schists, that transition into (3) a series of interbedded, lithologically-mixed schists to the north, (4) amphibole (chlorite)-epidote schists on the south to central portion of the eastern margin, and (5) a more felsic sequence of quartz/feldsparrich schists typically containing coarse-grained quartz and plagioclase situated in the northeastern section of the study area (see Figure 3.1). The belt also contains pre- to syndeformational meta-gabbro and foliated plagioclase porphyry intrusions of unknown ages. Owing to poor outcrop exposure in the study area, no contacts between the map units (schist groups) were noted in the field, preventing the establishment of stratigraphic relations. Furthermore, the metamorphism and polyphase deformation experienced by the EWm belt rocks have obscured most primary sedimentary/volcanic textures and any sense of younging direction. The bulk rock geochemistries and mineral assemblages, as well as field relations are used to interpret protolith. Most of the rocks in the five schist groups have chemistries and mienralogies typical of felsic through mafic volcanic rocks (Spear 1993). There are also minor sedimentary units that are identified based on mineralogies (e.g., graphite-bearing or biotite-rich). The details and locations of these rock types will be further discussed below. 7  The two central schist groups, including the quartzofeldspathic schist group and the interbedded schist group, are interpreted to be volcanic-derived meta-sedimentary schists. This is owing to mineralogy and layer thicknesses being an order of magnitude smaller than the other three groups (on the meter scale) with visible contacts between compositionally variable layers. The other three schist groups typically contain thicker rock units and have rarely-exposed contacts between units. Bedding contacts that are visible in the map area have been transposed and are now oriented parallel to the dominant foliation. Coarse-grained euhedral to subhedral plagioclase crystals in fine-grained matrices (either felsic or mafic in composition) are noted in several rock types in the EWm belt. The plagioclase grains have metamorphic plagioclase compositions (see chapter 6) and show no internal relict textures caused by an igneous origin. However, it is not clear whether these plagioclase crystals are porphyroclasts or porphyroblasts. To the north of the study area, in the Whipsaw Creek area (Figure 2.2), explored showings from the S and M property, including the Knight and Day prospect (092HSE072), the Five Fissure prospect (092HSE098), the BZ prospect (092HSE207) and the T.G.S. showing (092HSE206), provide geological descriptions of the northern extension of the EWm belt that include mapped faults and associated brecciated zones (Massey et al. 2009a, b). Even though there are no faults exposed within the EWm belt and further work is needed to extrapolate their position south, their ostensible presence is worth noting.  8  Table 3.1 Common lithologies of the rock groups from the EWm belt Amphibole-rich schist group amp+ep+pl+oxide+bt+qtz+cal+ap schist Quartzofeldspathic schist group pl+qtz+mag/ilm+bt+ap schist Interbedded schist group pl+qtz+amp+oxide+chl+ap+/-bt schist amp+ep+chl+pl+qtz+mag schist Amphibole(chlorite)-epidote schist group amp(chl)+ep+cal+pl/qtz+ilm/mag+bt+ap schist with relict grains bt+qtz+oxide+chl+/-amp schist Plagioclase+/-quartz porphyroblastic schist group ms+chl+qtz+pl+oxide+ap schist with relict pl+qtz phenocrysts qtz+pl+ms+chl+ilm+/-bt schist with relict qtz+pl phenocrysts qtz+ms+chl+ilm+ap schist with relict qtz phenocrysts qtz+pl+chl+ep+bt schist with relict pl+qtz phenocrysts Intrusives Plagioclase Porphyry qtz/fel+bt+chl+oxide schist with relict pl phenocrysts and cumulophyric clusters of pl+bt+chl+oxide Quartz Diorite amp+ep+pl/qtz+mag+oxide+ap schist  9  Legend Boundary Geology Eocene Princeton Group Jurassic-Cretaceous Eagle Plutonic Complex Late Triassic to Early Jurassic Nicola Group  Early Permian EWm belt EWm belt intrusives Foliated pl porphyry Meta-gabbro EWm belt volcanic/sedimentary schists Amphibole schist Quartzofeldspathic schist Interbedded schist  08NMA18-02  Amp(chl)+ep schist Pl+qtz schist Symbols Geological Contact (approximate, transitional)  08 08NMA18-10 NMA18-10  Fault (approximate) Bedrock outcroppings  PASAY T E N  N 1 km  Figure 3.1 Geological map of the EWm belt study area, southern British Columbia. Bounding geology from Massey et al. 2009. The two labeled points (08NMA18-02 and 08NMA1810) are sample locations for the geochronometric study. 10  3.2 3.2.1 !  Lithologies of the EWm Belt Amphibole-rich schist group The rocks on western margin of the EWm belt are homogeneous mafic schists that are  in contact with the Eagle Plutonic Complex (Figure 3.1). The unit is thick and continuous, showing no variation or contacts between outcrops. In outcrop, the unit weathers black to dark grey in colour and features thin (~5 mm) bands of white felsic material (Figure 3.2a). The unit is phaneritic, medium-grained and well-foliated, commonly exhibiting red oxide alteration on cleavage surfaces. The folation is defined by parallel compositional layering and by amphiboles that are oriented in planes. A weakly developed lineation is expressed by partial alignment of the amphiboles. In thin section the rocks is equigranular and composed predominantly of blue-green, idioblastic amphiboles (55-60%) (from tschermakites to magnesiohornblendes – data from metamorphic gradient study, see chapter 6, appendix C) (Figure 3.2b). The felsic bands comprise predominantly plagioclase (60%), calcite (7-10%) and quartz (<5%).  Minor  amphiboles are poikiloblastic and contain plagioclase. The plagioclase and minor amounts of quartz are recrystallized, including smooth grain boundaries that meet at 120° corners. Plagioclase crystals typically contain albite twinning. There is also a population of matrix plagioclase that displays broad zonation with diffuse and irregular boundaries. These zones do not have large compositional variation (see chapter 6 – plagioclase study). Other minerals present in more minor amounts are granular epidote (15-25%), xenoblastic to hypidioblastic oxides that are commonly magnetite (5-7%), secondary biotite (~3%) and minor calcite infill (3-5%). This schist group is interpreted to be metamorphosed mafic volcanics based on the mineralogy and homogeneity between outcrops. 3.2.2  Quartzofeldspathic schist group The south-central section of the study area is composed of thick layers of felsic  schists (Figure 3.1). The rocks are off-white on a fresh surface but in outcrop are orange due to iron oxide staining (Figure 3.3a). The rocks also have sparse, 20-30cm thick, interlayers of green, mafic schists predominantly composed of either coarse-grained, green splays of amphiboles (60% modal abundance)(tschermakites) (Figure 3.3a) or, medium-grained chlorite-rich (65-70% modal abundance) layers with minor biotite (5-7%). 11  In thin section, the felsic schists are rich in medium to fine-grained recrystallized quartz and plagioclase and have minor amounts of the coarse-grained plagioclase described above. The felsic minerals are recrystallized, commonly with irregular edges from grain boundary migration or smooth grain boundaries with well-developed 120° triple point junctions (Figure 3.3b, c). Other fine-grained minerals include equant, idioblastic magnetite (up to 15%), some xenoblastic oxide infill (<5%), minor biotite and muscovite (!5%) relicts and minor hypidioblastic chlorite and granular epidote (1-2%). There are also minor groups of garnets, either in clusters or in lenses up to 7mm long. The matrix has a well-preserved foliation predominantly defined by the recrystallized quartzofeldspathic material and alignment of any mica present. However, the rock commonly exhibits irregular cleavage owing to volumetrically minor platy minerals. Some units have greater muscovite and biotite contents and subsequently contain a well-developed schistosity. Owing to mineralogy (including quartz+plagioclase-rich, garnet-bearing and very low in mafic minerals) and interbedded layering, this schist group is believed to be resedimented and metamorphosed volcanic material with an unclear source. 3.2.3  Interbedded schist group North of the quartzofeldspathic schist, there is a transition into a suite of interleaved  schists with thicknesses of < 1m to > 5m (Figure 3.4a). Lithological contacts have been rotated parallel to the dominant folation found in the EWm belt. The metamorphically deformed layers are composed of volcanic material that can be roughly divided into either white, felsic layers or green, mafic layers. All units have well developed schistosity defined by either coarse-grained euhedral, green amphiboles that splay in 360° on the foliation plane (Figure 3.4b) and/or varying amounts of both chlorite and biotite. Many units also preserve a second population of coarse-grained splays of amphibole that crosscut the foliation (Figure 3.4c). The mineral assemblage includes varying amounts of prismatic amphibole commonly in the shapes of splays or sheaves (tschermakites, magnesiohornblendes or actinolites), oxides, particularly magnetite with some ilmenite, chlorite and minor biotite along with a quartzofeldspathic component that is more abundant in plagioclase. The felsic layers are rich in quartzofeldspathic material (50-60% modal abundance), with chlorite (15-20%) and either 12  a)  b)  0.25 mm  Figure 3.2 Amphibole-rich schist group of the EWm belt a) outcrop photograph (field station 08SOL12-08, UTM Zone 10, 5445656N, 672513E, NAD 83) and b) photomicrograph under plainpolarized light (field station 08SOL24-01/08SOL12-08, UTM Zone 10, 5445656N, 672513E, NAD 83).  a)  b)  100.0 μm  c)  100.0 μm  Figure 3.3 Quartzofeldspathic schist group of the EWm belt a) Outcrop photograph of a quart-  zofeldspathic schist with an amphibole-rich layer (field station 09THS02-02, UTM Zone 10, 5441526N, 675973E, NAD 83) and two photomicrographs under cross-polarized light of b) a medium-grained example (field station 08NMA17-01/09THS02-01, UTM Zone 10, 5441445N, 675882E, NAD 83) and c) a fine-grained example with minor medium-grained plagioclase (field station 08NMA17-02/09THS02-03, UTM Zone 10, 5442269N, 676099E, NAD 83). 13  a)  b)  c)  Figure 3.4 Interbedded schist group of the EWm belt: a) Outcrop photograph (field station 08NMA20-11, UTM Zone 10, 5444831N, 673430E, NAD 83); b) Handsample photograph of actinolite splays aligned on the foliation (field station 08JVI14-06/09THS01-08, UTM Zone 10, 5443978N, 675471E, NAD 83); c) Handsample photograph of actinolite splays cutting foliation (field station 08SOL12-11, UTM Zone 10, 5445666N, 673032E, NAD 83).  14  eudehral magnetite or ilmenite (7-10%). There is a notable lack of significant potassiumbearing phases. The mafic layers are rich in amphibole (40-50%) and epidote (20-25%) and have varying amounts of chlorite (<7% or 20-25%) and minor quartzofeldspathic material (57%). This metre-scale interbedded schist group is considered resedimented and metamorphosed volcanic material. !"#"$  Amphibole (chlorite)-epidote schist group % Along the southeastern margin of the EWm belt are outcrops of dark green-grey  schist (Figure 3.5a). The units are massive and medium-grained with commonly welldeveloped schistosity. However, coarser-grained schists have poorly-developed cleavage. The common mineral assemblage is predominantly medium to coarse-grained amphibole/chlorite (~50%), with granular epidote (20-25%), a fine-grained, recrystallized felsic component (~15%), oxides (10-12%), and minor biotite (~5%).  There is a  mineralogical variation in these rocks with minor units more abundant in hypidioblastic chlorite (40-50%) and granular epidote (20-25%), lacking amphibole (Figure 3.5b), while the other units are predominantly idioblastic prismatic amphibole (50-60%) (Figure 3.5c). This is either a function of slight variations in bulk rock chemistry or metamorphic grade experienced by the rocks. Coarse-grained plagioclase and porphyroblasts of magnetite in a finer matrix are abundant in this schist group. The plagioclase are subhedral to anhedral, and can occur in minor 3-5mm wide clusters of euhedral grains. Coarse-grained, idioblastic magnetite porphyroblasts (up to 5-7% modal abundance) become more abundant and larger in size (up to 2cms) in the northeastern section. Eye-shaped mineral clusters rich in oxides and amphiboles are interpreted to be pseudomorphs of pyroxene (see Figure 3.5b, c) owing to the pyroxene-equivalent chemistry of the mineral cluster. Owing to the mineralogy and thick, homogenous units, this rock group is interpreted to be metamorphosed mafic volcanic/volcaniclastics rocks. Localized sedimentary units in the Pasayten River area (see Figure 3.1) include biotite-rich schist with thin, interbeds of grey marble, black, graphite-rich schist and a quartzite unit. !  15  a)  c)  b)  100.0 μm  100.0 μm  Figure 3.5 Amphibole(chlorite)-epidote schist group of the EWm belt a) outcrop photograph and b) photomicrograph of a chlorite+epidote schist (field station 08SOL1110/09THS03-04, UTM Zone 10, 5446247N, 676020E, NAD 83) and c) photomicrograph of an amphibole+epidote+chlorite schist with a pseudomorphic mineral cluster highlighted by an arrow (field station 08JVI14-10/09THS01-09, UTM Zone 10, 5445462N, 675384E, NAD 83).  16  3.2.5  Plagioclase +/- quartz schist group The northeast section of the EWm belt is composed of thick felsic schists (several  tens of meters of exposure) that contain distinct coarse-grained plagioclase crystals and blue quartz-eye porphyroclasts. The mineralogy, chemistry and distributions suggest that the rocks are felsic volcanics/volcaniclastics.  There are two common schist varieties,  qtz+pl+ms+chl+bt schist and ms+chl+pl+qtz schist, as well as minor sedimentary phases, including a quartzite and graphite-bearing schists. A few outcrops found in this group lack potassium-bearing phases, forming quartz+chlorite schists. Similar to the majority of the EWm belt, there are few contacts visible between the different rock types in this group. A full description of the two common rock types found in this northern group is given below, including two samples used for the geochronological study: the ms+chl+qtz+pl+oxide+ap schist and the qtz+pl+ms+chl+ilm+/-bt schist. ms+chl+qtz+pl+oxide+ap schist In outcrop, this unit is a fine-grained, green-coloured schist with visible 2-3 mm plagioclase and blue quartz crystals (Figure 3.6a). Owing to high mica content, the unit has a well-developed schistosity that cleaves easily. Significant weathering and oxidation has occurred along foliation planes throughout the unit, staining the outcrop orange. The unit is rich in muscovite and chlorite (ranging from 30-40%), with significant fine-grained quartzofeldspathic material in the matrix (40-50%) and anhedral oxides (5%).  Coarse-  grained subhedral and poikilitic plagioclase (5-10%) (Figure 3.6b) and notable blue-hued quartz-eye anhedral porphyroclasts (5%) are both visible in hand sample (up to 3 mm wide). The quatzofeldspathic matrix has undergone significant dynamic recrystallization, with irregular crystal edges caused by grain boundary migration. qtz+pl+ms+chl+ilm+/-bt schist In outcrop, this rock type is light in colour, white or a light pink with minor greentinged siliceous bands (Figure 3.6c) and appears to underlie proximal interbedded schists, with a distribution controlled within a layer of the dominant foliation. Depending on mica abundance, this rock type either has very thin planes (less than 0.1 mm thick) of mostly muscovite (10%) and minor chlorite and biotite (3-5%) defining the foliation or lacks a well-  17  a)  b)  0.25 mm  c)  d)  300.0 μm  Figure 3.6 Examples of the plagioclase+quartz schist group of the EWm belt a) outcrop photograph and b) photomicrograph in cross-polarised light of a muscovite+chlorite schist with plagioclase (Field station 08NMA18-04/09THS05-04, UTM Zone 10, 5447179N, 674105E, NAD 83); c) outcrop photograph (field station 08NMA18-11/09THS05-09, UTM Zone 10, 5446494N, 673673E, NAD 83) and d) photomicrograph in cross-polarised light of a quartz+plagioclase-rich schist (field station 08NMA18-10, UTM Zone 10, 5446515N, 673855E, NAD 83).  18  developed schistosity and has a poorly-defined cleavage plane. The matrix is fine to very fine grained and has undergone significant recrystallization of the quartzofeldspathic material. All of the units have relatively large (3–4 mm) plagioclase porphyroclasts (3–5%) that are prismatic and subhedral, mantled by biotite, chlorite and recrystallized quartzofeldspathic material (Figure 3.6d). The feldspars may contain microfaults and, in some cases, are pulled apart. There are also minor relict quartz porphyroclasts (1% of rock) that are now coarsely recrystallized. Cumulophyric clusters of plagioclase, anhedral oxides, calcite and biotite, on the order of 3–4 mm in width, are also commonly found.  3.2.6  Foliated plagioclase porphyry Within the north-eastern area of the map a large, homogenous and schistose  plagioclase porphyritic body lies within a package of otherwise bedded felsic schists and graphite-bearing schists. A large exposure, tens of metres high, is situated on Highway 3. The rock is light grey on fresh surfaces and weathers white (Figure 3.7a). There is a moderately developed schistosity defined by muscovite-rich planes. There are no visible contacts exposed. However, localized thick exposures of this rock unit are proximally juxtaposed with thick exposures of chlorite+sericite schists and are interpreted to cross-cut those schists. In thin-section, a single foliation is poorly-preserved, which is likely a function of the abundant felsic matrix material easily recrystallizing during deformation and poorly preservating past foliations. The matrix is predominantly fine-grained quartzofeldspathic material (60-65%) and strongly recrystallized with an orientation parallel to the dominant foliation (Figure 3.7b). Quartz and plagioclase in the matrix is mostly indistinguishable. The matrix has minor fine-grained, equant idioblastic oxides (7-10%), chlorite (3-5%), biotite (35%), epidote (3-5%) and minor apatite (<1%).  Medium-sized grains (up to 4 mm in  diameter) of poikiloclastic plagioclase (7-10% abundance) show strong deformation twinning. Minor examples of grains are anhedral. The coarse-grained plagioclase contain grains of chlorite and epidote, and are commonly mantled by biotite and chlorite. There are also large, up to 4mm in diameter, mineral clusters composed of plagioclase, quartz, magnetite, chlorite, biotite and calcite (Figure 3.7b). This unit is considered an intrusive phase owing to the presence of porphyritic 19  plagioclase and glomoporphyritic mineral clusters, as well as the cross-cutting contacts and the unit thickness occurring on a larger-scale to the proximal schists. The emplacement timing likely occurred syn-deformationally and post low-grade metamorphism, owing to the preservation of a foliation, the porphyritic textures and if the plagioclase crystals are in fact relict phenocrysts. The mineralogy and the coarse-grained porphyroclasts found in this rock type are notably similar to the qtz+pl+ms+chl+bt schist (Figure 3.6c, d) described above in the plagioclase+/-quartz-eye porphyroclastic schist group and could possibly be a younger, consanguinous intrusive expression of the meta-volcanic rocks. 3.2.7  Meta-gabbro This rock type is a salt-and-pepper, homogenous, foliated unit that is exposed in  several localities across the map area but never with any visible contacts (Figure 3.7c). The outcrops are small (>5m wide), commonly surrounded by weathered material and contain late stage quartz veins (0.5-1cm in diameter). There are abundant large amphiboles (up to 12mm in length) and the felsic material having a sugary recrystallized texture. The unit appears similar to a diorite owing to the amphibole+plagioclase metamorphic mineral assemblage. However the whole rock geochemistry shows the unit to be lower in silica content. In thin section, the felsic portion (20-25% of the rock) is comprised of plagioclase, calcite and minor quartz. The mafic minerals are predominantly two textural populations of amphiboles that include coarse-grained, prismatic crystals (40%) and medium-grained ‘stubby’ laths (30-35%) both consisting of a mix of magnesiohornblendes and tschermakites. Other mafic minerals present include granular epidote (15-20%), idioblastic, equant magnetite (7-10%), and hypidioblastic oxide infill (7-10%) (Figure 3.7d). Similar to the porphyry above, this unit is interpreted to be intrusive owing to crosscutting relations and larger-scale thicknesses to the interbedded schist group units it is located in. Two foliations that define the most recent deformational event are well-preserved in this rock type, suggesting pre-deformational emplacement.  20  a)  b)  0.25 mm 0.50  c)  d)  100.0 μm  Figure 3.7 Intrusive Phases of the EWm belt: plagioclase porphyry a) outcrop photograph showing thick homogenous unit and b) a photomicrograph in cross-polarised light showing anhedral plagioclase (Field station 08NMA21-01, UTM Zone 10, 5447289N, 675398E, NAD 83); and gabbro c) outcrop photograph showing thick, homogenous unit (Field Station 09THS04-04, UTM Zone 10, 5445710N, 673419E, NAD 83) and d) photomicrograph in plainpolarized light showing foliation alignment in amphiboles (Field station 08SOL1201/09THS03-05, UTM Zone 10, 5448366N, 671943E, NAD 83).  21  3.3  U-Pb Geochronology The  206  Pb/238U system was used to investigate ages of felsic meta-volcanic rocks on  the northeastern side of the EWm belt (Figure 3.1). The aim was to test correlations between the EWm belt and the Late Triassic to Early Jurassic Nicola Group, since there was no previously established age in the literature for the EWm belt rocks. Three samples of ms+chl+qtz+pl+oxide+ap schist (08SOL11-07, 08NMA19-04-02, and 08NMA18-02), one sample of the foliated plagioclase porphyry (08NMA21-01) and one sample of qtz+pl+ms+chl+ilm+bt schist (08NMA18-10) were collected and processed in order to perform U-Pb zircon analysis. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) methods were used at the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia. Only the chl+ser+qtz-eye schist sample (08NMA18-02), and the qtz+pl+ms+chl+ilm+bt schist (08NMA18-10), samples from the north-eastern plagioclase+/-quartz schist group (see Figure 3.1), had adequate amounts of zircon for U-Pb analysis (see Appendix A). 3.3.1  Analytical methods Two samples were processed for U-Pb geochronology in the Pacific Centre for  Isotopic and Geochemical Research (PCIGR) at the University of British Columbia. Zircons were separated using conventional crushing, grinding, wet shaking table, heavy liquids, and magnetic separation methods. Zircon grains were hand picked from the least magnetic heavy mineral fraction. Sixteen to twenty zircon grains from each sample were analyzed using laser ablation (LA) ICP-MS methods, employing methods as described by Tafti et al. (2009). Instrumentation employed for LA-ICP-MS dating of zircons at the PCIGR comprises a New Wave UP-213 laser ablation system and a ThermoFinnigan Element2 single collector, double-focusing, magnetic sector ICP-MS. Zircon grains for analysis were mounted in an epoxy puck along with several grains of the Ple!ovice zircon standard (Sláma et al., 2007), and a separate in-house, 197 Ma standard zircon, and brought to a very high polish. The surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in ultraclean water prior to analysis. High quality portions of each grain, free of alteration, inclusions, or possible inherited cores, were selected for analysis. Line scans rather than spot analyses were employed in order to minimize elemental fractionation during the analyses. A  22  laser power level of 40% was used for all analyses, with a 25 micron spot size. Backgrounds were measured with the laser shutter closed for ten seconds, followed by data collection with the laser firing for approximately 35 seconds. The time-integrated signals were analysed using GLITTER software (Van Achterbergh et al. 2001; Griffin et al. 2008), which automatically subtracts background measurements, propagates all analytical errors, and calculates isotopic ratios and ages. Corrections for mass and elemental fractionation were made by bracketing analyses of unknown grains with replicate analyses of the Ple!ovice zircon standard. A typical analytical session at the PCIGR consists of four analyses of the Ple!ovice standard zircon, followed by two analyses of the in-house zircon standard, five analyses of unknown zircons, two standard analyses, five unknown analyses, etc., and finally two in-house zircon standards and four Ple!ovice standard analyses. The 197 Ma in-house zircon standard was analysed as an unknown in order to monitor the reproducibility of the age determinations on a run-to-run basis. Final interpretation and plotting of the analytical results employed the ISOPLOT software of Ludwig (2003). Analytical data are listed in Appendix A. 3.3.2  Geochronological results  chl+ser qtz-eye schist The chl+ser qtz-eye schist (08NMA18-02) yielded abundant coarse-grained tabular to prismatic zircon, all colourless with good clarity. The analyses obtained were all concordant, with two of the sixteen analyses being rejected from the calculations for having statistically anomalous  206  Pb/238U ages. The best estimate for the crystallization age of this sample, as a  weighted average of the  206  Pb/238U ages, is 281.3 ± 3.3 Ma (mean square of weighted  deviates, or MSWD, = 1.2; probability of fit, or POF, = 0.27) (Figure 3.8a). An acceptable range of values for POF is 0.05-0.30 (ISOPLOT software of Ludwig 2003). The two rejected analyses had ages that were anomalously old, perhaps due to an inherited component minor enough to have not been visibly noted when sorting or a minor xenocrystic component. qtz+pl+ms+chl+ilm+bt schist Sample 08NMA18-10 also contained abundant zircon yielding abundant coarsegrained tabular to prismatic zircon, all colourless with good clarity. The analyses obtained were all concordant and included in the calculations, since none of the 20 analyses had 23  statistically anomalous  206  Pb/238U ages. The analyses yielded a weighted average  206  Pb/238U  age of 282.7 ± 3.7 Ma (mean square of weighted deviates, or MSWD, = 1.3; probability of fit, or POF, = 0.17) (Figure 3.8b). 3.3.3  Age implications The EWm belt has not previously been dated but has historically been affiliated with  the Late Triassic to Early Jurassic Nicola Group. The 281.3 ± 3.3 Ma and 282.7 ± 3.7 Ma ages obtained from the U-Pb zircon dating gives the EWm belt an Early Permian age, which is significantly older than the Nicola Group. The affiliation of the EWm belt with the Nicola Group is therefore no longer considered likely. Alternative groups within the Canadian Cordillera that share similar lithologies and ages include the Pennsylvanian to Permian Harper Ranch Group, the Late Permian to Early Triassic Sitlika/Kutcho assemblages and the Pennsylvanian to mid-Permian Asitka group.  24  370  a)  Age Range (Myr)  350  Mean = 281.3 ± 3.3 [1.2%] 95% conf. Weighted by data-point errors only, 2 of 16 rejected MSWD = 1.2, probability = 0.27 (error bars are 2σ)  330 310 290 270 250 230  340  b)  Age Range (Myr)  320  08NMA18-10  Mean = 282.7 ± 3.7 [1.3%] 95% conf. Weighted by data-point errors only, 0 of 20 rejected MSWD = 1.3, probability = 0.17 (error bars are 2σ)  300  280  260  240  08NMA18-02  Figure 3.8 Plot of 206Pb/208U ages for individual La-ICP-MS analyses from two EWm belt samples: a)08NMA18-10 and b)08NMA18-02. Blue bars are analyses that were excluded from the calculated weighted average age. MSDW = mean square of weighted deviates.  25  4. Geochemistry Whole rock major and trace element analyses were employed to further describe and characterize the EWm belt rocks. Additionally, the study constrained their petrogenesis and determined the paleotectonic setting in which the EWm belt rocks formed. The geochemical data also forms the basis for comparisons with potentially correlative assemblages, such as the Nicola Group, the Sitlika-Kutcho assemblages and the Harper Ranch Group (see Figure 2.1). 4.1  Analytical Methods A suite of 19 samples of mafic and felsic meta-volcanic rocks collected from across  the EWm belt (Figure 4.1) were analyzed for major, trace and rare earth element contents. Two intrusive phases, a foliated feldspar porphyry and a metamorphosed gabbroic schist, that cross-cut the meta-volcanic units, were also analyzed to determine whether their source magmas may be consanguinous with the meta-volcanic rocks. All samples submitted for geochemical analysis were carefully selected to avoid oxidized, altered or obvious vein material. The only exceptions are two samples from the amphibole-rich schist (09THS01-04 and 08SOL12-08) on the western side of the belt. This rock type includes densely distributed quartz-rich domains that are highly deformed, recrystallized and aligned with the main foliation. These layers may have originally been quartz veins but are in such high density in the amphibole-rich schist that they have been included as part of the representative sample. Samples were crushed in a steel jaw crusher and pulverized in a tungsten carbide ring mill at the University of British Columbia. Major-, trace and rare earth element analyses were performed by ACME Analytical Laboratories in Vancouver, British Columbia (see data in Appendix B.1). Total abundances of major oxides and selected minor elements were determined on a 0.2 g sample analyzed by inductively coupled plasma-emission spectrometry (ICP-ES) following a lithium metaborate/ tetraborate fusion and dilute nitric digestion. Loss on ignition (LOI) was determined by weight difference after ignition at 1000°C. Most of the minor elements, along with rare earth elements, were determined by ICP mass spectrometry using the same sample aliquot and following the same decomposition process as for the major elements. A standard reference sample was included in the sample suite (09THS06-01, Watts Point Dacite) along with a 26  09THS03-05  08NMA18-02 08NMA21-21 08NMA21-01  09THS03-07  08SOL23-03 08SOL22-01  09THS05-09  08SOL12-08  08SOL12-16-01 09THS04-07 08NMA20-08-01 09THS01-09 08SOL22-06  09THS03-03 09THS02-11  N 1 km EWm belt  09THS01-06  08NMA17-08 09THS02-07  Bounding geology Geochemical samples map extent for Massey et al. 2009 outcrops  09THS01-04  contacts  Figure 4.1 Distribution of samples from the EWm belt used for the geochemical study. Bounding geology is based on Massey et al. 2009b and includes the Eagle Plutonic Complex to the west; the Princeton Volcanics to the north; and the Nicola Group to the east.  Type 1  Type 2  felsic group qtz-fsp-phyric schist (metarhyolite)  mafic group amp(chl)+ep schist  chl-ser schist with qtz-eyes mafic group amp(chl)+ep schist amp+ep+chl+fsp schist intrusives foliated pl porphyry  amp-rich schist amp-rich interlayer schist amp+ep+chl+fsp schist interbedded schist intrusives meta-gabbro  27  blank sample to assess accuracy. Some trace element values are lower than the standard values but are considered small enough variations to not affect the conclusions of the study. A sample duplicate was also submitted for further quality control and to assess precision (Appendix B.2). !  4.2  Interpretation of Geochemical Data Rock units within the EWm belt have experienced medium-grade metamorphism and  thus some element mobility effects, particularly affecting alkaline and alkaline earth elements, were expected. This mobility is evident in result comparisons between major and trace element classification diagrams. Elements considered immobile during metamorphism (up to mid-amphibolite) were used to establish the tectonic setting and petrogenesis of the EWm belt rock units. The elements that are considered immobile during metamorphism and hydrothermal alteration are the high field strength elements (HFSE: Zr, Hf, Nb, Ta, Y), the rare earth elements (REE: La to Lu, not Eu), the transition elements (TE: Cr, Ni, Sc, V) and the low field strength (LFS) element Th (e.g., Jenner 1996; Swinden et al. 1997; Johnson and Plank 1999; Piercey et al. 2006).  The EWm belt samples plot consistently as two  geochemically distinct groups that are spatially divided as an eastern type 1 group and a western type 2 group (Figure 4.1). 4.2.1  Type 1 meta-volcanic rocks The total alkalis versus silica (TAS) classification diagram of Middlemost (1994) and  the Nb/Y versus Zr/TiO2 classification diagram of Winchester and Floyd (1977) (Figure 4.2a, b) both show the type 1 samples to range from basalt to rhyolite with a consistent, subalkaline signature. On several of the plots considered, two minor chlorite+epidote-rich schists (08SOL22-01 and 08SOL22-06) consistently show different geochemical signatures to the rest of the type 1 meta-volcanic rocks and are treated as a subtype (light red on diagrams). These two samples both have anomalously low ratios of Nb/Y and Zr/TiO2 (Figure 4.2b). Two felsic meta-volcanic samples (08SOL23-03 and 08NMA18-02) have notably high SiO2 concentrations (77-78%). The high silica content is likely a cause of quartz veining made unrecognizable from strong deformation and recrystallization. On both a SiO2 vs. K2O plot and an AFM ternary diagram, type 1 samples plot roughly as a calc-alkaline series (figure 4.3a, b). However, several individual samples show 28  significant variation between the two diagrams. For example, the foliated plagioclase porphyry (08NMA21-02) plots as tholeiitic on the SiO2 vs. K2O plot and calk-alkaline on the AFM ternary diagram (figure 4.3a, b). Sample 08SOL22-01 is an outlier on the SiO2 vs. K2O diagram, plotting in the shoshonite field due to higher K. However, on the immobile element classification diagram (Figure 4.2b), it plots as subalkaline and as will be shown, has equivalent chemistry and plots consistently with other samples on the rest of the diagrams studied. This slight variation confirms mobility effects on the more mobile elements as a function of metamorphism and possible alteration. A chondrite-normalized spider diagram shows an enrichment of low field strength (LFS) elements to the high field strength (HFS) elements, as well as a decoupling of the enrichment behaviour between the two element types, with HFSEs enrichment relative to each other being equal (Figure 4.4a).  This decoupling signature is a result of higher  solubility of the LFS elements to the HFS elements that is indicative of magma generation occurring in an hydrous environment. This is a characteristic feature of arc magmatism (e.g., Pearce 1982 and 1983). The lower values of Nb and Ta also are characteristic of magmas originating from volcanic arcs (Morris and Hart, 1983; Saunders et al., 1991; McCulloch and Gamble, 1991). Figure 4.4b is a primitive mantle-normalized spider diagram that plots a suite of elements that includes rare earth elements (REE), HFSEs and transition elements (as described by Piercey 2006). By removing the decoupled elements from the pattern and normalizing to primitive mantle compositions, the resulting pattern more clearly displays the variation in HFSE to LFSE enrichments and allows for comparisons with niobium values to thorium and lanthanum (Figure 4.4b). This figure shows the type 1 meta-volcanic samples to have two distinct patterns, with the subtype samples (08SOL22-01 and 08SOL22-06) having distinctly lower LFSE contents and smaller negative niobium anomalies to the other type 1 samples. The felsic samples have patterns equivalent to the more common type 1 mafic samples and not equivalent to the subtype samples’ trace element contents (08SOL22-01 and 08SOL22-06) (see Figure 4.4a inset). The distinctive negative niobium anomalies, relative to thorium and lanthanum (Figure 4.4a, b), are considered ‘arc signatures’ (Swinden et al. 1997).  Arc rocks are  commonly depleted in HFS elements (e.g., niobium) owing to HFS element being retained in accessory minerals in the subducting slab (e.g., rutile; Foley et al. 2000). Furthermore, the  29  more abundant type 1 meta-volcanic rocks have spider diagram patterns with intermediate LFSE enrichment levels, between the LFSE contents of island arc tholeiite and calclakaline basalt representative samples (Piercey et al. 2006). Owing to the enrichment in LREE to the HREEs, this pattern is categorized as LREE-enriched island arc tholeiites (as described by Shinjo et al. 2000), which occur as a result of weak crustal contamination (Piercey 2001; Piercey et al. 2004). The type 1 subtype pattern of samples 08SOL22-01 and 08SOL22-06 has strong decoupling of the LFSE to the HFSE (figure 4.4a) and negative niobium anomaly relative to thorium and lanthanum. The pattern is considered an island arc tholeiite signature (based on patterns of Piercey 2001; Piercey et al. 2004) with notably lower LFSE contents, which could reflect a more depleted mantle source to the other type 1 meta-volcanic rocks or rocks from a more primitive volcanic arc. The spider diagram enrichment patterns are well reflected by calcalkaline to island arc tholeiite basaltic signatures for the more abundant type 1 samples and a more primitive island arc signature for the type 1 subtype samples on the Hf-Th-Ta diagram (Figure 4.5a). All of the type 1 meta-volcanic rocks show a steep vanadium enrichment pattern and typically have lower titanium contents than type 2 samples on the Ti-V diagram of Shervais (1982). The type 1 felsic meta-volcanic samples from the EWm suite also are shown to have a volcanic-arc affinity (Figure 4.6a, b). The foliated plagioclase porphyry has similar LIL and HFS element enrichment patterns (see Figure 4.4a inset) as well as a volcanic arc affinity (Figure 4.6a, b), showing a likely consanguineous nature.  30  15  (a)  Phonolite  10  Na2O + K2O  Foidite  Tephri! phonolite Phono! tephrite  Trachyte  Trachy! andesite  Trachy dacite  Rhyolite  Basaltic trachy!  Tephrite  andesite  Andesite  Basaltic andesite  Dacite  Silexite  Subalkaline/Tholeiitic  0  Alkaline  Basalt  Picro basalt  5  Trachy! basalt  40  50  60  70  80  90  (b)  5.000  SiO2  Phonolite  0.500  Com/Pant  Rhyolite  0.050  Zr TiO2  Trachyte Rhyodacite/Dacite Trachy! andesite  Andesite  Bsn/Nph  0.005  Andesite/Basalt  Alk!Bas  0.001  SubAlkaline Basalt  0.04  0.2 Nb/Y  1  Type 1  Type 2  felsic group qtz-fsp-phyric schist (metarhyolite)  mafic group amp(chl)+ep schist  chl-ser schist with qtz-eyes mafic group amp(chl)+ep schist amp+ep+chl+fsp schist (isolated) intrusives foliated pl porphyry  amp-rich schist amp-rich interlayer schist amp+ep+chl+fsp schist (isolated) interbedded schist intrusives meta-gabbro  Figure 4.2 Chemical classification diagrams for EWm belt volcanic samples a) total alkalis vs. SiO2 (anhydrous weight %) plot with classification fields and nomenclature after Middlemost (1994). Also includes a projection of the alkaline to subalkaline fields of Irvine and Baragar (1971). b) Nb/Y versus Zr/TiO2 (anhydrous weight %) discrimination diagram based on immobile element concentrations after Winchester and Floyd (1977). 31  4  High!K calc!alkaline Series  Shoshonite Series 3  K2O wt %  5  a)  1  2  Calc!alkaline Series  0  Tholeiite Series  45  50  55  60  65 SiO2  70  75  80  wt %  F  b)  Tholeiite Series  Calc!alkaline Series  A  M  Figure 4.3 a) SiO2 vs. K2O (anhydrous weight %) diagram with classification fields and nomenclature after Peccerillo and Taylor (1976). b) AFM diagram for all EWm samples with classification fields and nomenclature after Irvine and Baragar (1971). A = Na2O+K2O; F = Fe2O3T; M = MgO, all points as anhydrous weight percents. Symbols as in Figure 4.2.  32  100  Sample/ Chondrites  K  Nb  Ta  La  Ce  Sr  Nd  P  Sm  Zr  Hf  Ti  Tb  Y  Tm  Yb  10 1  Th  Sample/ Primitive Mantle  0.1  Rb  10  Ba  0.1  0.1  1  Sample/ Chondrites  Type 1  1  100  b)  Felsics  100  1000  Type 1  10  1000  a)  Th  K  Nb  Ta  La  Ce  Sr  Nd  P  Sm  Zr  Hf  Ti  Tb  Y  Tm  Th  Yb  d)  Type 2  100  Rb  Nb  La  Ce  Pr  Nd  Zr  Sm  Eu  Ti  Dy  Y  Yb  Lu  La  Ce  Pr  Nd  Zr  Sm  Eu  Ti  Dy  Y  Yb  Lu  Type 2  10 1  Sample/ Primitive Mantle  10 0.1  0.1  1  Sample/ Chondrites  100  c)  1000  Ba  Ba  Rb  Th  K  Nb  Ta  La  Ce  Sr  Nd  P  Sm  Zr  Hf  Ti  Tb  Y  Tm  Yb  Th  Nb  Figure 4.4 Trace element concentrations of the EWm belt mafic volcanics plotted on spider diagrams. a) and b) Type 1 mafic volcanics, a) inset is of type 1 felsic volcanics; c) and d) Type 2 mafic volcanics. Symbols as in Figure 4.2. Plots a) and c) are normalized to chondrite values of Thompson (1982). Plots b) and d) are normalized to primitive mantle values of Sun & McDonough (1989).  33  IAT  600  Ti/V=20  Ti/V=10  Ti/V=50  500  Arc  Ocean floor basalt  400  IAT: island-arc tholeiite CAB: calkalkaline basalt N-MORB: normal-type E-MORB: enriched-type MORB: mid-ocean ridge basalt WPA: within-plate alkaline basalt WPT: within-plate tholeiite  V (ppm)  N! MORB  b)  Ti/V=100  200  E!MORB, WPT  300  Hf/3  a)  100  CAB  0  WPA  Ta  Th  0  5  10  15  20  25  Ti (ppm)/1000  Ti 100  Ti 100  c)  d) Low-K tholeiite = A, B Ocean-floor basalt = B Calcalkaline basalt = B, C Within-plate basalt = D island-arc basalt  A  D  ocean-floor basalt  B C  Zr  Calkalkaline basalt  Y*3  Zr  Sr/2  2!Nb  Figure 4.5 Tectonic discrimination diagrams for Ewm belt mafic volcanics: a) Th-Hf-Ta diagram, fields after Wood (1980); b) Ti-V diagram, fields after Shervais (1982); c) Ti-Zr-Y diagram, fields after Pearce and Cann (1973); d) Ti-Zr-Sr diagram, fields after Pearce and Cann (1973); e) Nb-Zr-Y diagram, fields after Meschede (1986). Only basaltic samples with 12<CaO+MgO<20 are shown in c-e. Symbols as in Figure 4.2.  e) Within-plate tholeiite= All, C Within-plate alkaline basalt = A E-type mid-ocean-ridge basalt = B N-type mid-ocean-ridge basalt = D  AI AIl B C D Zr/4  Y  34  b)  syn−collisional granite  1000  1000  a)  within-plate granite  Nb  Rb  100  100  within-plate granite  ocean-ridge granite  1  1  ocean-ridge granite  Volcanic-arc granite + syn−collisional granite  10  10  Volcanic-arc granite  1  10  100 Y+Nb  1000  1  10  100  1000  Y  Figure 4.6 Tectonic discrimination diagrams for EWm belt felsic intrusive and volcanic rocks. a) (Y+Nb) versus Rb tectonic discrimination diagram, fields and nomenclature after Pearce et al. (1984). b) Y versus Nb tectonic discrimination diagram, fields and nomenclature after Pearce et al. (1984). Symbols as in Figure 4.2.  35  4.2.2  Type 2 meta-volcanic rocks Type 2 samples include meta-volcanic rocks and a metamorphosed gabbro and have a  subalkaline signature that is more restricted in composition than type 1 meta-volcanic rocks having basaltic to andesitic compositions (Figure 4.2a, b). On the SiO2 versus K2O and the AFM ternary diagrams, type 2 samples plot inconsistently as both a low-potassium tholeiitic series in the fields of Peccerillo and Taylor (1976) and more calk-alkaline in the fields of Irvine and Baragar (1971) (Figure 4.3a, b). This variation is showing significant mobility affects from metamorphism and alteration. The spider diagram shows depletion in most LIL elements versus HFS elements (Figure 4.4c and d). The thorium-niobium-lanthanum relative contents are equivalent to representative patterns of back-arc basin basalts (Ewart et al. 1994). There is no decoupling of the LILE’s to the HFSE enrichment patterns and there is no negative niobium ‘arc signature’ of Swinden et al. (1997) in relation to thorium and lanthanum. The tectonic discrimination diagrams also confirm the type 2 meta-volcanic samples to be ocean-floor basalts. On the Hf-Th-Ta diagram, the samples plot as normal-type midocean ridge basalts (Figure 4.5a), whereas the less-steep vanadium enrichment pattern of the type 2 samples relative to the type 1 samples on the Ti vs V diagram (Figure 4.5b) does not distinguish between the overlapping fields of the ocean-floor- basalts and arc basalts (Shervais 1982). The patterns on the Ti-Zr-Y diagram and on the Ti-Zr-Sr diagram (Figure 4.5c, d) do not distinguish between the ocean-floor basalts and island arc tholeiites either since many samples plot differently on the two diagrams. However, there are two samples (08SOL12-16-01 and 09THS01-04) that plot consistently on all four diagrams, the former as an island-arc tholeiite and the latter as an ocean-floor basalt. These diagrams illustrate that the type 2 basalts are primitive and sourced from a normal mid-ocean ridge mantle. The overall conclusion for the type 2 meta-volcanic rocks is that they are back-arc basin (or intraarc basin) ocean-floor basalts. The meta-gabbro (sample 09THS03-05) has the same trace element pattern on the spidergram to the type 2 meta-volcanic rocks (see Figure 4.4b) and plots consistently as being an igneous unit with an ocean-floor origin (Figure 4.5 a-e) and is concluded as consanguinous to the type 2 meta-volcanic rocks.  36  4.2.3  Paleoenvironment The eastern type 1 meta-volcanic rocks of the EWm belt are LREE-enriched island  arc tholeiites, with a subtype of island arc tholeiites with low LILEs. The subtype could represent a sampling of a more-primitive arc or reflect heterogeneity in the mantle being sourced. Owing to the low abundance of the subtype samples, their relationship to the more abundant type 1 samples cannot be determined. The western type 2 meta-volcanic rocks are a suite of back-arc basin (or intra-arc basin) basalts. The presence of VHMS-style mineralization in both the east and west sections of the EWm belt suggests these rocks developed in a paleosubmarine environment that experienced a period of extension, either an intra-arc setting or a back-arc setting (Galley et al. 2007). As well, the presence of both minor units of quartzites, either meta-cherts or siliceous exhalatives, and graphite-bearing rocks suggests marine conditions during the development of those units. There is no exposed contact to establish a stratigraphic link between the eastern island arc volcanic rocks and the western back (intra-) arc basin volcanic rocks. However, the boundary between the two types is irregular, with type 1 samples being located within the type 2 area. The juxtaposition of the two volcanic types could suggest an original continuity and lateral distribution in a submarine paleoenvironment of ocean-floor basalts and arc volcanic rocks. VHMS deposits are known to occur as clusters (Galley et al. 2007) and since are found in both the east and west sections, associate both volcanic types in a submarine paleoenvironment during VHMS deposit formation. However, until a conformable stratigraphic relationship is found between the two volcanic types, the paleoenvironment associations between the two are hypothetical. 4.3  Possible Affiliates The significantly younger Nicola Group volcanic rocks in contact with the EWm belt  are categorized as a single geochemical group that is bound to the east by the Boundary fault (Massey 2011) (see Table 4.1). The volcanic rocks have a compositional range from basalt to andesite and a subalkaline signature that is medium-K and calcalkaline (Massey 2011). In the Merritt area, the EWm belt rocks and the proximal Nicola Group volcanic rocks were originally grouped by Mortimer (1987) as part of the ‘Western Belt’, which is one of three belts in the Nicola Group as defined by Preto (1972). However, in comparison to the EWm belt, the geochemical signature of the nearby Nicola Group samples is more strongly 37  Table 4.1 - Geochemistry of Potential Affiliates to the EWm belt Group Nicola Group Volcanics  Subgroup Western Belt' proximal to EWm study area  Age  Rock Composition  textures  Majors/Traces  Late Triassic to subalkaline basalt to Early Jurassic andesite  Px+Fsp tuffs, lapilli tuffs, breccias, agglomerates  medium-K calcalkaline  schistose volcanics with relict textures and minerals  REE/Chondrite  Spider/MORB  Paleotectonic arc, calcalkaline LIL enriched with and small Nb, Ta depletion, population with arc signature intra-plate character  conclusion  Ref  moderately evolved island arc  Massey 2011  Sitlika/Kutcho assemblages Sitlika assemblage  Type 1  Late Permian to subalkaline bimodal Early Triassic basalt and rhyolite (240-260 Ma)  Sitlika assemblage  Type 2  Late Permian to schistose volcanics subalkaline basalt to Early Triassic with relict textures dacite (240-260 Ma) and minerals  Sitlika assemblage  Type 3  Late Permian to schistose volcanics alkaline, only mafics Early Triassic with relict textures analyzed, felsics? (240-260 Ma) and minerals  Kutcho assemblage  mid-ocean-ridgelike; mafics depleted in LREE, felsics flat pattern moderate LREE enrich.; HREE content lower than type 1 LREE enrich. higher than type 2; HREE contents similar to type 1  Late Permian to Early Triassic  subalkaline  schistose volcanics with relict textures and minerals  low-K tholeiitic, lower -Zr and -Y to Sitlika  Pennsylvaninan to Permian  variable - basalt to dacite  porphyritic - plag esp, mafics have pyroxene  low-K  Permian  mostly basalt to andesite  mid-ocean-ridge potential back-Schiarizza basalts arc setting and Massey 2010 oceanic-arc signature  within-plate character  HFS and REE elements lower to Sitlika  Zr/Y - tholeiitic magmatic affinity  oceanic arc  Schiarizza and Massey 2010  alkaline, Schiarizza within-plate and Massey signature 2010 Schiarizza primitive and Massey island-arc 2010; Childe basalts et al. 1998  Harper Ranch Group Huntergroup volcanics  K-spar poor suite  Lay Range  upper mafic tuff division  Asitka Group  EWm belt  EWm belt  Upper sed unit age 282-265 lower volcanic lower unit oldest unit age is 308.4+/0.7Ma  bimodal-arc  Depletion in all HFSE  crystal-lithic with calc-alkaline to pyroxene and feldspar, up to 30% tholeiitic affinity of rock, rare qtz  schistose volcanics  Type 1  porphyritic Early Permian plagioclase, (282.7 +/- 3.7 subalkaline basalt to pyroxene relicts in rhyolite Ma; 281.3+/-3.3 mafics, blue quartz Ma) in intermediates  medium-K calcalkaline low -Zr and -Y island arc  Type 2  Early Permian (282.7 +/- 3.7 subalkaline basalt to andesite Ma; 281.3+/-3.3 Ma)  low-K tholeiitic low -Zr and -Y island arc  porphyritic plagioclase, pyroxene relicts in mafics  low Cr/Ti, Ti/V & Zr/Ti ratios and steep Venrichment  island arc  relative overall enrichment Hf-Ta-Th=islandmature island reductions of of LREE, pattern arc, calcarc-derived elements Ti to Cr, sits near 10x alkaline nature; tholeiitic/calcdepletion of Ta & chondrite Ti/V & Cr/Y = alkaline Nb relative to Ce abundance island-arc & Th  no chem data available  primitive island arc assemblage very similar to Sitlika  slight enrich. Of LREE, pattern at 10x chondrite abundance with negative Eu anom in felsic samples  med.-K volcanic arc  38  moderate enrich. island-arc of LIL, all have tholeiites and neg. Nb, Ta calcalkaline anomalies; basalts pattern relatively flat in HFSE end depleted in LIL elements, all slight depletion of mid-ocean-ridge have slight LREE pattern below basalts and neg.Rb anomaly chondrite island-arc and pos. Sr, K; abundance tholeiites flat and close HFSE pattern  low-K primitive island arc with midocean-ridge basalt  Nelson 1993  Ferri 1997  Diakow and Rogers 1998 MacIntyre et al 2001  calcalkaline and evolved.  Instead, the EWm belt meta-volcanic rocks share some key  geochemical similarities with two more age-appropriate island-arc assemblages; the Late Permian to Early Triassic Sitlika-Kutcho assemblages and the Permian Harper Ranch Group (see Table 4.1). A recent study of an extensive suite of the Sitlika assemblage volcanic rocks found the assemblage to include three geochemical types: a island-arc type that has moderate enrichment of LREEs; a within-plate, alkaline type that are more enriched in LREEs and higher in HREE contents to the volcanic-arc type; and mid-ocean-ridge basalt type with depletions in LREEs (Schiarizza and Massey 2010). The Kutcho assemblage, which has been correlated to the Sitlika assemblage (Schiarizza & Massey 2010) is composed of low-K tholeiitic volcanic rocks (Childe and Thompson, 1997) that are similar in enrichment to only the Sitlika mid-ocean-ridge basalt type. However, the Kutcho differs from the Sitlika in terms of notably lower HFS and rare earth element contents, particularly zirconium and yttrium, as compared to the Sitlika volcanic rocks (Schiarizza and Massey 2010). The Kutcho assemblage geochemical signature is similar to the type 2 meta-volcanic rocks of the EWm belt whereas the Sitlika volcanic-arc rocks are geochemically similar to the EWm belt’s type 1 volcanic rocks. The Harper Ranch Group arc volcanic assemblage contains both low-potassium tholeiitic and calc-alkaline basalts (Nelson 1993; Ferri 1997). These arc volcanic units have REE patterns with a moderate enrichment of the LREEs (Ferri 1997) equivalent to the EWm belt volcanic-arc rocks and the Sitlika volcanic arc rocks. The Harper Ranch Group rocks differ from the EWm belt in having more dominant calcalkaline basaltic compositions. This observation does not set the Harper Ranch apart from the EWm belt, however, as calcalkaline and tholeiitic basalts are both expected and can vary in abundance between locations along the axis of some volcanic arcs (e.g., Kay and Kay 1994; Brown et al. 1977). The Sitlika/Kutcho assemblage volcanic rocks and the Harper Ranch assemblage volcanic rocks are similar in age and are believed to have formed proximal to each other, outboard of the western margin of North America (Colpron et al. 2006). This relative paleotectonic positioning suggests these volcanic rocks would have sourced an equivalent mantle. If true, variations in their REE patterns would therefore not be a result of mantle  39  heterogeneity, leading instead to the conclusion that the Kutcho LREE depletion is a more primitive pattern in comparison to the Harper Ranch LREE enrichment. As described above, the Late Paleozoic volcanic arcs that are possible affiliates to the EWm belt meta-volcanic rocks share geochemical similarities and are difficult to distinguish. The EWm belt type 1 island arc meta-volcanic samples are geochemically similar to the Sitlika volcanic arc assemblage and the Huntergroup volcanic rocks from the Harper Ranch (see Table 4.2) and are not as evolved as the Lay Range volcanic rocks of the Harper Ranch assemblage (Ferri 1997). The EWm belt type 2 back-arc basin basaltic compositions are similar to the Kutcho assemblages.  Owing to a closer similarity in age and common  stratigraphical relationships with southern Nicola Group volcanic rocks, the EWm belt is more similar to the Harper Ranch Group. The variations in geochemistry between the EWm belt and the Harper Ranch Group are small and are likely due to a commonly observed feature of spatial variations in the chemistry of magmas along axes of some arcs (Kay and Kay 1994; Brown et al. 1997). As an aside, the Asitka Group, a Pennsylvanian to Permian arc that is located in the northern section of the Stikine terrane, comprises a lower sequence of greenschist grade volcanic rocks and an upper sequence of marble successions. It has been likened to the Sitlika assemblages owing to lithostratigraphic similarities and an interpreted primitive island-arc petrogenesis (Diakow and Rogers 1998; MacIntyre et al. 2001). However, little is known of its geochemical characteristics, thus precluding any direct comparisons with the EWm belt rock units at this time.  40  5. Structural Deformation 5.1  Introduction The deformed Nicola Group rocks in the northern Whipsaw Creek area (see Figure  2.2) have strongly developed NW-SE metamorphic foliations, particularly two acutelyoriented schistosities whose overall dip angle shallows towards the east (Massey et al. 2009a). The intensity of the foliation gradually decreases eastward over ~5 km into typical, ‘fresh’ Nicola Group volcanic rocks (Massey et al. 2009a). This differs to the EWm belt study area where, over the same distance, the equivalently orientated foliations show no dissipation of deformational intensity. Overall, the EWm belt has a dominant foliation with an average orientation of 171°/58° (all orientations of planar surfaces are given using the right-hand rule). Even though most contacts between rock units are rarely exposed, all visible bedding contacts are parallel to the dominant foliation. Mesoscopic evidence for a more complex history of foliation development includes folded schist and crenulation cleavages. Additionally, the main foliation exhibits a systematic decrease in dip on the eastern side of the EWm belt, suggesting possible folding. However, the evidence in outcrop is rare and the deformation is difficult to correlate between outcrops. A detailed study of the preserved microstructures in oriented thin sections has enabled the identification of several foliations that can be linked spatially across the EWm belt. 5.2  Microstructure Study Vertical, 075° striking, NNW facing oriented thin sections were cut from forty-five  samples collected across the study area. These sections are approximately perpendicular to the dominant foliation and at a high angle to the few macroscopic folds observed in the field. Microscopic examples of late cataclasis were found localized along pre-existing schistosities and are considered a separate event to the metamorphic deformation. Of the forty-five thin sections studied, the majority of the EWm belt samples preserve a single, penetrative and commonly a continuous foliation. This dominant foliation is herein interpreted as S2. Six of the forty-five samples preserve other fabrics in addition to the dominant foliation (see Table 5.1; Figure 5.1). The six samples also contain a crenulated S1 fabric that has undergone various degrees of S2-associated deformation and minorl effects of an S3 foliation that flattens  41  Table 5.1 Definitions and descriptions of structural fabric elements from the EWm belt Element S0  Description Lithological layering rotated parallel to dominant foliation (S2). Sedimentary structures and thus younging criteria are no longer present.  S1  Locally-preserved, well-developed and crenulated. Has various degreess of dextral asymetry and rotation related to S2. Preserved shallow orientation is 25o -> 085o, steepens to vertical.  S2  Dominant foliation in study area. The schistosity is often well-developed, and varies from a continuous foliation to differentiated crenulation cleavages. Is poorly-developed in localized areas. Has average strike of 172o/55o, flattens to a dip of 38o to the east.  S3  Poorly-developed foliation that dextrally flattens S2 to an average orientation of 38o -> 267o.  42  08NMA21-02 09THS03-05  09THS05-05 09THS05-01  08SOL11-11  N 1 km EWm belt Bounding geology Samples with multiple foliations map extent for Massey et al. 2009 outcrops contacts  Figure 5.1 Distribution of samples with multiple foliations in the EWm belt. Bounding geology is based on Massey et al. 2009b and includes the Eagle Plutonic Complex to the west; the Princeton Volcanics to the north; and the Nicola Group to the east.  43  S2. The degree of foliation preservation in the EWm belt samples is strongly influenced by lithology and is discussed below according to rock type. 5.2.1  Amphibole/chlorite-bearing schist The most abundant rock type in the EWm belt is medium-grained mafic schist that is  commonly rich in amphibole and/or chlorite. Typically, only the dominant S2 foliation is preserved in this rock type; being defined by amphiboles, micas and ilmenite alignment (Figure 5.2a). Two of the mafic schist samples have a poorly-developed S2 foliation, and a well developed S1 foliation. In sample 09THS03-05, the multiple foliations are poorly-defined and difficult to distinguish (Figure 5.2b) owing to the presence of coarse-grained amphiboles that have grown misaligned to the foliation. In contrast to a single-foliation example, a more complex set of foliations is apparent from there being more than one planar orientation of aligned amphiboles (Figure 5.2a, b). However, the exact orientations of planes other than the dominant foliation are difficult to determine. The dominant fabric (shown to be S2 below) has a comparably steep, 62° dip angle to the single-foliation example and to what is measured in the field on the western side of the EWm belt. The second sample, 09THS05-01, is a chlorite-rich mafic schist that clearly preserves two foliations: the S2 foliation and a crenulated S1 foliation (Figure 5.3a, b). The S1 foliation is well-developed, dips shallowly (25°) to the east and includes parallel felsic- and chloriterich compositional layering. S2 steeply dips (60°) to the west and is defined by kinked and aligned chlorite grains in the chlorite-rich layers. S2 produces tight symmetrical crenulations in S1 that has a shallow enveloping dip oblique to S2 (Figure 5.3b). The crenulation cleavage development in this sample is considered the upper limits of stage 2, according to the models of progressive foliation development presented by Bell and Rubenach (1983) and Bell (1986). Stage 2 is characterized by the formation of crenulations in a pre-existing foliation. Stage 3 includes further crenulation and reactivation of S1 accompanied by metamorphic differentiation from solution transfer that creates mica-rich folia and quartz-rich microlithons. The compositional layering in this sample is still aligned with the S1 folia. Even though the layering is crenulated, there has been only minor solution transfer of material as a function of this crenulating deformation.  44  a) S2  100 μm  b) S2 ?  100 μm  Figure 5.2 Foliation preservation in amphibole-rich, coarse-grained mafic schists of the EWm belt. a) photomicrograph in plain-polarised light of a schist preserving a single S2 foliation (08SOL12-08); b) photomicrograph in plain-polarised light of the amphibolebearing schist preserving several foliations (solid and dashed red lines) (09THS03-05). All photomicrographs are in plain-polarized light and are oriented horizontal, facing northward. 45  a) S1  S2  100 μm  100 μm  S2  b)  S1  100 μm  100 μm  Figure 5.3 Foliation preservation in coarse-grained, chlorite-rich mafic schists of the EWm belt (09THS05-01). Photomicrographs and associated sketches depict a) dominant S2 foliation with S1 chlorite splays; and b) crenulations of S1 in a felsic-rich layer. All photomicrographs are in plain-polarized light and are oriented horizontal, facing northward.  46  The two more-complexly foliated samples described above are believed to have been preserved in localized lower-strain zones. In this case, rock type is not interpreted to be the main influence on the preservation of multiple foliations, owing to lithologically similar samples typically preserving only the S2 fabric. As well, it is a common belief that rocks and rock belts will accommodate strain heterogeneously (e.g. Gray & Durney 1979; Bell 1981; Bell & Rubenach 1983). Pockets of lower strain allow the two mafic schist samples to preserve the older fabrics. 5.2.2  Felsic schist Felsic schists (including quartz+feldpsar-rich schists from the quartzofeldspathis  schist group and the pl+qtz schist group) are another common rock type in the EWm belt that only preserve the dominant foliation. The schists are rich in quartz and feldspar and strongly recrystallized.  This rock type poorly preserves a S2 foliation in the alignment of the  quartzofeldspathic material. Depending on the volume of mica content, these rocks may or may not have a well-developed schistosity. This causes many samples to preserve very little structural detail. 5.2.3  Graphite-bearing schist Graphite-bearing schist are a minor component in the eastern margin volcanic schists  (including the felsic and mafic volcanic schist groups) of the EWm belt. These schists crop out in the eastern side of the EWm belt and are well exposed in road cuts on Highway 3, west of the Similkameen Falls fault (see Figure 2.2). The S2 foliation is defined by graphite-rich planes as a penetrative schistosity and is either a spaced or a continuous fabric. The S2 dip varies but is predominantly shallower in these eastern section samples. The S1 foliation is crenulated with dextral asymmetry into the S2 folia. The steepness of the S1 enveloping dips vary in the graphite-rich samples from shallow and east-facing to near-vertical and westfacing as they rotate by different amounts towards the S2 folia.  Consequently, S2  microlithons are common and have boundaries marked by thick dark bands of condensed graphite-rich S1 planes. Several stages of crenulation cleavage development are preserved within a single sample owing to microscopic heterogeneity of strain development during progressive and intensifying deformation. This development is categorized as stages 3 and 4, according to models by Bell and Rubenach (1983) and Bell (1986).  During their  47  development, crenulation cleavages reach stage 4 when new micas begin to grow parallel to S2, creating the differentiated S2 cleavage plane. Sample 09THS05-05 is predominantly quartz-rich and contains thin layers of graphite. S1 has one main enveloping dip that is rotated near-vertical into the S2 folia (Figure 5.4a). S2 has sections with flattened dips that may reflect rotation associated with the development of an S3 foliation (Figure 5.4b).  This outcrop has the only example of  mesoscopic folds in the study area (Figure 5.4c). The folds are a large-scale example of S2 crenulations, with an axial surface oriented at 190°/44°. This dip is shallower than the more westerly S2 dips and may also be reflecting a slight rotation as part of the poorly developed S3 foliation. S2 is moderately developed with minor strain localization in the graphite-rich layers but is less visible in the quartz-rich layers This variation reflects how different rock compositions accommodate and preserve strain. Sample 08SOL11-11 is a graphite+chlorite+muscovite-rich schist that has a steeply dipping S2 foliation (55°). It has abundant examples of heterogeneously accommodated strain illustrated by varying enveloping dips of S1. In some S2 microlithons the S1 foliations have shallow enveloping dips (25° to the east) (Figure 5.5a). These dips steepen towards microlithon margins owing to the S1 folia being incorporated into higher strain zones. Figure 5.5b shows a preserved S1 hinge that has undergone higher strain at its margins, developing a strongly attenuated limb.  Another example is shown in Figure 5.5c where a set of  crenulations from a low-strain area show progressive steepening of their enveloping dips. All examples are a result of boundaries rotating into the S2 folia. This sample is considered to show stage 4 of Bell and Rubenach (1983) and Bell (1986) owing to the well-developed graphite-rich S2 foliations and the microlithons preserving S1 folias. Samples rich in graphite+mica+carbonate from outcrop 08NMA21-02 are located on the northeastern margin of the study area. In this location, S2 has a shallower dip angle (4042°) than the other graphite-rich samples (Figure 5.6a) and is associated with the eastern average field measurements of 38°.  Between more tightly-spaced S2 cleavages, the S1  foliation is preserved with a strongly attenuated dextral asymmetry and slight offset across the cleavage plane (Figure 5.6a). More widely-spaced cleavages have larger low-strain microlithons that have vertically oriented, crenulated S1 foliations including associated compositional layering (Figure 5.6b). Unlike the other graphite-rich samples, there are no 48  a) S1  S2  100 μm  100 μm  b) Shallow S2  100 μm  Figure 5.4 Foliation preservation in quartz-rich, graphite-bearing schist of the EWm belt (09THS05-05). Photomicrographs and associated sketches depict a) overall development of S1 and S2; and b) flattening effects of S3 formation. c) outcrop photograph of meter-scale folds (photograph is facing northward). Red arrows indicate motion during deformation. All photomicrographs are in plainpolarized light and are oriented horizontal, facing northward.  100 μm  c)  S1  49  a)  S2 S1  200 μm  200 μm  b) S1  S1  200 μm  S2  200 μm  c) S1  S2 100 μm  100 μm  Figure 5.5 Foliation preservation in a graphite-rich, quartz-bearing schist, central EWm belt (08SOL11-11). Photomicrographs and associated sketches depict: a) variation in S1 dip relative to S2; b) preserved S1 hinge showing strong attenuation in right limb ; and c) gradual incorporation of S1 foliations into high-strain zones affected by S2. Red arrows indicate motion during deformation. All photomicrographs are in plain-polarized light and are oriented horizontal, facing northward.  50  a)  S2  200 μm  b)  S1  200 μm  S2  S1  200 μm  200 μm  c)  S2 flattening 200 μm 100  200 μm 100  Figure 5.6 Foliation preservation of graphite-rich, carbonate-bearing schists on the eastern margin of the EWm belt (08NMA21-02). Photomicrographs and associated sketches depict a) closely-spaced crenulation cleavages and dextral asymetry of S1; b) widely-spaced crenulation cleavage and sub-vertical dip of S1 foliation; and c) effects of S3 deformation causing flattening of S2 orientation over porphyroblast. Red arrows indicate motion during deformation. All photomicrographs are in plain-polarized light and are oriented horizontal, facing northward. 51  shallow east-facing enveloping dips preserved in S1.  This sample is considered well-  developed stage 4 crenulation cleavages, according to Bell and Rubenach (1983) and Bell (1986). Ankerite porphyroblasts (up to 5 mm wide) have grown post S1 and syn S2 (Figure 5.6c), and preserve graphite inclusion trails. The inclusion trails are continuous with the external foliation. However they are oriented with a near-vertical relict S1 orientation that is inclined to the external S2 foliation. The inclusion trail misalignment with S2 could be a function of rotation by either the porphyroblast and/or the external foliation (e.g. Meneilly 1983, Bell 1986). If the porphyroblast rotated relative to the foliation, the direction would be in a sinistral sense. If the external foliation was moving relative to the porphyroblast, the motion would be in a bulk dextral sense (Figure 5.6c). Owing to the low amount of sampled porphyroblasts with inclusion trails, this distinction could not be established in this study. Elongate porphyroblasts are aligned with each other, and are sub-parallel to the S2 foliation, with inclusions trails at similar orientations. Evidence for incipient development of S3 is more established in these porphyroblast-bearing samples. The effects of S3 development cause dark, high-strain zones on the bottom right and top left edges of the porphyroblasts. These zones are caused by S2 foliations being flattened around the porphyroblasts (Figure 5.6c). 5.2.4  Evidence for pre-S1 foliations Low-strain areas in graphite-rich samples, including quartz-rich microlithons (Figure  5.7a, b) and porphyroblastic strain shadows (Figure 5.7c), contain rare examples of muscovite and/or chlorite crystals highly oblique to S1. This may reflect the presence of an earlier, pre-S1 foliation, only locally preserved.  It does suggest that the three clearly  preserved foliations in the EWm belt may not be the only deformation events these units have undergone. 5.3  Effects of Graphite on Foliation Preservation Multiple clearly preserved foliations are only contained in graphite-bearing samples  of the EWm belt. This preservation is mainly a result of two features of graphite. The first is the particular ability of graphite and micas to localize strain, owing to their elongate and layered crystal structures (Bell et al. 1986). Unlike other minerals, these weak crystal structures easily accommodate strain. This prevents large strain gradients from building  52  a) S2  pre-S1  S1 200 μm 100  200 μm 100  b)  S1  S2  pre-S1  200 μm 100  100 μm  c)  S2  pre-S1  200 μm 100  S1  200 μm 100  Figure 5.7 Indications of an earlier foliation in the graphite-rich schist of the EWm belt. Photomicrographs and associated sketches depict a) and b) obliquely-oriented muscovite grains to S1 in a quartz-rich low-strain zones (08SOL11-11); and c) obliquely-oriented chlorite +muscovite grains to S1 in a strain shadow (08NMA21-02). All photomicrographs are in crossed-polarized light and are oriented horionzontal, facing northward.  53  across a crystal and causing subsequent dissolution (Bell et al. 1986). Pre-existing graphite layers will localize strain and cause dissolution and solution transfer of other mineral varieties in those layers while concentrating the micas and graphite (Bell et al. 1986). This, in turn, further weakens the graphite-rich layer causing further strain localization. In the EWm belt graphite-bearing samples, the compositional layering, including graphite-rich layers, was oriented as a shallow S1 foliation prior to the onset of S2. The preferential reactivation and strain localization of planes richer in graphite caused those select areas to accommodate more slip and re-orientate in larger degrees towards S2 than other lowergraphite areas. The result is low-graphite microlithons that have not localized strain and as a result have preserved older foliations. This inhomogeneous re-alignment towards the S2 orientation is particularly evident in the varying S1 enveloping dips of sample 08SOL11-11 (Figure 5.5). The majority of EWm belt rock types, including amphibole-bearing mafic schist and quartz-feldspar-rich schist, do not strongly localize strain, causing the entire unit to more evenly undergo deformation and recrystallization. This results in older fabrics not being preserved. The second graphite feature is how carbon and carbon compounds inhibit grain boundary movement during crystal growth of minerals in contact with them (e.g., Spry 1969).  Rubenach et al. (1988) found that muscovite grains were prevented from  recrystallizing and growing in graphite-rich layers during progressive and intensifying deformation, despite high strain gradients in the muscovite crystals. Without graphite, the tendency of a deforming crystal at the medium-grade conditions of greenschist to amphibolite is to reorganize material by recrystallizing into a larger size, different shape and different orientation (e.g., Poirier and Guillope 1979; Hirth & Tullis 1982; Urai et al. 1986; Hickey and Bell 1996). The inhibited recrystallization in the EWm belt graphite-bearing samples has kept the grain size small and as a result has preserved the fine detail in several foliations. The inhibiting effects can even be observed within a graphite-rich sample, since layers with low graphite abundance have larger grain sizes than layers with greater graphite abundance. 5.4  Spatial Distribution of the Foliations A north facing, 075° striking cross-section illustrates how the complexly-foliated  samples are distributed across the study area (Figure 5.8). The shallow, east-facing S1 54  S2 S2  S2  S1  S1  S1  S2 S1 09THS05-01  09THS05-05  08SOL11-11  08NMA21-02  1600  Elevation (m)  1400 1200  ?  1000 800 ? 600  (255o) A  ?  A’ (075  o  no vertical exaggeration  55  Figure 5.8 Schematic vertical cross-section on 075 plane looking northward across the EWm belt. Fine black lines and dashes are S2 dip angles with eastern side showing effects of S3 flattening; thick dashed lines are boundaries between schist groups. Grey field is the Eagle Plutonic Complex; green field is amphibole-rich schist group; orange field is interbedded schist group; and blue field is pl+qtz-eye pophyroblastic schist group. Yellow dots are outcrops with one foliation; purple dots are outcrops with multiple foliations. Upper insets are oriented in same plane as the cross-section and display the foliation orientations for that location. Lower inset shows map location of cross-section.  )  A’ A  orientation is preserved across the EWm belt in both isolated low strain outcrops (i.e. 09THS05-01) on the west side of the EWm belt (Figure 5.8), and in microlithons in the graphite-bearing samples of the eastern side. This orientation is considered to be the S1 orientation prior to the onset of S2-associated deformation. The development history of S1 prior to this orientation is unknown. Initial S2 deformational effects formed crenulations in the S1 foliation. Progressive deformation rotated the S1 foliation dextrally and developed small amounts of shearing on crenulation cleavages. The S1 enveloping surface rotated and progressively steepened to align with the S2 foliation. The cross-section also illustrates the flattening pattern of S2 across the study area. All samples on the western side of the EWm belt, including the two multi-foliation mafic samples (samples 09THS03-05 & 09THS05-01), have equivalently steep S2 dip angles (see Figure 5.8). There has been no S2 shallowing in this area. Samples on the eastern side of the EWm belt predominantly preserve shallow dips. Dips range from 38° to 44° with some steeper 58° dips in areas. Possible microstructural evidence of the S3 dextrally rotating flattening effects on S2 foliations are correlated with the overall shallower S2 dips on the eastern side.  56  6. Variations in Metamorphic Gradients 6.1  Introduction The EWm belt exhibits greenschist to amphibolite facies metamorphic assemblages  preserved in predominantly mafic to intermediate meta-volcanic/volcaniclastic schists (Massey et al 2009a). Metamorphic grade variation of the belt is difficult to assess owing to a lack of metapelitic units and thus observable index minerals to mark isograds. The more prevalent mafic schists of the EWm belt instead contain metamorphic minerals with compositions that vary continuously as solid solutions. This makes subtle changes often undetectable in outcrop. Previous studies of mafic rocks found metamorphic amphiboles to have a highvariance assemblage affected by whole-rock chemistry and metamorphic conditions (e.g., Graham 1974; Laird and Albee 1981; Spear 1993).  Subtle changes in pressure and  temperature conditions during crystallization cause the amphibole structural sites to preferentially incorporate different cations. In particular, higher temperature causes Si4+ contents to decrease and Ti, ivAl and NaA contents to increase; whereas greater pressure causes viAl and NaM4 contents to increase (e.g. Raase 1974; Brown 1977; Spear 1980). Studies of field areas containing metamorphosed mafic rocks intercalated with pelitic units established empirical trends of amphibole cation contents correlated to pelitic isograds (Laird and Albee 1981; Zenk and Schulz 2004). The trends were further confirmed by comparisons of samples from world-wide mafic suites (Laird and Albee 1981). These authors noted that with higher metamorphic grade, amphiboles show an increase in substitutions of: tschermakite [(Alvi +Fe3++Ti+Cr), Aliv ! (Fe2++Mg+Mn), Si], glaucophane [NaM4, (Alvi+Fe3++Ti+Cr) ! Ca, (Fe2++Mg+Mn)] and edenite [(NaA+K), Aliv ! [], Si; where [] stands for vacancy].  The edenite substitution increases until the metamorphic conditions are  equivalent to a garnet zone in pelitic rocks and then decreases. Laird and Albee (1981) also demonstrated that different amphibole substitutions dominate if minerals are forming in high, medium or low pressure facies. For example, low-pressure series are dominated by edenite and tschermakite substitutions; whereas high pressure series are dominated by glaucophane substitutions. By ranking the maximum values of cation contents in amphiboles the EWm belt samples have been ordered by the relative peak metamorphic grade each has experienced. 57  Subsequently, by comparing the amphibole compositions of each sample to the models proposed by Laird and Albee (1981), metamorphic grade has been assigned across the EWm belt. Plagioclase chemistry can also be used to confirm trends noted in the amphibole study (Laird and Albee 1981; Zenk and Schulz 2004). The increasing anorthite content of plagioclase reflects increasing metamorphic grade (first noted by Beckie 1913).  The  appearance of the peristerite gap, a break in the plagioclase solid solution from approximately An3 to An10-15, is associated with the boundary between the greenschist and amphibolite metamorphic facies (Spear 1993). By comparing the anorthite contents and presence of the peristerite gap, the EWm belt samples have been ordered and grouped according to the greenschist to amphibolite facies transition. 6.2  Analytical Methods Nine samples of metamorphosed mafic volcanics/volcaniclastics were selected for  detailed amphibole and plagioclase study based on their equilibrium mineral assemblage; calcic-amphibole + epidote or clinozoisite + plagioclase + quartz + carbonate and varying amounts of ± chlorite + ilmenite and/or magnetite ± biotite ± rutile. This mineral assemblage is equivalent to the ‘common’ mafic schist assemblage of Laird and Albee (1981). Metabasite mineralogy remains nearly constant during prograde metamorphism from greenschist to amphibolite facies owing to many mineral reactions occurring as continuous solid solutions (Spear 1993). Since these metamorphic minerals develop from an established and accepted range in basaltic composition, the presence of those minerals, despite the stage of solid solution reaction, ensures the original bulk rock chemistry was the necessary composition as defined by Laird and Albee (1981). This was further confirmed with analysis of bulk rock geochemistry. Having similar sample mineral assemblages means that chemical variation in mineral types between samples is attributed to changes in metamorphic grade and/or different pressure facies (Laird and Albee 1981). The areas in the thin sections chosen for the analysis were assessed and mapped on a Philips XL30 scanning electron microscope (SEM) (Earth and Ocean Sciences Department, UBC) and selected for their amphibole and plagioclase populations. Several crystals of both mineral types were selected from each thin section for compositional point analyses with a fully automated CAMECA SX-50 electron microprobe (Earth and Ocean Sciences 58  Department, UBC) operating using an accelerating voltage of 15 kV, beam current of 20 nA, and a spot diameter of 5 µm. Natural standards were used for both albite (Na) and amphibole to recalculate raw count data. The structural formulae for the amphiboles were determined using the excel spreadsheet AMPH-CLASS (Esawi 2004), specifically designed for amphibole calculations. When processing the amphibole raw data, the classification and nomenclature guidelines were referenced from the International Mineralogical Association 1997 publication on amphiboles (IMA97) (Leake et al. 1997, Burker et al. 2004). The amphibole formula was calculated on the basis of 23(O) and assuming 2(O, F, Cl). Electron microprobe analysis could not discriminate the water and halogens contents. Multiple points from single crystals were analyzed. Amphibole data is plotted as average values of these points for each crystal with standard deviations reflecting the deviance from the mean and thus the variance of chemistry within a single crystal. Structural formula calculations for the plagioclase raw data were completed and confirmed using CALCMIN (Brandelik 2009). 6.3  Amphibole Data Texturally, most samples have single populations of fine or medium size (30-50 µm  lengthwise), blue-green, unzoned, euhedral amphiboles (Figure 6.1a) with minor examples of feathery textures (Figure 6.1b). The amphiboles are all similar in appearance, making them difficult to distinguish visually between individual samples. Samples 08NMA20-08-01 and 08SOL22-04 have a minor second population of coarse-grained amphiboles, typically highly eroded and breaking apart along cleavage planes (Figure 6.1c). The compositions of the coarse-grained amphiboles are equivalent to the finer amphibole population within the sample. Only sample 08NMA20-08-01 contains a population of zoned amphiboles (Figure 6.1d).  Compositions in zone centers and rims vary between tschermakites and  magnesiohornblendes, similar to the compositional variation between unzoned amphiboles in the same sample. All amphiboles are calcic, as defined by I.M.A. 97 (Leake et al. 1997, Burke et al. 2004), and include actinolite, magnesiohornblende and tschermakite amphibole compositions (see Table 6.1); samples 08SOL12-16-01 and 08NMA 17-08 contain dominantly actinolite with  subordinate  crystals  intermediate  in  composition  between  actinolite  and  magnesiohornblende; 09THS01-04 contains only magnesiohornblende; several samples have  59  Amphibole Populations Actinolite  Actinolite + Magnesiohornblende  Magnesiohornblende  Magnesiohornblende + Tschermakite Tschermakite  Samples 08SOL12-16-01 08NMA17-08 09THS01-04 08SOL12-08 08NMA20-08-1 08SOL22-04 08SOL22-06 09THS02-07 09THS01-06  Table 6.1 6.1 Varieties of amphibole crystals in mafic samples from the EWm belt. Columns with two amphibole Table names are for individual crystals thatindividual categorizecrystals as two varieties. two amphibole names are for that categorized as two varieties.  a)  b)  200 μm  200 μm  c)  d)  100 μm  50 μm  Figure 6.1 Amphibole textures found in mafic schist of the EWm belt. a) Sample 08SOL12-08 with typical amphibole crystals; b) feathery actinolites in sample 08SOL12-16-01; c) a coarse-grained amphibole breaking on cleavage planes in sample 08SOL24-03; and d) zoned amphiboles in sample 08NMA20-08-01. All photomicrographs are in plain polarised light. 60  populations of magnesiohornblende and tschermakite; and 09THS01-06 only contains tschermakite (data in Appendix C.1).  The compositional change from actinolite to  magnesiohornblende to tschermakite represents a general increase in metamorphic grade (Laird and Albee 1981). Amphibole cation plots from Laird and Albee (1981) provide a more detailed study of how metamorphic grade varies between the samples. Two plots are used, the Al versus Na plot and the Aliv versus (Alvi+Fe3++Ti+Cr) plot (Figure 6.2a, b). Normalization methods are employed to applicable cation values (as described by Laird and Albee 1981). With several cations being assessed by the two plots, linear trend on both ensures trends are from cation substitutions and not anomalous cation contents. The inset of Figure 6.2a shows a similar linear trend in amphiboles from an individual sample. Data points plotted on Figures 6.2a and b are mean values of the amphiboles from an individual sample. The 2-sigma standard deviation is a measure of the variability in the amphibole population within each rock sample.  Possible sources of error leading to this variance include measurement error,  naturally occurring variation within a crystal and disequilibrium. Since measurement error is too small to visibly plot on the diagram, the variance present is naturally-occurring in the samples. However, it is not clear whether it is an expected variation between amphibole crystals or whether it is a reflection of not reaching equilibrium. In order to assess any grade variation across the nine samples, the sample suite must be shown to have crystallized in the same pressure facies. The low and medium pressure facies fields proposed by Laird and Albee (1981) do not consistently categorize the EWm belt samples (Figures 6.2a, b). The Al vs Na plot shows the data to have an unequivocal medium-pressure facies distribution.  However, the data distributes on the Aliv versus  (Alvi+Fe3++Ti+Cr) plot in shared sections that do not discriminate between the medium and low-pressure facies (Figure 6.2b). An Al versus Ti plot shows the EWm belt individual amphibole data to be consistent with the medium pressure facies series distribution proposed by Hynes (1982) and based on empirical observations (Figure 6.2c). Variation in temperature is illustrated by the relative positions of the samples along the positive linear trend of increasing cation content (Figure 6.2a, b). The two samples with lower cation contents have cation compositions equivalent to those Laird and Albee (1981) correlated with the pelitic biotite zone. Sample 08SOL12-16-01 has a tight cluster and  61  a)  40  35  HP  100*Na/(Ca+Na)  30  MP  25  LP  20  15  10  5  0 0  5  10  15  20  25  30  35  40  100*Al/(Si+Al)  2.5  b)  Series Order 2  Alvi + Fe3+ + Ti + Cr  Group 1:  LP  MP  08SOL12-16-01  Group 2:  1.5  08NMA17-08  HP  Group 3:  LP  09THS01-04  1  Group 4: 08SOL12-08 08NMA20-08-1  0.5  08SOL22-04 08SOL22-06  0 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  Aliv  09THS02-07 09THS01-06  0.1  c)  0.09  u  ress  m-p  0.08  diu me  0.07  nt  xte  es e  aci re f  Ti  0.06 0.05 0.04 0.03 0.02 0.01 0 0  0.5  1  Al  1.5  2  2.5  Figure 6.2 EMP data for amphiboles from the EWm belt plotted as a) mean cation values of Al vs. Na for each sample; b) mean cation values of Aliv versus (Alvi+Fe3++Ti+Cr); and c) mean cation values of Al vs Ti with boundary marking the Ti distribution extent of typical medium-pressure facies (field from Hynes 1982). Inset in a) shows amphibole compositions from an individual sample distributed around the mean point. HP - high pressure facies, MP - medium pressure facies, LP - low pressure facies. Dashed lines = amphibole contents equivalent to the garnet isograd (fields based on Laird and Albee 1981). 62  sample 08NMA17-08 has higher cation contents that straddle the amphibole compositional gap (as described by Spear 1993). The remaining samples have cation contents that are considered equivalent to the pelitic garnet zone by Laird and Albee (1981). Most of the samples plot with overlapping standard deviations that do not show significant variation between the maximal amphibole cation contents. Sample 09THS01-04 does plot on the lower end of the cluster and is thus assumed reflecting slightly lower relative temperature conditions. The two samples with lower relative metamorphic grades are from the center of the EWm belt with the southernmost sample apparently preserving a slightly higher temperature (Figure 6.3).  There is little variation in relative temperatures between the other seven  samples that are to the east and west of the two lower grade samples (Figure 6.3). The alignment of the central two samples is notably parallel to the N-S strike orientation of the dominant foliation. Despite there being a lack of data between the central two samples, there is a possibility of a N-S trending lower-grade central band that would connect them. 6.4  Plagioclase Data The plagioclase in the nine samples can be subdivided into three textural varieties:  crystals showing albite twinning, crystals exhibiting zonation and crystals that are neither zoned nor twinned. In each sample, the matrix plagioclase is dominated by unzoned crystals that lack twinning; <10% of the plagioclase crystals have broad zones (2 to 3 zones per crystal) with diffuse and commonly irregular boundaries (Figure 6.4a); 15-35% of the matrix plagioclase shows twinning, either broad lamellae twinning (2 to 3 twin divisions) or multiple thin lamellae twinning (Figure 6.4b). These textural populations have the same overall variation in plagioclase composition found within an individual sample.  The  anorthite values range from An1.2 to An32.9 (Table 6.2 and Appendix C.2). This is a typical range in compositions reflecting increasing grade for metamorphic plagioclase in the greenschist to amphibolite facies (Spear 1993). Two samples preserve the peristerite gap, 08SOL12-16-01 (approximately An8.1-8.5 to An12.3) and 08SOL22-04 (approximately An1 to An23). The initial appearance of the peristerite gap is considered a potentially useful isograd marker for the transition from greenschist to amphibolite facies (Spear 1993). However, the EWm belt samples are higher in metamorphic grade than this transition, with most samples 63  08SOL22-04 4  08SOL12-16-01 1 08SOL12-08 4  08NMA20-08-1 4  4 08SOL22-06  N 1 km EWm belt  09THS01-06 4  4  2 08NMA17-08  09THS02-07  Bounding geology map extent for Massey et al. 2009 outcrops  3 09THS01-04  contacts  Figure 6.3 Distribution of samples used for the metamorphic gradient study from the EWm belt. Numerical ranking based on maximum relative temperatures as determined by amphibole study and noted in Figure 6.1. Blue coloured numbers are the two groups ranked the lowest; the red coloured numbers are the two groups ranked the highest. Black dashed lines mark estimated zone of lower metamorphic grade. Bounding geology is based on Massey et al. 2009b and includes the Eagle Plutonic Complex to the west; the Princeton Group to the north; and the Nicola Group to the east.  64  Plagioclase Populations Grain Twinning Boundary Samples 08SOL12-16-01 08NMA17-08 09THS01-04 08SOL12-08 08NMA20-08-1 08SOL22-04 08SOL22-06 09THS02-07 09THS01-06  GBM GBM + 120 120o 120o  o  minor GBM + 120o minor GBM + 120o 120o 120o  Zones  MTL + simple BL  An#  BL BL BL  An1.2-4.0, 8.1-8.5, 12.3 An13.2-14.5 An20.8-23.2 An19.0-21.1 An22.2-23.2  BL  An0.3-1.2, 22.8-23.2  BL  An23.2-24.6  BL MTL + BL  An23.9-32.9 An28.6-33.1  Table 6.2 samples from the Ewm belt. Grain boundary descriptors are: GBM - grain boundary migration texture; 120 - 120 triple junction boundaries. Twinning types: MTL - multiple thin lamellae (albite); BL - broad lamellae (albite). Tick marks presence of zones.  a)  b)  100 μm  100 μm  Figure 6.4 Textures of plagioclase in mafic schist from the EWm belt. a) plagioclase in bottom left corner with diffuse zoning in sample 09THS01-06; b) examples of both broad lamellae twinning and thin lamellae twinning in plagioclase grains. All photomicrographs are in crossed polarised light.  65  no longer containing albite. Additionally, the two samples that contain the peristerite gap (08SOL12-16-01 & 08SOL22-04) have different relative metamorphic conditions in the amphibole study.  The peristerite solvus has been described in naturally-occurring  metamorphic rocks by many workers (e.g., Nord et al. 1978; Laird 1980; Spear 1980; Grapes and Otsuki 1983; Ashworth and Evirgen 1985). Its gradual disappearance, during increasing metamorphic conditions is strongly affected by many factors; i.e. pressure variations, effects of aH2O, fO2 and initial bulk rock Fe2+ to Fe3+ and Fe2+/Mg ratios (Carpenter 1981; Marayuma et al 1982). In comparison to the initial appearance of oligoclase (at the onset of the peristerite gap), the disappearance of albite (and the peristerite gap) does not clearly reflect increasing metamorphic conditions. The plagioclase An content comparison confirms the conclusions from the amphibole study. Samples arranged by overall An compositions result in the same relative metamorphic conditions between samples as that determined from the amphibole study (Figure 6.5). The variation of An content in individual samples either reflects increasing metamorphic conditions or potential retrograde effects. 6.5  Distribution of Metamorphic Temperature Variation This study shows that equivalent amphibolite facies metamorphic conditions are  preserved across the EWm belt, with two centrally positioned lower grade samples (Figure 6.3). The deformed Nicola Group rocks in the Whipsaw Creek area (see Figure 6.6) have a west-to-east gradational decrease in metamorphic deformation, as noted by Preto (1972), Monger (1989) and Massey et al. (2009a). Over a distance of 4-5kms, the Nicola rocks transition from amphibolite grade back into being typical undeformed Nicola Group volcanic rocks (Massey et al. 2009a). In comparison, this current study shows little variation in metamorphic temperature E-W across the EWm belt.  Most samples have maximum  amphibole cation compositions equivalent to values associated with the pelitic garnetoligoclase zone by Laird and Albee (1981). Both the amphibole and plagioclase cation studies also show two samples to have amphibole compositions equivalent to those associated to the lower grade pelitic biotite zone by Laird and Albee (1981). These lowergrade samples plot centrally in the study area (Figure 6.2) and are proximal to higher metamorphic grade samples. These sharp transitions in metamorphic grade between the samples suggest later structural rearrangement. However it is also possible that the 66  Increasing  Anorthite Albite Oligoclase  Ab  NaAlSi3O8  Andesine  Labradorite  Anorthite Albite Oligoclase  Bytownite  Ab  An  08SOL12-16-01  Andesine  CaAl2Si2O8  Labradorite  Bytownite  An  08NMA17-08  NaAlSi3O8  CaAl2Si2O8  Anorthite Albite Oligoclase  Andesine  Ab  Labradorite  Bytownite  09THS01-04  NaAlSi3O8  An  CaAl2Si2O8  Anorthite Albite Oligoclase  Andesine  Labradorite  Albite Oligoclase  08SOL12-08  Ab  Anorthite  Bytownite  An  NaAlSi3O8  CaAl2Si2O8  Ab  NaAlSi3O8  Andesine  Labradorite  Ab  NaAlSi3O8  Andesine  Labradorite  Albite Oligoclase  An  CaAl2Si2O8  Ab  NaAlSi3O8  Andesine  Labradorite  Ab  Grade  NaAlSi3O8  Andesine  Labradorite  09THS01-06  Bytownite  An  08SOL22-06  Anorthite Albite Oligoclase  CaAl2Si2O8  Anorthite  Bytownite  08SOL22-04  An  08NMA20-08-1  Anorthite Albite Oligoclase  Bytownite  CaAl2Si2O8  Anorthite  Bytownite  Albite Oligoclase  An  CaAl2Si2O8  Ab  NaAlSi3O8  Andesine  Labradorite  09THS02-07  Bytownite  An  CaAl2Si2O8  Figure 6.5 Plagioclase compositions from metabasites of the EWm belt that have been grouped into three groups according to anorthite content. The increasing anorthite content reflects a relative increase in metamorphic conditions experienced between the samples. Blue background indicates the lowermost ranking.  67  N Whipsaw Creek area Nicola Group  Eagle Plutonic Complex Deformed Nicola Group + EWm belt Undeformed Nicola Group Contact estimations  EWm belt  Map extent of Massey et al. 2009 and 2010  10 kms  Figure 6.6 Distribution of the Nicola Group and the EWm belt rocks proximal to the Eagle Plutonic Complex contact in south-central British Columbia. The Southern Nicola Group project maps of Massey et al. 2009b and Massey et al. 2010 are outlined in grey. Contacts located within the grey outlines are derived from those maps. Contacts outside of the grey outlines are from Monger (1989). Dashed contacts are overlain by the Eocene Princeton Group.  68  amphibole cation study based on models by Laird and Albee (1981) does not show the detail necessary to establish gradual variation on a finer scale. 6.6  Source of Heat – Relationship to the Eagle Plutonic Complex The belt of deformed rocks described by Monger (1989) and Massey et al. (2009a)  are localized along a 4-5 km wide NE striking section and include the eastern margin of the Eagle Plutonic Complex, the in-contact Nicola Group rocks and the EWm belt rocks (Figure 6.6). The deformation in the Nicola Group is atypical for this common rock group in the Princeton vicinity (Rice 1947, Preto 1972, Monger 1989). According to Massey et al. (2009a), the Nicola Group rocks in the Whipsaw Creek area (see Figure 6.6) show a rapid decrease in metamorphic deformation intensity over a distance of 5 km.  The western  samples have amphibolite mineral assemblages, central samples have greenschist mineral assemblages and eastern samples are fresh Nicola Group rocks.  The expected E-W  temperature difference for this metamorphism is a drop of 350-400°C (Spear 1993) towards the east. The 5 km wide distance that the large decrease in metamorphic intensity occurs across the Whipsaw Creek area Nicola Group rocks is too large to be attributed to regional metamorphism.  However, the spatial association of the metamorphic deformation does  suggest a causal relationship with the intrusion of the Eagle Plutonic Complex itself. The only intrusive phase associated with the margin of the EWm belt is the Eagle tonalite phase (based on mapping observations from Greig 1992 and Massey et al. 2009a). The Eagle tonalite varies from 3 km to 8 km wide at the current erosion level and defines the length of eastern margin of the plutonic complex (Figure 6.6).  It also surrounds the southern  continuation of the EWm belt on both sides (Figure 6.6), suggesting the possibility of the intrusion being underneath this more southern area to the EWm belt. In order to test whether the Eagle tonalite could be responsible for the EWm belt metamorphic temperatures, heat flow out from the tonalite phase of the Eagle Plutonic Complex was modeled. The present-day configuration of the intrusion in contact with the EWm belt is 3km wide and N-S trending.  Estimated temperature ranges necessary to  develop the biotite and garnet-oligoclase zones in the EWm belt are 350±100°C and 525±50°C respectively (Laird and Albee 1981). This means that the garnet-oligoclase zone conditions across the EWm belt require temperatures between 475-575°C.  69  Based on a Crank-Nicholson implicit finite difference scheme, the model is set up 1st order in time, 2nd order in space, and node-centered for an instantaneously emplaced intrusion (based on code from Dipple et al. 1996). Distance between laterally spaced nodes is 100m and time steps in the calculations are 1010s (or approximately 316 years). Only time steps of 1012 s (or every 32 000 years) are plotted. The model’s code was run for 106 years, which is enough time for the modelled contact aureole that is 10km wide to have reached maximum heating temperatures and begin cooling. The model describes the width and degree of thermal effects at a certain time step via conduction on the EWm belt by the intrusion of a single tonalitic phase.  Latent heat of crystallization is included in the  calculations. The input variables that produce the best estimate of the metamorphic grades preserved in the EWm belt are: background country rock temperatures of 300-350°C (based on geothermal gradient temperatures expected for medium-pressure facies), an alpha value of 0.5, which is a term calculated from thermal diffusivity, heat capacity and density of the country rock, and an intrusion temperature of 850°C. The alpha term is a measure of how heat transfers in the country rock. The higher the alpha value, the greater the rate of heat transfer, causing higher maximum temperatures to be experienced in the contact aureole. Typical alpha values are around 0.5 (personal communication with Dr. G. Dipple) but change with different types of country rock. A ±0.2 range in the alpha value would include most examples of country rock to be expected. The resulting effect, however, is small changes in the temperature, ~ ±10°C for each node. This amount of temperature variation would be evenly distributed across the map area and is not significant in affecting the overall E-W metamorphic conditions. Similarly, varying the background temperatures and the intrusion temperatures does not vary the output significantly enough to affect overall metamorphic conditions (see discussion). The heat transfer model is a drastic simplification of nature but still can predict extent of effects and the degree of temperature variability across the EWm belt. The model demonstrates that the entire 4km wide EWm belt would be included in the contact aureole (Figure 6.7). However, there is a >100°C drop in the maximum temperature experienced by the country rocks within the first 2 km from the intrusive contact. Even when input values are varied (e.g., increasing background temperature or the initial temperature of 70  850  Intrusion Margin  800  32  750  000 yrs  700 64 0 00 yr s  650 Temperature ( C)  96  600  550  00  0y  128  160  rs  000  yrs  000  yrs 00 yr s  192 0  Large difference in the maximum temperature experienced across the EWm belt  500  450  400 1 000 000 yrs  350 Width of EWm belt  300  0  2  4 6 8 Distance from center of Intrusion (km)  10  12  Figure 6.7 Heat transfer model based on Matlab code by Dipple 1996 for a 3km wide intrusion. The red line illustrates the maximum temperature experienced in the intrusion and from heating by the intrusion in the country rocks. Conditions set for this plot include an intrusion half-width of 1.5kms, heat transfer in country rock as an alpha value of 0.5, initial temperature of the pluton at 850oC and initial temperature of country rock at 300oC. Each black curve is the temperature profile at time step incrimants of 1012 s (approximately 32 000 years).  71  the pluton), the country rocks experience more heating. However, the temperature decrease in the two kilometers is consistently steep. The heating outside the 2 km from the intrusion contact is always significantly lower. In Figure 6.7, the western margin reaches temperatures of 590°C and the eastern margin reaches temperatures of 385°C. This would not create the conditions necessary for the development of garnet-oligoclase zone equivalent amphiboles in samples across the whole belt. If the intrusion was double in size, the steep E-W temperature gradient still drops below the garnet-oligoclase zone temperatures outwards of 2 km from the contact. Thus, the contact aureole effects from the western intrusive contact can explain the current metamorphic trends exposed at surface of the western garnet-oligoclase zone samples and possibly the two central, lower-grade samples of the EWm belt and the metamorphic variation noted in the Whipsaw Creek area Nicola Group rocks. However, heating from the west cannot account for the easternmost garnet-oligoclase zone metamorphic grades of the EWm belt. The possibility of additional heating from below and from the east of the EWm belt could explain the continuous E-W metamorphic conditions. This type of heating could not have been imposed on the present day belt positioning owing to its sharp contact with unmetamorphosed Nicola Group to the east (Figure 6.6). 6.7  Structural Juxtaposition of Metamorphic Zones The current positioning of the metamorphic zones at surface can be further explained  by post metamorphism reorganization, in particular displacement of the eastern EWm belt margin away from an obvious heat source. Some vertical displacement can be linked to the rotation and stacking in strain-zones during the formation of the crenulation cleavages discussed in Chapter 5. The direction of the dextral movement and subsequent crenulation cleavage rotation would cause the western side units to be thrust slightly higher than the eastern side. However, this vertical displacement is considered to be marginal owing to small offsets noted in thin section (see Chapter 5). A more likely source of movement is the Similkameen Falls fault (or SFF), which is the contact between the EWm belt and the undeformed Nicola Group rocks (see Figure 2.2). This steep fault post-dates Middle to Late Jurassic deformation and accomodated motion prior to the Eocene (Massey et al. 2009a).  It is a newly identified fault that has no  displacement direction assigned. Possible northward displacement along the eastern margin  72  of the EWm belt on the SFF could have repositioned the EWm belt further north, away from a eastern contact with the intrusion. Movement along pre-existing weak surfaces, such as developed schistosity and bedding planes could have also contributed to the juxtaposition of rocks with different metamorphic grades, either from deeper depths or from lateral positions.  Movement  occurring on pre-existing planar structures in metamorphically deformed rocks is known to mask the presence of the faults, causing them to be undetectable in the field (Johnson and Duncan 1992). As previously mentioned (see Chapter 3 p. 11), northern equivalents to the EWm belt units have mapped N-S striking faults that could extend south to the study area. The outcome of this study on the preserved peak metamorphic gradients in the EWm belt shows that heating from the west by the tonalite phase of the Eagle Plutonic Complex cannot account for the metamorphism across the width of the EWm belt. Another heat source is necessary to establish equal metamorphic temperatures across the E-W extent of the EWm belt. In addition, there are several structural features in the EWm belt that can account for the replacement of a heat source contact on the eastern margin with a sharp contact with undeformed and unmetamorphosed Nicola Group rocks.  73  7. Discussion 7.1  Significance of Harper Ranch Affinity The deformed southwestern edge of the Nicola Group rocks in the Princeton area of  British Columbia has previously been mapped as anomalous owing to the strong metamorphic deformation preserved therein (Preto 1972; Monger 1989). The radiometric ages established for Early Permian units in the EWm belt indicates that the southern portion of the deformed belt is significantly older than previously assumed.  These new ages,  combined with the dominant lithologies (e.g., mafic and felsic meta-volcanic schists with derived meta-sedimentary schists) and the chemical signatures of the meta-volcanic sequences strongly suggest that the southern portion of the EWm belt belongs to the Harper Ranch Group. If true, then the southern EWm belt represents basement to the Nicola Group rocks. The tectonic environment of the Harper Ranch Group is highly debated and the two diametrically opposed proposed origins include: i) a fringing arc distributed along the western margin of Ancestral North America (e.g., Tempelman-Kluit 1979; Miller 1987; Gabrielse 1991; Nelson 1993; Roback et al. 1994), or ii) a far-traveled arc (e.g. Speed 1979; Snyder and Brueckner 1985; Brueckner and Snyder 1983). Previous studies have shown the Harper Ranch Group to comprise thick packages of limestone and highly variable arc-derived sediments.  These units are interpreted to represent sedimentary basins and carbonate  buildups that developed proximal to Late Paleozoic arcs (Monger et al. 1991). However, the rocks representing the arc that sourced Harper Ranch sediments have not been identified within the Canadian Cordillera. New exposures are key to further the understanding and constraining the Harper Ranch Group.  By comparing between exposures, stratigraphic  relations of the EWm belt can be established with other Harper Ranch exposures. The type area of the Harper Ranch Group is in south central British Columbia, near Kamloops. It comprises a Lower Devonian to Pennsylvanian sedimentary and volcanic package that includes fossiliferous limestone and an overlying package of Early Permian limestone (Monger et al. 1991) (see Figure 7.1a). In north-central British Columbia, the Harper Ranch Group comprises two stratigraphic packages: units exposed within the Lay Range assemblage, west of Dawson Creek in north-central British Columbia (Monger et al. 1991; Ferri 1997), and Division III of 74  a) Typical Harper Ranch basin  EWm belt  c)  b) West  Sylvester Allochthon Harper Ranch (Division III)  Back-arc basin  East West  Intra-arc basin  East  ?  75  Figure 7.1 Schematic diagram relating the Early Permian tectonic and depositional setting for the Harper Ranch Group and the EWm belt. a) Variation in depositional material in relation to the proximity to the island arc; Deposited rock types, subduction direction and the possible paleoenvironments for the EWm belt are shown in b) as a back-arc basin, and c) as an intra-arc basin. Harper Ranch depositional settings based on descriptions by Monger et al. (1991), and Nelson (1993). Rock type patterns: Island arc volcanic/volcaniclastic = hatch; Limestone = box; MORB = red; Interbedded sediments = green striped; Unknown arc = grey.  the Sylvester allochthon, east of Cassiar in far northern-central British Columbia (Nelson 1993). The lowermost package is again a mixed package of heterogeneous sedimentary units with fossiliferous limestone age ranges from mid Mississippian to mid Pennsylvanian (as described for the Lower Sedimentary division in the Lay Range by Ferri (1997)). The heterogeneous lithologies include chert, slate, tuff, limestone and clastic sedimentary rocks (Nelson 1993; Ferri 1997). The upper stratigraphy of the northern Harper Ranch affiliated assemblages comprises thick Permian mafic volcanic rocks in the Upper Mafic Tuff division of the Lay Range (Ferri et al. 1993) and Pennsylvanian to Permian Hunter group mafic volcanic rocks with interlayered limestone successions in the Sylvester allochthon (Nelson 1993) (see Figure 7.1a). The similarities in ages and sedimentation of immature, arc-derived material between the north and south Harper Ranch Group exposures are what link them as a rock group. As such, variations in the paleotectonic environment can be predicted when sedimentation varies between correlated units. For example, because the Harper Ranch rocks within the Sylvester allochthon feature limestone packages interbedded with arc volcanic rocks, they are interpreted as being more proximal to the source arc than the other Harper Ranch exposures (Nelson 1993). The early Permian rocks of the EWm belt are considered a section of the uppermost Harper Ranch package but have unique differences to what has been previously noted in the upper Harper Ranch stratigraphy. These differences include the moderately-evolved felsic island arc volcanic units dated in the EWm belt that are not usually associated with the upper stratigraphic layers of the Harper Ranch, a lack of Permian limestone packages and, instead, thick Permian volcaniclastic deposits. The lack of limestone is interpreted to reflect an increase in volcaniclastic deposition, preventing carbonaceous material from developing. Deeper water conditions may also be causing calcium carbonate to not be stable, however this would not explain the increased volcaniclastic input.  The combination of these  differences suggests that the paleoenvironment of the EWm belt was more proximal to the sourced arc in comparison to other Harper Ranch exposures (Figure 7.1a). In addition, the juxtapositioning of the stratigraphically linked eastern arc and western back-arc or intra-arc MORBs of the EWm belt suggests a west-facing subduction zone for the Harper Ranch Group in this area (see Figure 7.1b, c).  76  7.2  Relating EWm Belt Metamorphic Deformation to Nicola Group Rocks Previous field studies of the anomalously deformed Nicola Group and the EWm belt  determined both to contain two equivalent N-S striking and acutely-angled schistosities and westward shallowing dip angles (Massey et al. 2009a). However, the deformation and metamorphic intensity of the deformed Nicola Group rocks decreases into undeformed Nicola Group rocks over the same width as the EWm belt, which shows no decrease in deformational intensity. Because of these differences, the equivalence of the deformational histories between the deformed Nicola Group and the EWm belt became suspect. Details of the deformational textures, including the relationship between the two schistosities and the cause of the shallowing dip angle, were unknown. The microstructural study of fabrics in the EWm belt clarified that the two previously identified acute schistosities were interrelated crenulations within crenulation cleavages, in which S1 orientations were strongly controlled by S2. As well, the shallowing S2 dips are deformational effects from a poorly-developed S3 fabric. The interrelated nature of the three foliations suggests that the similar mesoscopic foliations between the deformed Nicola Group and the EWm belt are in fact a result of the same deformation events. The difference in the deformational records preserved in the two rock groups is instead a function of variation in heat sources between the EWm belt and the Nicola Group. The western intrusive contact of the tonalite phase of the Eagle Plutonic Complex with the Nicola Group can be associated to the decreasing metamorphic temperatures estimated for the 5 km wide deformed Nicola Group belt. However, the peak metamorphic temperatures that are similar from east to west across the 4 km wide EWm belt require additional heating from an unknown source. The formation of the Jurassic to Cretaceous Eagle Plutonic Complex is related to the accretion, northward translation and consolidation of the Insular terrane to the Intermontane terrane and North America from Middle Jurassic to Middle Cretaceous (Greig 1992). What is known as the Middle to Late Jurassic Eagle shear zone includes the deformed eastern margin of the plutonic complex, the deformed Nicola Group and the EWm belt and is caused by translation during accretion of the Insular terrane (Nixon and Rublee 1988; Greig 1992). The correlated deformational history preserved in the Whipsaw Nicola Group and the EWm belt thus links the two rock groups stratigraphically at this time.  77  8. Conclusions 8.1  Current Architecture – Understanding Metamorphic Deformation Events The EWm belt has preserved a complex set of foliations as a result of metamorphic  deformation. There is a dominant N-S S2 foliation that is typically continuous but locally develops into differentiated crenulation cleavages. The overall S2 dip is 58° to the west but systematically shallows on the eastern side to 38°. The secondary foliation detectable in the field is a shallow east facing S1 foliation that has been progressively rotated and steepened dextrally towards the S2 orientation. The eastern shallowing of the S2 foliation dip is a consequence of S2 flattening from deformation associated to a poorly developed S3 foliation. Owing to the heterogeneous distribution of strain between outcrops and within a single rock sample, localized low-strain areas existed that preserved older foliation orientations. In addition, minor graphite-bearing schist did not recrystallize and coarsen, allowing fine detail of the foliations to be preserved. In preserved low-strain areas, possible evidence for a pre-S1 fabric was found, indicating that the three clearly preserved foliations are not the only deformation events the EWm belt rocks have experienced. 8.2  Primary Architecture – Understanding Origins The EWm belt contains meta-volcanic rocks, volcanic-derived meta-sediments and  consanguinous intrusives that have been divided into five groups of metamorphic schists and two intrusive phases.  The schists comprise (1) a mafic volcanic amphibole-rich schist  defining the western margin of the EWm belt; (2) a thick, south-central package of quartzofeldspathic volcanic-derived sedimentary schist that transition northward into (3) a series of intercalated sedimentary schist with lithologically-mixed layers of volcanic material; (4) mafic volcanic amphibole (chlorite)-epidote schist on the southern portion of the eastern margin; and (5) a north-eastern package of felsic volcanic and volcanically-derived sedimentary schist that typically contain relict quartz and plagioclase phenocrysts. The belt also contains pre- to syn-deformational meta-gabbro and foliated plagioclase porphyry intrusions of unknown ages. The EWm belt was previously undated but historically has been affiliated with the Late Triassic to Early Jurassic Nicola Group. The 281.3 ± 3.3 Ma and 282.7 ± 3.7 Ma ages obtained from U-Pb zircon dating gives the EWm belt an Early Permian age that is significantly older than the Nicola Group. The affiliation of the EWm belt with the Nicola 78  Group is therefore no longer considered valid. Alternative groups within the Canadian Cordillera that share similar lithologies and ages include the Pennsylvanian to Permian Harper Ranch Group and the Late Permian to Early Triassic Sitlika/Kutcho assemblages. Two geochemically distinct volcanic groups were determined for the EWm belt. The eastern group 1 has moderate enrichment in LREEs (light rare earth elements), with calkalkaline and tholeiitic basalts and mafic through felsic compositions. These samples originated from a moderately-evolved island arc. The western group 2 comprise mafic volcanic rocks depleted in LREEs that are a mix of low-K primitive island arc tholeiites and ocean-floor basalts.  The two intrusive phases are believed consanguineous to the two  volcanic groups; the foliated plagioclase porphyry has an equivalent geochemical signature to group 1, and the meta-gabbro is equivalent to the ocean-floor basalts. The rocks of the EWm belt originate from a paleosubmarine environment, either in an intra-arc setting or a back-arc setting. The western package represents ocean-floor volcanic rocks, early development of a volcanic arc and sediment deposition, whereas the eastern package represents volcanism from a further evolved island arc. Both of the EWm belt island arc signatures are less evolved arcs, having significantly lower REE-enrichments to the previously affiliated calkalkaline Nicola island arc volcanic rocks (Massey 2011). The two more likely EWm belt affiliates have indistinguishable geochemical signatures that do not preferentially associate one with the EWm belt. The Sitlika volcanic rocks include an island arc rock group with mafic to felsic compositions that is moderately enriched in LREE and an ocean-floor basalt group that is depleted in LREEs. The Kutcho assemblage is a low-K tholeiitic group, most similar to the Sitlika ocean-floor basalt group but is lower in HFSEs and REEs. (Schiarizza et al. 2010). The Harper Ranch Group includes low-K tholeiites and calkcalkaline basalts (Nelson 1993; Ferri 1997) that have equivalent enrichment patterns in LREEs and HREEs to the moderately evolved volcanic arc of the Sitlika Group. The combination of similar geochemical signatures and lithologies, an exact match in age dates and a shared close association to the southern Nicola Group volcanic rocks illustrates the EWm belt to be a southern continuation of the Harper Ranch Group. The EWm belt’s affiliation to the Harper Ranch is significant owing to a new potential for hosting VHMSstyle mineralization, previously unrecognized in the Harper Ranch Group.  79  Equal maximum metamorphic temperatures were established across the width of the EWm belt at medium-pressure facies conditions. The amphibole cation study, based on models from Laird and Albee (1981), determined maximum metamorphic temperatures to have reached conditions associated to the upper transition zone between the greenschist and amphibolite facies and into the lower epidote amphibolite facies (as described by Spear 1993). The source of the heating is attributed to the nearby Eagle Plutonic Complex and not regional metamorphism. This is owing to the rapid dissipation in equivalent metamorphic deformation over a short distance preserved in the northern Nicola Group volcanic rocks. However, the current contact relationships of the EWm belt, in fault contact with undeformed Nicola volcanic rocks to the east, and a 3km wide tonalite intrusion to the west, cannot account for the necessary widespread heating across the 4 km wide EWm belt. Northward motion by 12-15 km on the recently identified Similkameen Falls fault (Massey et al. 2009a, b), which defines the eastern margin of the EWm belt, would have repositioned the EWm belt away from an eastern contact with the Eagle pluton. This more southerly position would have supplied heating from the west, east and likely from below, accounting for the heating profiles preserved in the EWm belt.  80  References Ashworth, J.R. and Evirgen, M.M. 1985. Plagioclase relations in pelites, central Menderes Massif, Turkey. I. The peristerite gap with coexisting kyanite. Journal of Metamorphic Geology, 3, p. 207-218. BC Geological Survey (2006): MapPlace GIS internet mapping system; British Columbia Ministry of Energy, Mines and Petroleum Resources, MapPlace website, URL http://www.MapPlace.ca. Bell, T.H., 1981. Foliation development: the contribution, geometry and significance of progressive bulk inhomogeneous shortening. Tectonophysics, 75, p.273-296. Bell, T.H., 1986. Foliation development and refraction in metamorphic rocks: reactivation of earlier foliations and decrenulation due to shifting patterns of deformation partitioning. Journal of Metamorphic Geology, 4, p. 421-444. Bell, T.H. and Rubenach, M.J., 1983. Sequential porphyroblast growth and crenulation cleavage development during progressive deformation. Tectonophysics, 92, p. 171-194. Bell, T.H., Rubenach, M.J. and Fleming, P.D., 1986. Porphyroblast nucleation growth and dissolution in regional metamorphic rocks as a function of deformation partitioning during foliation development. J. Metamorph. Geol., 4, p.37-67. Brandelik, A., 2009. CALCMIN – an Excel Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Brown G.M., Holland, J.G., Siggurdsson, H., Tomblin, J.F. and Arculus, R.J., 1977. Geochemistry of the Lesser Antilles volcanic island arc. Geochim. Cosmochim. Acta, 41, p. 785-801. Brueckner, H.K., and Snyder, W.S., 1983, Structure of the Havalah Sequence, Golconda Allochthon, Nevada: evidence for prolonged evolution in an accretionary prism, Geological Society of America, 96, p. 1113-1130. Burke, E.A.J., Leake, B.E. 2004. “Naming Amphiboles”: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. Can. Mineral., 42, p. 1881-1883. Carpenter, M.A., 1981. A “conditional spinoidal” within the peristerite miscibility gap of plagioclase feldspars. American Mineralogist, 66, p. 553-560.  81  Childe, F.C., Friedman, R.M., Mortensen, J.K., and Thompson, J.F.H., 1997. Evidence for Early Triassic felsic magmatism in the Ashcroft (92I) map area, British Columbia: British Columbia Ministry of Employment and Investment Paper 1997-1, p. A-17. Childe, F.C., Thompson, J.F.H., Mortensen, J.K., Friedman, R.M., Schiarizza, P., Bellefontaine, K. and Marr, J.M., 1998. Primitive Permo-Triassic volcanism in the Canadian Cordillera: Tectonic and metallogenic implications; Economic Geology, 93, p. 224-231. Colpron, M., Nelson, J.L., and Murphy, D.C., 2006, A tectonostratigraphic framework for the pericratonic terranes of the northern Cordillera, in Colpron, M., and Nelson, J.L., eds., Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera: Geological Association of Canada, Special Paper 45, p. 1-23. Diakow, L.J. and Rogers, C. 1998. Toodoggone-McConnell project: geology of the McConnell range – Serrated Peak to Jensen Creek, parts of NTS 94 E/2 and 94 D/15. In Geological Fieldwork 1997. British Columbia Ministry of Employment and Investment, Paper 1998-1, p. 8a-1 – 8a-14. Dipple, G.M., and Ferry, J.M., 1996. The effect of thermal history on the development of mineral assemblages during infiltration-driven contact metamorphism.  Contribution to  Mineralogy and Petrology, 124, p. 334-345. Esawi, E.K., 2004. AMPH-CLASS: an Excel spreadsheet for the classification and nomenclature of amphiboles based on the 1997 recommendations of the International Mineralogical Association. Computers and Geosciences, 30, p. 753-760. Ewart, A., Hargt, J.M. and Hawkins, J.W., 1994. Major element, trace element, and isotope (Pb, Sr, and Nd) geochemistry of site 839 basalts and basaltic andesites: implications for arc volcanism. In Hawkins, J.W., Parson, L.M., Allan, J., et al., Proceedings of the Ocean Drilling Program: Scientific Results, 135, p.519-531 Ferri, F. Dudka, S., and Rees, C., and Meldrum, D.G., 1993. Geology of the Aiken Lake and Osilinka River areas, Northern Quesnel Trough (94 c/2, 3, 5, 6, and 12). In Geological Fieldwork 1992, British Columbia Ministry of Energy, Mines, and Petroleum Resources, Paper 1993-1, p. 109-134.  82  Ferri, F., 1997. Nina Creek Group and Lay Range Assemblage, north-central British Columbia: remnants of Late Paleozoic oceanic and arc terranes. Canadian Journal of Earth Sciences, 43, p. 854-874. Foley, S.F., Barth, M.G. and Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geo. Cosmochim. Acta, 64, p. 933-938. Gabrielse, H., 1991. Late Paleozoic and Mesozoic terrane interactions in north-central British Columbia. Canadian Journal of Earth Sciences, 28, p. 947-957. Galley, A.G., Hannington, M.D. and Jonasson, I.R., 2007. Volcanogenic massive sulphite deposits. In Goodfellow, W.D., ed, Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces and exploration methods, Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 141-161. Graham, C.M., 1974. Metabasite amphiboles of the Scottish Dalradian. Contributions to Mineralogy and Petrology, 47, p. 165-185. Grapes, R. and Otsuki, M., 1983. Peristerite compositions in quartzofeldspathic schists, FranzJosef-Fox glacier area, New Zealand. Journal of Metamorphic Geology, 1, p.47-61. Gray, D.R. and Durney, D.W., 1979. Investigations of the mechanical significance of crenulation cleavage. Tectonophysics, 58, p. 35-79. Greig, C.J. 1992. Jurassic and Cretaceous plutonic and structural styles of the Eagle Plutonic Complex, southwestern British Columbia, and their regional significance; Canadian Journal of Earth Sciences, 29, p. 793-811. Griffin, W.L., Powell, W.J., Pearson, N.J. and O’Reilly, S.Y., 2008. Glitter: Data reduction software for laser ablation ICP-MS; In Sylvester, P.J. (ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Mineralogical Association of Canada Short Course Series, Short Course 40, Vancouver, B.C., pp. 308-311. Hickey, K.A. and Bell, T., 1996. Syn-deformational grain growth: matrix coarsening during foliation development and regional metamorphism rather than static annealing. European Journal of Mineralogy, 8, p. 1351-1373.  83  Hirth, G. and Tullis, J., 1982. Dislocation creep regimes in quartz aggregates. Journal of Struct. Geol., 14, p. 145-159. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, p. 523-548. Jenner, G.A. 1996. Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry. In Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Edited by D.A. Wyman. Geological Association of Canada. Short Course Notes, pp. 51-77. Johnson, S.E. and Duncan, A.C., 1992. Fault identification in complexly deformed schist terrains: examples from the USA and Australia. Tectonophysics, 216, p. 291-308. Johnson, M.C. and Plank, T., 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1, Paper# 1999GC000014. Kay, S.M. and Kay, R.W., 1994. Aleutian magmas in space and time. In The geology of Alaska, eds. Plafker, G. and Berg, H.C., Geological Society of America, The geology of North America DNAG, G-1, p. 687-722. Laird, J. 1980. Phase equilibria in mafic schist from Vermont. J. Petrol., 21, p. 1-37. Laird, J. and Albee, A.L., 1981. Pressure, temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. American Journal of Science, 281, p. 127-175. Leake, B.E., Woolet, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, et al. 1997. Nomenclature of Amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Canadian Mineralogist, 35 (1), p. 219-246. Ludwig, K., 2003, Isoplot/Ex, version 3: A geochronological toolkit for Microsoft Excel: Berkeley, California, Geochronology Center, Berkeley. MacIntyre, D.G., Villeneuve, M.E. and Schiarizza, P., 2001. Timing and tectonic setting of the Stikine Terrane magmatism, Babine-Takla lakes area, central British Columbia. Can. J. of Earth Sci., 38, p. 579-601. 84  Marayuma, S., Liou, J.G. and Suzuki, K., 1982. The peristerite gap in low grade metamorphic rocks. Contributions to Mineralogy and Petrology, 81, p. 268-276. Massey, N.W.D., Vineham, J.M.S. and Oliver, S.L., 2009a. Southern Nicola Project: Whipsaw Creek–Eastgate–Wolfe Creek area, southern British Columbia (NTS 092H/01W, 02E, 07E, 08W); in Geological Fieldwork 2008, BC Ministry of Energy, Mines and Petroleum Resources, Paper 2009-1, pages 189–204. Massey, N.W.D, Vineham, J.M.S, Oliver, S.L., 2009b. Geology and Mineral Deposits of the Whipsaw Creek-Eastgate-Wolfe Creek Area, British Columbia (NTS 092H/01W, 02E, 07E, 08W), Open File 2009-0. Massey, N.W., Oliver, S.L., 2010. Southern Nicola Project: Granite Creek Area, Southern British Columbia (Parts of NTS 092H/07, 10); in Geological Fieldwork 2009, BC Ministry of Energy, Mines and Petroleum Resources, Paper 2010-1, pages 113-127. Massey, N.W., 2011. Southern Nicola Project: Geochemistry of volcanic rocks of the Nicola Group west of the Boundary fault (Parts of NTS 092H/02, 07 and 10). In Geological Fieldwork 2010, BC Ministry of Energy, Mines and Petroleum Resources, Paper 2011-1, p. 145-158. McCulloch, M.T. and Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett., 102, p. 358-374. Meneilly, A.W., 1983. Development of early composite cleavage in pelites from W-Donegal. Journal of Struct. Geol., 5, p. 83-97. Meschede, M., 1986. A method for discriminating between different types of mid-ocean ridge basalts and continental tholeiites with Nb-Zr-Y diagram. Chem. Geol., 56, p. 207-218. Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev., 74, p. 193-227. !"#$%&'()*+ !,-,*+ ./012/*+ 3,*+ -#2'4*+ .,5,*+ 67/02&*+ 8,*+ 9/:#";$%0*+ 5,9,*+ 8/"20+ 1$'*+ <,!,+ $'0+ =7#$''>7'*+ -,-,+ ?@AABCD+ 67#2/2'4+ 8/2':#+ <$'E2+ ;%(2>:#">4D+ >(;0(:4"7'+ 47+ 2F#(1$4"7'+ "'+G@,H+1,&,I+!"#$#%&'($)*#'&"+,)#-)./"0&'()12$$"+&3*+!!"*+'7+JKL*+M,+NOAPN@@,+ Miller, M.M., 1987, Dispersed Remnants of a northeast Pacific fringing arc: Upper Paleozoic 85  terranes of Permian McCloud faunal affinity, western US. Tectonics, 6, p. 807-830. Monger, J.W.H., 1989. Geology, Hope, British Columbia. Geological Survey of Canada, Map 41-1989, scale 1:250 000. Monger, J.W.H., Wheeler, J.O., Tipper, H.W., et al. 1991. Cordilleran Terranes. In Geology of the Cordilleran Orogen in Canada, Edited by H. Gabrielse and C.J. Yorath, Geological Survey of Canada, 4, p. 281-327. Morris, J.D. and Hart, S.R., 1983. Isotopic and incompatible trace element constraints on the genesis of island arc volcanic rocks from Cold Bay and Amak island, Aleutians, and implication for mantle structure. Geochim. Cosmochim. Acta, 47, p. 2030-2051. Mortimer, N., 1987. The Nicola Group: Late Triassic and Early Jurassic subduction-related volcanism in British Columbia. Canadian Journal of Earth Sciences, 24, p. 2521–2536. !"#$%&'( )*+*'( ,--.'( /0"( 12#3"$4"5( 6##%7040%&8( 9::"5( ;<#"%=%>7( ?<5@>&<#AB<$>&( <&C( >$#<&CA <57( 4"55<&"$( >&( &%540"5&( D5>4>$0( E%#F?B><'( !"#"$%"#& '()*#"+& (,& -"*./& 01%2#123'( !"'( :*( G.,AGH.*( !>I%&'(J*/*'(6570>B<#C'(K*6*(<&C(L"<?<&'(+*M*'(,--.'(HN65A(.-65(<&C(9A;B(@"%705%&%?"452( %O( 40"( ;%#<5>$( 6#<$P<&A42:"( 7%?:#"I'( D5>4>$0( E%#F?B><8( :5"7>$"( 4>?>&@( %O( QF"$&"##><R !%540(6?"5>7<(>&4"5<74>%&S(42(+(5%1"+&633(1%".%(#&(,&!"#"$"&7&8%#2*"+(5%1"+&633(1%".%(#& (,&!"#"$"'()%>&4(6&&F<#(M""4>&@'(TC?%&4%&(,--.'(;5%@5<?(<&C(6B$45<74$'(:<@"(6UG*( !%5C'( '( J*+*'( L<??<5$45%?'( )*( "4( <#*'( ,-UV*( W%&"C( :#<@>%7#<$"( <&C( :"5>$4"5>4"( O%5?<4>%&( >&( :02##>4"$(O5%?($%F40X"$4"5&(M<$$<70F$"44$*((69:&8%#2*"+*'(#!'(:*-HUA-YY*(( Pearce J.A. 1982, Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S. (ed.), Andesites. Wiley, Chichester, p. 525-548. Pearce J.A. 1983, Role of sub-continental lithosphere in magma genesis at active continental margins. In. Hawkesworth C.J. and Norry M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich, pp. 230-249. Pearce J.A. and Cann, J.R. 1973, Tectonic setting of basic volcanic rocks determined using trace  86  element analyses. Earth and Planetary Sciences Letters, 19, 290-300. Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, p. 956-983. Peccerillo R. and Taylor S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58, p. 63-81. Piercey, S.J., 2001. Petrology and tectonic setting of mafic and felsic volcanic and intrusive rocks in the Finlayson Lake volcanic-hosted massive sulphide (VHMS) district, Yukon, Canada: A record of mid-Paleozoic arc and back-arc magmatism and metallogeny. Ph.D. thesis, University of British Columbia, Vancouver, BC, 305 p. Piercey, S.J., Murphy, D.C., Mortensen,J.K. and Creaser, R.A., 2004. The mid-Paleozoic initiation of the northern Cordilleran marginal back-arc basin: Geological, geochemical and neodymium isotopic evidence from the oldest mafic magmatic rocks in the Yukon-Tanana terrane, Finlayson Lake district, southeast Yukon, Canada. Geological Society of America Bulletin, 32, p. 1087-1106. Piercey, S.J., Nelson, J.L., Colpron, M., Dusel-Bacon, C., Simard, R.-L. and Roots, C.F., 2006. Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera. In Colpron, M. and Nelson, J.L., eds., Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaska Cordillera, Geological Association of Canada, Special Paper 45, p. 281-322. Poirier, J.P. and Guillope, M., 1979. Deformation induced recrystallization of minerals. B Mineral, 102, p. 67-74. Preto, V. A., 1972, Geology of Copper Mountain. British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 59, p. 1-89. Raase, P., 1974. Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contributions to Mineralogical and Petrology, 45, p. 231-236. Rice, H.M.A. 1947. Geology and mineral deposits of the Princeton map-area, British Columbia. 87  Geological Survey of Canada, Memoir 243, 136 p.. Roback, R.C., Sevigny, J.H., and Walker, N.W., 1995, Tectonic Setting of the Slide Mountain Terrane, southern British Columbia. Tectonics, 13, p. 1242-1258. Rubenach, M.J. and Bell, T.H., 1988. Microstructural controls and the roll of graphite in matrix/porphyroblast exchange during syn-kinematic andalusite growth in a granite aureole. Journal of Metamorphic Geology, 6, p. 651-666. Saunders, A.D., Norry, M.J. and Tarney, J. 1991. Fluid influence on the trace element composition of subduction zone magmas. Phil. Trans. Roy. Soc. London, 335, p. 377-392. Schiarizza, P. and Massey, N.W.D., 2010. Geochemistry of volcanic and plutonic rocks of the Sitlika assemblage, Takla Lake area, central British Columbia (NTS 093N/04, 05, 12, 13). In Geological Fieldwork 2009, BC Ministry of Energy, Mines and Petroleum Resources, Paper 2010-1, p. 55-68. Shervais J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59, p. 101-118. Shinjo, R. and Kato, Y., 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa trough, and incipient back-arc basin. Lithos, 54, p.117-137. Sláma, J., Ko!ler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Xchoene, B., Tubrett, M.N. and Whitehouse, M.J., 2007. Ple!ovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, p. 1-35. Snyder, W.S., Brueckner, H.K., 1985, Tectonic evolution of the Golconda Allochthon, Nevada: problems and perspectives. In Pre-Jurassic rocks in western North American suspect terranes, Edited by C.H. Stevens, Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 103-123. Spear, F.S. 1980. NaSi-CaAl exchange equilibrium between plagioclase and amphibole: an empirical model. Contributions to Mineralogy and Petrology, 80, p.140-146.  88  Spear, F.S., 1993. Metamorphic phase equilibria and pressure-temperature time paths. Monograph Series 1, Mineralogical Society of America, Washington, DC, 799 p. Speed, R.C., 1979, Collided Paleozoic microplate in the western United States, Journal of Geology, 87, p. 279-292. Spry, A.H., 1969. Metamorphic Textures. Pergamon Press, Oxford, 350 p. Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A.D. and Norry, M.J. eds., Magmatism in ocean basins. Geol. Soc. London, Special Publication 42, p. 313-345. Swinden, H.S., Jenner, G.A. and Szybinski, Z.A., 1997. Magmatic and tectonic evolution of the Cambrian-Ordovician Laurentian margin of Iapetus: Geochemical and isotopic constraints from the Notre Dame subzone, Newfoundland. In Sinha, A.K., Whalen, J.B. and Hogan, J.P. eds., The Nature of magmatism in the Appalachian orogen: Geological Society of America, Memoir 191, p. 337-365. Tafti, R., Mortensen, J.K., Lang, J.R., Rebagliati, M. and Oliver, J.L., 2009, Jurassic U-Pb and Re-Os ages for newly discovered Xietongmen Cu-Au porphyry district, Tibet: Implications for metallogenic epochs in the southern Gangdese Belt; Economic Geology, 104, p. 127–136. Tempelman-Kluit, D.J., 1979, Transported cataclasite, ophiolite and granodiorite in Yukon: evidence for arc-continent collision. Geological Survey of Canada, Paper 79-14. Thompson, R.N. 1982. British Tertiary volcanic province. Scott. J. Geol., 18, p. 49-107. Urai, J.L., 1983. Water assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics, 96, p. 125-157. Van Achterbergh, E., Ryan, C.G., Jackson, S.E. and Griffin, W.L., 2001, Data reduction software for LA-ICP-MS: appendix; In Sylvester, P.J. (ed.), Laser Ablation –ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Mineralogical Association of Canada Short Course Series, Ottawa, Ontario, Canada, 29, p. 239-243. Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magmas series  89  and their differentiation products using immobile elements. Chem. Geol., 20, p. 325-343. Wood D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 50, p. 11-30. Zenk, M. and Schulz, B., 2004. Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68(5), p. 769-786.  90  Appendix A Laser Ablation ICP-MS Analytical Data for Zircons 207/206  % 1s  Isotopic Ratios 207/235 % 1s  206/238  % 1s  Rho  206/238  2s  Isotopic Ages 207/235 2s  207/206  2s  202  Background corrected mean counts per second 204 206 207 208 232 235  238  Sample 08-SOL-23-07 1 2 3  0.05295 0.05351 0.05188  0.00179 0.00272 0.00344  0.3253 0.33431 0.31049  0.01141 0.01769 0.02099  0.00049 0.00075 0.00076  0.04488 0.04444 0.04496  0.31 0.32 0.25  326.4 350.5 280.1  74.91 110.25 144.95  286 292.9 274.6  8.74 13.46 16.26  283 280.3 283.5  3.01 4.61 4.72  64 2 31  14 0 18  4714 3325 1523  250 178 79  561 319 101  18315 10336 2553  841 584 279  105777 75346 34127  4 5 7  0.0561 0.05246 0.05583  0.00369 0.00263 0.00271  0.33794 0.31237 0.33059  0.023 0.01623 0.01688  0.00091 0.00068 0.00082  0.04449 0.04262 0.04484  0.30 0.31 0.36  455.8 305.3 445.2  139.43 110.4 104.81  295.6 276 290  17.45 12.56 12.88  280.6 269.1 282.7  5.6 4.22 5.03  85 0 0  12 17 0  1935 3098 7451  108 162 416  173 440 1296  4102 14643 42469  352 571 1382  43814 73229 167469  8 10  0.05323 0.0487  0.0034 0.00548  0.33964 0.32419  0.02246 0.03783  0.00083 0.00146  0.04401 0.04495  0.29 0.28  338.4 133.2  137.9 245.14  296.9 285.1  17.02 29.01  277.7 283.4  5.13 9.03  79 79  26 1  2160 1604  115 78  200 156  5823 4143  372 265  49466 35989  11  0.05094  0.00343  0.31375  0.02176  0.00085  0.04503  0.27  237.9  148.3  277.1  16.82  284  5.25  6  30  1918  97  173  4415  342  42940  13 14 15 16  0.05355 0.06202 0.06121 0.05212  0.00311 0.00525 0.00573 0.00646  0.35797 0.44106 0.41446 0.32932  0.02207 0.03929 0.04071 0.04204  0.00098 0.00137 0.00166 0.00162  0.04677 0.04924 0.05343 0.04509  0.34 0.31 0.32 0.28  351.9 674.9 646.7 290.6  125.61 171.31 189.21 261.05  310.7 371 352.1 289  16.5 27.68 29.22 32.11  294.7 309.9 335.6 284.3  6.05 8.44 10.16 9.96  15 84 81 0  0 0 0 0  5394 1405 1287 991  289 87 78 51  879 137 115 86  26977 3134 2641 1698  888 217 209 172  116274 28772 24297 22177  17 0.05395 18 0.06294 19 0.05521 Sample 08-NMA-18-10 a 0.07248  0.00679 0.00446 0.00321  0.31269 0.39255 0.3449  0.04032 0.02912 0.02087  0.00153 0.00113 0.00085  0.04401 0.04544 0.04433  0.27 0.34 0.32  368.8 706.1 420.4  261.35 143.87 125.02  276.3 336.2 300.9  31.19 21.23 15.76  277.7 286.5 279.6  9.45 6.94 5.24  0 39 84  23 21 37  1003 1842 2460  54 116 136  81 187 191  2152 4727 5461  190 325 434  22997 40884 55979  0.00621  0.40159  0.03512  0.00114  0.04458  0.29  b c d e f g  0.05214 0.04848 0.05145 0.0563 0.05085 0.04966  0.0037 0.00242 0.00608 0.00523 0.00701 0.00625  0.31482 0.30546 0.31559 0.37397 0.30071 0.31497  0.02296 0.01578 0.03791 0.03626 0.0421 0.04043  0.00087 0.00067 0.00121 0.00138 0.00143 0.0014  0.04446 0.04506 0.04391 0.04611 0.04484 0.04893  0.27 0.29 0.23 0.31 0.23 0.22  999.4 291.6 122.8 261.1 463.4 233.8 179.2  165.01 154.32 113.39 250.41 194.3 290.16 269.38  342.8 277.9 270.7 278.5 322.6 267 278  25.44 17.73 12.27 29.26 26.8 32.87 31.22  281.1 280.4 284.1 277 290.6 282.8 307.9  7.05 5.38 4.1 7.44 8.49 8.82 8.58  87 30 50 104 0 66 123  9 28 6 0 0 0 18  838 1522 2820 802 1496 783 842  60 79 137 41 84 39 41  76 155 390 37 83 81 54  1296 4541 12153 1280 2604 1898 1567  166 278 493 144 248 146 146  18964 34514 63093 18426 32690 17595 17340  h i  0.05324 0.05068  0.00458 0.0032  0.31517 0.30935  0.02766 0.02008  0.00103 0.00081  0.0444 0.04424  0.26 0.28  339.1 226.5  183.56 139.62  278.2 273.7  21.36 15.58  280.1 279  6.38 4.98  31 28  19 0  1275 1765  68 89  131 124  2841 4097  237 319  28930 40185  j k l m n o p q r  0.05227 0.05735 0.05828 0.05347 0.06168 0.05878 0.05417 0.04778 0.05157  0.00467 0.00706 0.0052 0.00418 0.00585 0.00926 0.00404 0.00727 0.00371  0.31717 0.35266 0.35846 0.32395 0.36557 0.32739 0.33099 0.28006 0.33682  0.02894 0.04495 0.0334 0.02609 0.03595 0.05239 0.02563 0.04365 0.02534  0.00103 0.0018 0.00135 0.00095 0.00135 0.00183 0.00105 0.00187 0.00105  0.04449 0.04699 0.04548 0.04225 0.04409 0.0448 0.04424 0.04488 0.04523  0.25 0.30 0.32 0.28 0.31 0.26 0.31 0.27 0.31  297.4 504.6 539.5 348.7 662.9 559.1 377.8 87.5 266.5  191.21 250.52 184.83 167.5 191.08 310.78 159.19 326.86 156.81  279.7 306.7 311.1 284.9 316.4 287.6 290.3 250.7 294.8  22.31 33.74 24.96 20.01 26.73 40.08 19.55 34.62 19.24  280.6 296 286.7 266.7 278.1 282.5 279.1 283 285.2  6.38 11.06 8.32 5.88 8.36 11.27 6.47 11.53 6.49  51 77 94 33 106 65 64 41 45  0 12 12 11 26 28 9 41 0  1246 1054 1486 1562 1244 603 1738 1133 2183  65 60 86 83 77 35 94 54 113  127 98 170 112 117 8 119 120 209  3375 2560 3937 2896 2677 882 3865 3517  226 189 266 284 231 119 313 213  28205 22604 32900 37218 28394 13557 39534 25386  s t  0.05192 0.05091  0.00458 0.00577  0.32449 0.3058  0.02954 0.03528  0.00119 0.00123  0.04678 0.046  0.28 0.23  282 236.8  189.27 241.7  285.4 270.9  22.65 27.43  294.7 289.9  7.34 7.56  23 0  15 0  1430 939  74 48  124 68  7249 3824 2009  368 252 172  48516 30731 20529  91  Appendix B.1 Major and Trace Element Bulk Geochemistry Type 2 Mafic  Type 1 Mafic  Sample  09THS01-04  Lithology  amp+pl+ep+ amp+pl+ep+ mag+cal+qtz mag+qtz schist schist  amp-rich schist  Map Unit  08SOL12-08  amp-rich schist  09THS01-06  09THS02-07  09THS03-07  08SOL12-16-01  09THS04-07  09THS03-05  08NMA17-08  amp+pl+ep+ ox+qtz schist  amp+pl+cl+ qtz+ox schist  chl+pl/qtz+ amp+ep+ox schist  ep+amp+pl/ qtz+cl+ox schist  chl+pl/qtz+ amp+mag schist  amp+ep+pl/ qtz+ox+chl schist  amp+pl/qtz+ ep+chl+bt schist  qtz/fsp schist  qtz/fsp schist  interbedded schist  pl+qtz-eye schist  amp(chl)+ep schist  intrusive  qtz/fsp schist  SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI Total  % % % % % % % % % % % % %  49.81 17.38 12.39 5.46 7.79 5.04 0.12 1 0.08 0.18 0.01 0.5 99.76  56.47 14.67 11.45 3.95 4.92 5.62 0.1 1.39 0.16 0.18 <0.002 0.9 99.82  55.62 16.38 9.31 4.57 7.45 4.49 0.08 1.15 0.11 0.18 0.002 0.4 99.73  54.21 16.41 8.72 5.61 8.19 3.89 0.16 1.05 0.21 0.11 0.01 1.2 99.77  55.49 17.02 9.02 5.68 5.54 3.62 0.1 1.18 0.16 0.11 0.01 1.8 99.74  50.6 16.88 8.72 4.73 11.57 4.71 0.13 0.98 0.17 0.14 0 2.1 100.7  52.09 16.66 8.96 7.07 4.48 5.92 0.39 1.58 0.32 0.1 0.002 2.2 99.76  50.15 15.16 12.65 6.58 8.74 3.7 0.05 1.68 0.15 0.21 0.01 0.6 99.7  59.2 14.35 5.91 6.22 5.26 5.27 1.6 0.48 0.09 0.08 0 0.95 99.46  Ni Sc Ba Be Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM  25 45 21 <1 46.1 <0.1 17.2 1.5 1.3 0.6 <1 217 0.1 0.3 0.1 402 335.6 44.2 19.3 2.2 6.8 1.05 6.2 1.9 0.75 2.84 0.54 3.41 0.79 2.42 0.34 2.34 0.34  <20 37 45 <1 35.8 <0.1 22.5 2.1 2.7 0.4 <1 55.4 0.3 0.3 0.2 323 212.6 75.3 28.6 4.5 12.2 1.88 9.6 3.09 1.23 4.35 0.79 4.84 1.04 3.27 0.46 3.21 0.49  <20 31 10 <1 44.2 0.1 18.5 2.9 1.1 0.5 <1 284 0.2 <0.2 <0.1 277 693.9 93.9 22.7 3.3 11.1 1.8 9.9 2.88 1.03 3.86 0.7 4.08 0.92 2.71 0.42 2.77 0.41  20 28 21 <1 35.6 <0.1 15.3 2.2 1.8 0.7 1 318.9 0.2 <0.2 0.4 221 253 76.1 20.5 3.9 12.1 1.75 9.4 2.83 1.13 3.61 0.65 3.69 0.8 2.58 0.36 2.45 0.35  <20 30 21 <1 25.4 <0.1 17.2 2.4 1.3 0.4 2 242.2 0.1 <0.2 0.1 234 184.1 84.2 21.9 4.3 13.1 2 10.3 3.03 1.24 3.76 0.64 3.76 0.76 2.3 0.33 2.16 0.32  8.7 0 27 <1 36 <0.1 17.6 2.2 1.6 1.9 <1 158.1 <0.1 <0.2 0.3 289 48.2 95.2 21.4 3.3 10.2 1.68 9.2 2.6 1.17 3.53 0.62 3.84 0.8 2.34 0.35 2.2 0.33  <20 30 155 <1 33.4 0.1 15.9 1.6 1.4 4.5 <1 111.4 0.1 <0.2 2.7 416 101.3 69.8 22.2 3.3 11 1.72 9.2 3.1 1.32 3.94 0.67 4.02 0.86 2.47 0.34 2.34 0.32  29 44 15 <1 44.9 <0.1 16.4 2.2 2.6 0.2 <1 126.5 0.2 0.2 0.1 401 128.8 71.6 26.2 4.4 12.5 1.96 10.6 3.15 1.19 4.35 0.76 4.67 0.94 2.88 0.42 2.66 0.4  20 0 204 <1 27.1 0.9 14.8 3.4 1.9 16.5 <1 125.8 0.1 0.9 0.4 141 40.9 125.6 22.2 9.1 24.4 3.45 16.5 3.58 0.88 3.79 0.61 3.66 0.74 2.14 0.33 2.16 0.34  10 5442189 674381  10 5445656 672513  10 5443040 674766  10 5443068 675547  10 5447079 672361  10 5446136 674065  10 5445872 673722  10 5448366 671943  10 5443153 675693  Zone Northing Easting  92  Type 1 Mafic  Type 1 Felsic  Sample  08NMA20-08-01 09THS03-03 08SOL22-01  Lithology  ep+chl+pl/ chl+ep+pl/ amp+ep+pl/qtz+c amp+pl/qtz+ qtz+amp+ox qtz+bt+amp+o hl+ox+bt schist bt+ep schist schist x schist amp(chl)+ep schist  Map Unit  amp(chl)+ep schist  amp(chl)+ep schist  09THS02-11  amp(chl)+ep schist  08SOL22-06  09THS01-09  09THS05-09 08SOL23-03 08NMA18-02 08NMA21-01  chl+amp+pl/ qtz+bt+ep+ ox schist  amp+ep+pl/ qtz+chl+bt+ox schist  fsp+qtz-phyric qtz+pl+chl= rhyolite ms+ox schist  amp(chl)+ep schist  amp(chl)+ep schist  pl+qtz-eye schist  pl+qtz-eye schist  qtz/pl+chl= ms+ox schist  fsp-qtz porphyry  pl+qtz-eye schist  intrusive  SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI Total  % % % % % % % % % % % % %  57.1 17.68 7.28 3.36 6.51 6.13 0.14 0.65 0.07 0.12 0.004 0.7 99.8  48.07 17.16 10.17 6.88 11.04 1.82 0.59 0.7 0.08 0.17 0.031 3 99.69  48.75 17.56 13.7 7.49 1.41 4 2.18 0.93 <0.01 0.08 0.004 3.7 99.78  59.65 16.47 7.3 4.37 5.09 1.93 1.02 0.64 0.13 0.17 <0.002 2.8 99.57  52 16.57 11.96 7.93 3.56 3.49 0.76 0.93 0.02 0.2 0 2.93 100.34  55.62 15.23 11.5 4.94 4.6 3.78 1.42 0.83 0.14 0.22 0.003 1.3 99.63  74.21 13.62 2.85 0.74 0.33 5.56 1.64 0.23 0.04 0.03 <0.002 0.6 99.87  77.98 10.58 2.82 3.33 0.03 0.26 1.83 0.17 0.02 0.02 <0.002 2.5 99.53  77.13 10.83 3.13 3.45 <0.01 0.27 2.02 0.22 0.05 0.04 <0.002 2.7 99.85  67.43 15.31 3.69 1.27 1.15 7.8 0.46 0.55 0.11 0.12 <0.002 2 99.9  Ni Sc Ba Be Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM  29 24 39 <1 29.8 <0.1 18.5 3.7 1.7 0.4 1 363.4 0.2 0.8 0.4 192 277.6 115.6 24.7 5.6 17.2 2.55 12.1 3.31 0.9 3.75 0.7 4.32 0.99 3.01 0.44 2.94 0.45  73 41 274 <1 32.5 0.1 15.9 1.2 0.7 10.7 <1 242.3 <0.1 0.6 0.4 320 116.6 38.2 16.9 4.1 10.2 1.45 7 1.99 0.77 2.5 0.46 2.86 0.59 1.9 0.27 1.9 0.29  <20 52 244 <1 35.3 2 18 0.9 0.2 39.7 <1 49.2 <0.1 <0.2 0.2 339 48.9 17.2 12.2 0.8 2.2 0.38 2.9 1.15 0.52 1.73 0.37 2.63 0.54 1.84 0.28 1.92 0.26  <20 27 2024 <1 16.4 0.1 16.6 2.3 1.9 16 <1 157.8 0.1 1.3 0.6 144 167.7 59.5 28.8 7.5 16.9 2.4 11.1 3.33 1.13 4.47 0.81 4.96 1.09 3.34 0.48 3.26 0.5  7 0 124 <1 33.6 0.4 15.6 0.6 0.3 8.6 <1 97.5 <0.1 <0.2 0.3 436 29.7 16.5 15.1 0.9 2.5 0.48 3.3 1.3 0.49 2.1 0.41 2.8 0.62 1.86 0.29 1.82 0.28  <20 41 769 <1 34.8 1.5 16.3 1.5 1 25.2 <1 286.1 0.1 1.1 0.5 372 192.3 47 22.7 6 13.8 1.82 9.5 2.37 0.9 3.35 0.61 3.92 0.8 2.59 0.38 2.48 0.41  <20 9 270 2 16.4 <0.1 20.9 8.1 7.5 19.8 2 33.8 0.4 0.6 0.3 55 229.6 273.6 51.4 8.7 31.9 4.31 19.7 5.93 1.05 7.5 1.44 8.87 2.08 6.51 0.95 6.64 1.03  <20 6 3443 <1 9.2 0.1 15.6 6.3 4.5 15.9 2 18.2 0.5 0.3 0.4 10 139.1 199.2 17.4 6 19.1 2.69 14.4 3.31 0.45 3.11 0.51 2.97 0.7 2.26 0.37 2.66 0.45  <20 7 358 <1 17 <0.1 12.6 4.7 2.4 22.7 1 8 0.3 0.4 0.5 17 293.1 180.2 37.1 4.9 14.7 2.1 9.4 2.94 0.67 4.57 0.91 5.75 1.28 4.23 0.64 4.18 0.66  <20 15 78 <1 21.3 0.2 13.4 3.3 1.2 4.9 <1 31.9 0.2 0.8 0.3 79 288.5 89.8 22.1 4 12.5 1.86 11.5 2.9 0.85 3.83 0.68 4.07 0.91 2.93 0.43 3.1 0.48  10 5445878 673842  10 5445338 676207  10 5446561 675746  10 5444486 676180  10 5445361 675301  10 5445462 675384  10 5446494 673673  10 5446932 674190  10 5447517 674045  10 5447289 675398  Zone Northing Easting  93  Appendix B.2  Standard and Duplicate Geochemical Data  Duplicate Sample 09THS01-08A 09THS01-08A-R  Standard Sample 09THS06-01  Expected #1  Expected #2  SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI Total  % % % % % % % % % % % % %  69.83 13.15 5.66 1.87 4.12 3.61 0.38 0.53 0.09 0.18 <0.002 0.3 99.74  69.97 13.1 5.62 1.87 4.13 3.59 0.37 0.52 0.08 0.19 <0.002 0.3 99.75  SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 LOI Total  % % % % % % % % % % % % %  63.98 16.72 4.42 2.66 5.04 4.27 1.65 0.5 0.18 0.08 0.01 0.2 99.72  65.70 16.40 4.50 2.64 4.77 4.16 1.63 0.50 0.16 0.08  65.60 16.60 4.56 2.75 5.06 4.16 1.60 0.49 0.15 0.08  0.30 100.70  0.00 101.20  Ni Sc Ba Be Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM  <20 27 113 <1 33.5 0.2 13 1.4 0.5 5.5 <1 58.1 0.1 <0.2 0.2 119 950.1 35.7 28.1 1.7 5 0.88 5.3 2.03 0.75 3.58 0.67 4.45 0.99 3.3 0.48 3.18 0.51  <20 28 109 <1 33.2 0.2 13.5 1.5 0.5 5.5 <1 60.6 0.2 0.2 0.2 117 985.1 35.3 29.1 1.8 4.9 0.9 5.3 2.15 0.75 3.44 0.7 4.38 1.03 3.26 0.5 3.39 0.54  Ni Sc Ba Be Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM PPM  46 10 606 1 12.7 0.5 16.2 3.2 3.4 23.1 1 741 0.2 2 0.9 92 <0.5 114.9 12.8 12.3 27.7 3.49 14.2 2.77 0.85 2.57 0.41 2.32 0.44 1.34 0.19 1.33 0.2  44 10.0 602 1.1 13.0 0.44 19.0 3.4 3.80 23 1 691 0.26 2.00 0.83 86 -1 127 14.0 13.0 28.0 3.6 15 3.3 0.9 3.0 0.46 2.4 0.5 1.3 0.20 1.5 0.2  43 10.0 624 1.1 12.0 0.45 18.0 3.3 3.80 22 1 695 0.24 2.00 0.77 85 -1 129 14.0 13.0 28.0 3.6 15 3.3 0.9 2.9 0.42 2.4 0.5 1.3 0.20 1.4 0.2  94  Appendix C.1 Amphibole Electron Microprobe Data and Structural Formula Calculation Results Oxide Totals Minerals 08SOL12-08-P1C-1 08SOL12-08-P1C-2 08SOL12-08-P1C-3 08SOL12-08-P1C-4 08SOL12-08-P1F-1 08SOL12-08-P1F-2 08SOL12-08-P2B-1 08SOL12-08-P2B-2 08SOL12-08-P2D-1 08SOL12-08-P2D-2 08SOL12-08-P2D-3 08SOL12-08-P3A-1 08SOL12-08-P3A-2 08SOL12-08-P3A-3 08SOL12-08-P3B-1 08SOL12-08-P3B-2 08SOL12-08-P3B-3 08SOL12-08-P3C-1 08SOL12-08-P3C-2 08SOL12-08-P3C-3 08SOL12-08-P3C-4 08SOL12-08-P3C-5 08SOL12-08-P3E-1 08SOL12-08-P3E-2 08SOL12-08-P3E-3 08SOL12-08-P4F-1 08SOL12-08-P4F-2 08SOL12-08-P4G-1 08SOL12-08-P4G-2 08SOL12-08-P4G-3 08SOL12-08-P4G-4 08SOL12-08-P4H-1 08SOL12-08-P4H-2 08SOL12-08-P4H-3 08SOL12-08-P4a-1 08SOL12-08-P4a-2 09THS01-04-P1D-1 09THS01-04-P1D-2 09THS01-04-P1D-3 09THS01-04-P1C-1 09THS01-04-P1C-2 09THS01-04-P2D-1 09THS01-04-P2D-2 09THS01-04-P2C-1 09THS01-04-P2C-2 09THS01-04-P2A-1 09THS01-04-P2A-2 09THS01-04-P2F-1 09THS01-04-P2F-2 09THS01-04-P3A-1 09THS01-04-P3A-2 09THS01-04-P3D-1 09THS01-04-P3D-2 09THS01-04-P3D-3 08SOL121601-5C-2 08SOL121601-5C-3 08SOL121601-4C-1 08SOL121601-4C-2 08SOL121601-4C-3 08SOL121601-3C-3 08SOL121601-3D-1 08SOL121601-2E-1 08SOL121601-2E-2 08SOL121601-2F-1 08SOL121601-2F-2 08SOL121601-2D-1 08SOL121601-2D-2 08SOL121601-2D-3 08SOL121601-1D-1 08SOL121601-1D-2 08SOL121601-1E-1 08SOL121601-1E-2  Cation Totals  SiO2 TiO2 48.97 43.46 42.29 45.53 45.28 45.25 48.23 42.20 45.50 42.47 42.39 43.14 44.73 43.01 43.63 44.32 44.06 42.11 43.37 42.70 43.22 44.76 43.59 43.72 42.88 42.43 43.18 44.38 43.46 43.89 44.90 42.61 48.61 48.15 42.76 43.18 44.86 45.20 45.42 44.69 46.07 45.93 46.11 45.70 45.30 45.49 45.04 45.57 46.25 44.82 44.67 45.57 44.26 45.00 54.52 54.49 53.66 54.34 55.43 54.94 54.84 54.82 51.81 53.60 55.10 53.46 53.48 52.21 55.03 54.91 55.47 55.00  0.22 0.42 0.56 0.41 0.45 0.54 0.35 0.61 0.47 0.42 0.31 0.37 0.52 0.36 0.49 0.52 0.49 0.38 0.32 0.42 0.50 0.36 0.41 0.44 0.51 0.44 0.41 0.44 0.48 0.47 0.41 0.53 0.39 0.32 0.27 0.37 0.43 0.49 0.49 0.63 0.56 0.52 0.55 0.50 0.68 0.65 0.58 0.55 0.53 0.67 0.63 0.60 0.64 0.65 0.06 0.05 0.06 0.05 0.03 0.01 0.05 0.03 0.09 0.04 0.02 0.03 0.04 0.06 0.02 0.05 0.01 0.07  Al2O3 Cr2O3 Mn2O3 MnO FeO 5.89 10.50 10.99 8.36 8.78 9.73 7.02 10.63 9.11 11.03 12.04 11.19 9.89 11.23 10.62 10.52 10.67 12.14 11.54 11.88 11.59 10.44 11.27 11.07 11.55 10.67 11.33 10.09 10.74 10.54 9.43 10.97 8.74 5.85 11.80 11.47 9.68 9.78 9.25 8.84 8.99 8.57 8.75 8.33 8.94 9.12 8.79 8.89 8.60 9.53 9.23 8.74 9.66 9.44 1.91 1.43 1.87 1.52 1.54 1.27 1.50 1.23 3.63 1.54 1.24 1.69 1.59 3.48 1.00 1.08 0.78 1.87  0.04 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.02 0.05 0.07 0.02 0.03 0.01 0.01 0.00 0.12 0.11 0.01 0.22 0.00 0.09 0.00 0.04 0.00 0.03  0.47 0.38 0.37 0.41 0.38 0.37 0.34 0.37 0.39 0.46 0.47 0.50 0.35 0.52 0.42 0.39 0.46 0.48 0.43 0.44 0.43 0.46 0.48 0.47 0.45 0.39 0.38 0.41 0.45 0.40 0.48 0.38 0.35 0.41 0.46 0.40 0.37 0.41 0.46 0.42 0.49 0.44 0.40 0.37 0.34 0.47 0.53 0.46 0.44 0.45 0.46 0.41 0.46 0.46 0.23 0.24 0.27 0.25 0.31 0.24 0.24 0.25 0.20 0.19 0.24 0.32 0.29 0.33 0.21 0.24 0.22 0.24  13.47 16.44 16.40 15.11 15.08 15.55 13.86 16.77 15.71 16.80 16.91 16.01 14.65 16.27 16.05 15.99 15.93 16.28 16.12 16.32 16.52 15.78 16.42 16.01 16.59 16.04 16.74 16.20 16.71 16.46 15.83 16.51 14.74 14.14 16.54 16.95 15.80 15.78 15.57 15.48 15.57 15.31 15.10 14.89 15.47 15.65 15.56 15.25 14.98 17.34 17.14 16.73 17.55 17.17 8.88 7.90 9.00 9.66 8.76 8.63 9.74 8.29 9.54 8.44 8.51 8.64 8.90 10.72 9.84 9.45 8.29 8.82  MgO 14.61 11.45 11.16 12.99 12.52 11.70 13.79 11.49 12.34 11.06 10.64 11.23 12.46 11.15 11.55 11.62 11.68 10.69 10.94 10.84 11.10 11.73 10.99 11.21 11.05 11.21 10.85 11.70 11.20 11.25 12.13 10.88 11.04 14.35 10.84 11.08 12.22 12.33 12.52 12.74 12.59 12.70 12.68 12.66 12.51 12.60 12.35 12.71 12.96 11.40 11.50 11.76 11.21 11.35 18.23 18.90 18.62 18.34 18.60 18.64 17.99 19.06 17.58 18.53 18.64 18.89 18.58 16.67 18.23 18.31 19.36 18.60  CaO 11.04 11.00 10.97 11.22 11.03 11.07 11.30 11.18 11.10 10.80 11.03 10.57 11.37 11.03 10.69 11.02 10.77 10.73 10.72 11.02 11.12 10.89 10.86 10.72 10.90 10.77 11.01 11.21 11.03 10.91 10.90 10.95 10.21 11.11 10.75 10.79 11.06 10.92 10.89 10.50 10.81 10.83 11.28 10.99 10.94 10.88 10.94 11.01 11.01 11.19 11.25 11.17 11.24 11.27 11.85 11.82 12.16 11.66 12.04 11.92 11.64 12.10 12.35 11.86 12.13 12.23 12.13 11.59 12.00 11.91 12.23 12.20  Na2O K2O 1.03 1.74 1.76 1.36 1.49 1.66 1.18 1.73 1.44 1.81 1.92 1.97 1.51 2.03 1.77 1.81 1.74 2.03 1.86 1.92 1.94 1.76 1.95 1.79 2.00 1.79 1.96 1.63 1.84 1.81 1.71 1.79 1.44 1.00 1.87 1.83 1.66 1.60 1.52 1.60 1.57 1.49 1.40 1.46 1.47 1.55 1.57 1.49 1.42 1.49 1.48 1.35 1.57 1.47 0.40 0.37 0.43 0.45 0.30 0.29 0.42 0.34 0.54 0.40 0.28 0.40 0.30 0.78 0.33 0.32 0.29 0.42  0.10 0.23 0.19 0.10 0.12 0.15 0.08 0.19 0.11 0.17 0.26 0.17 0.16 0.19 0.14 0.12 0.15 0.21 0.28 0.24 0.19 0.14 0.18 0.18 0.18 0.14 0.21 0.16 0.16 0.18 0.15 0.23 0.19 0.08 0.21 0.18 0.15 0.14 0.11 0.11 0.08 0.11 0.10 0.10 0.11 0.11 0.08 0.10 0.11 0.12 0.11 0.10 0.12 0.13 0.04 0.03 0.09 0.07 0.07 0.05 0.06 0.05 0.07 0.07 0.04 0.07 0.05 0.09 0.03 0.06 0.04 0.06  F  Cl 0.06 0.13 0.00 0.08 0.03 0.12 0.04 0.00 0.05 0.00 0.19 0.16 0.06 0.05 0.09 0.00 0.04 0.10 0.00 0.05 0.08 0.12 0.10 0.13 0.04 0.12 0.15 0.11 0.12 0.00 0.00 0.02 0.09 0.00 0.05 0.10 0.08 0.22 0.14 0.04 0.07 0.00 0.16 0.02 0.00 0.02 0.00 0.00 0.04 0.13 0.04 0.00 0.13 0.13 0.00 0.00 0.19 0.00 0.04 0.00 0.01 0.05 0.00 0.01 0.11 0.22 0.11 0.00 0.00 0.00 0.03 0.09  Sum 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.02 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00  95.91 95.78 94.69 95.57 95.17 96.17 96.20 95.16 96.22 95.02 96.17 95.33 95.73 95.83 95.45 96.31 96.00 95.15 95.61 95.87 96.69 96.46 96.28 95.73 96.15 93.99 96.24 96.35 96.20 95.91 95.96 94.94 95.86 95.42 95.55 96.37 96.32 96.87 96.39 95.06 96.81 95.93 96.57 95.03 95.77 96.55 95.44 96.04 96.33 97.15 96.52 96.45 96.86 97.13 96.16 95.29 96.41 96.35 97.14 96.00 96.49 96.23 95.92 94.77 96.31 96.18 95.47 96.03 96.69 96.35 96.72 97.40  Minerals 08SOL12-08-P1C-1 08SOL12-08-P1C-2 08SOL12-08-P1C-3 08SOL12-08-P1C-4 08SOL12-08-P1F-1 08SOL12-08-P1F-2 08SOL12-08-P2B-1 08SOL12-08-P2B-2 08SOL12-08-P2D-1 08SOL12-08-P2D-2 08SOL12-08-P2D-3 08SOL12-08-P3A-1 08SOL12-08-P3A-2 08SOL12-08-P3A-3 08SOL12-08-P3B-1 08SOL12-08-P3B-2 08SOL12-08-P3B-3 08SOL12-08-P3C-1 08SOL12-08-P3C-2 08SOL12-08-P3C-3 08SOL12-08-P3C-4 08SOL12-08-P3C-5 08SOL12-08-P3E-1 08SOL12-08-P3E-2 08SOL12-08-P3E-3 08SOL12-08-P4F-1 08SOL12-08-P4F-2 08SOL12-08-P4G-1 08SOL12-08-P4G-2 08SOL12-08-P4G-3 08SOL12-08-P4G-4 08SOL12-08-P4H-1 08SOL12-08-P4H-2 08SOL12-08-P4H-3 08SOL12-08-P4a-1 08SOL12-08-P4a-2 09THS01-04-P1D-1 09THS01-04-P1D-2 09THS01-04-P1D-3 09THS01-04-P1C-1 09THS01-04-P1C-2 09THS01-04-P2D-1 09THS01-04-P2D-2 09THS01-04-P2C-1 09THS01-04-P2C-2 09THS01-04-P2A-1 09THS01-04-P2A-2 09THS01-04-P2F-1 09THS01-04-P2F-2 09THS01-04-P3A-1 09THS01-04-P3A-2 09THS01-04-P3D-1 09THS01-04-P3D-2 09THS01-04-P3D-3 08SOL121601-5C-2 08SOL121601-5C-3 08SOL121601-4C-1 08SOL121601-4C-2 08SOL121601-4C-3 08SOL121601-3C-3 08SOL121601-3D-1 08SOL121601-2E-1 08SOL121601-2E-2 08SOL121601-2F-1 08SOL121601-2F-2 08SOL121601-2D-1 08SOL121601-2D-2 08SOL121601-2D-3 08SOL121601-1D-1 08SOL121601-1D-2 08SOL121601-1E-1 08SOL121601-1E-2  NOA 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23  Si  Ti 7.26 6.61 6.52 6.87 6.86 6.80 7.15 6.50 6.84 6.54 6.45 6.58 6.74 6.55 6.64 6.68 6.66 6.46 6.59 6.50 6.52 6.72 6.59 6.63 6.51 6.58 6.55 6.69 6.59 6.66 6.78 6.56 7.21 7.21 6.53 6.54 6.75 6.75 6.81 6.80 6.87 6.90 6.88 6.92 6.83 6.81 6.83 6.85 6.91 6.73 6.75 6.86 6.69 6.76 7.81 7.85 7.71 7.81 7.86 7.88 7.86 7.84 7.52 7.80 7.87 7.70 7.75 7.60 7.88 7.88 7.89 7.79  Al 0.02 0.05 0.07 0.05 0.05 0.06 0.04 0.07 0.05 0.05 0.04 0.04 0.06 0.04 0.06 0.06 0.06 0.04 0.04 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.04 0.04 0.03 0.04 0.05 0.06 0.05 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.07 0.06 0.06 0.08 0.07 0.07 0.07 0.07 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01  1.03 1.88 2.00 1.49 1.57 1.72 1.23 1.93 1.61 2.00 2.16 2.01 1.76 2.01 1.90 1.87 1.90 2.19 2.07 2.13 2.06 1.85 2.01 1.98 2.07 1.95 2.03 1.79 1.92 1.89 1.68 1.99 1.53 1.03 2.12 2.05 1.72 1.72 1.63 1.58 1.58 1.52 1.54 1.49 1.59 1.61 1.57 1.57 1.51 1.69 1.64 1.55 1.72 1.67 0.32 0.24 0.32 0.26 0.26 0.21 0.25 0.21 0.62 0.26 0.21 0.29 0.27 0.60 0.17 0.18 0.13 0.31  Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00  Mn3+ Mn2+ Fe2+ Mg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.04 0.07 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.04 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03  1.67 2.09 2.12 1.91 1.91 1.95 1.72 2.16 1.97 2.16 2.15 2.04 1.85 2.07 2.04 2.01 2.01 2.09 2.05 2.08 2.08 1.98 2.08 2.03 2.11 2.08 2.12 2.04 2.12 2.09 2.00 2.12 1.83 1.77 2.11 2.15 1.99 1.97 1.95 1.97 1.94 1.92 1.88 1.89 1.95 1.96 1.97 1.92 1.87 2.18 2.17 2.11 2.22 2.16 1.06 0.95 1.08 1.16 1.04 1.03 1.17 0.99 1.16 1.03 1.02 1.04 1.08 1.30 1.18 1.13 0.98 1.04  3.23 2.60 2.57 2.92 2.83 2.62 3.05 2.64 2.76 2.54 2.42 2.55 2.80 2.53 2.62 2.61 2.63 2.44 2.48 2.46 2.50 2.63 2.48 2.53 2.50 2.59 2.45 2.63 2.53 2.54 2.73 2.50 2.44 3.20 2.47 2.50 2.74 2.74 2.80 2.89 2.80 2.85 2.82 2.86 2.81 2.81 2.79 2.85 2.89 2.55 2.59 2.64 2.52 2.54 3.90 4.06 3.99 3.93 3.93 3.98 3.84 4.06 3.80 4.02 3.97 4.05 4.01 3.61 3.89 3.91 4.10 3.93  Ca  Na 1.75 1.79 1.81 1.82 1.79 1.78 1.79 1.84 1.79 1.78 1.80 1.73 1.83 1.80 1.74 1.78 1.74 1.76 1.75 1.80 1.80 1.75 1.76 1.74 1.77 1.79 1.79 1.81 1.79 1.77 1.76 1.81 1.62 1.78 1.76 1.75 1.78 1.75 1.75 1.71 1.72 1.74 1.80 1.78 1.77 1.75 1.78 1.77 1.76 1.80 1.82 1.80 1.82 1.81 1.82 1.82 1.87 1.80 1.83 1.83 1.79 1.85 1.92 1.85 1.86 1.89 1.88 1.81 1.84 1.83 1.86 1.85  K 0.29 0.51 0.53 0.40 0.44 0.48 0.34 0.52 0.42 0.54 0.57 0.58 0.44 0.60 0.52 0.53 0.51 0.60 0.55 0.57 0.57 0.51 0.57 0.53 0.59 0.54 0.58 0.48 0.54 0.53 0.50 0.53 0.41 0.29 0.55 0.54 0.48 0.46 0.44 0.47 0.45 0.43 0.41 0.43 0.43 0.45 0.46 0.43 0.41 0.43 0.43 0.40 0.46 0.43 0.11 0.10 0.12 0.13 0.08 0.08 0.12 0.09 0.15 0.11 0.08 0.11 0.08 0.22 0.09 0.09 0.08 0.11  F 0.02 0.05 0.04 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.05 0.03 0.03 0.04 0.03 0.02 0.03 0.04 0.05 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.05 0.04 0.02 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01  Cl 0.03 0.06 0.00 0.04 0.01 0.06 0.02 0.00 0.02 0.00 0.09 0.08 0.03 0.02 0.04 0.00 0.02 0.05 0.00 0.02 0.04 0.06 0.05 0.06 0.02 0.06 0.07 0.05 0.06 0.00 0.00 0.01 0.04 0.00 0.02 0.05 0.04 0.10 0.07 0.02 0.04 0.00 0.08 0.01 0.00 0.01 0.00 0.00 0.02 0.06 0.02 0.00 0.06 0.06 0.00 0.00 0.09 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.05 0.10 0.05 0.00 0.00 0.00 0.01 0.04  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  Sum 15.37 15.70 15.69 15.56 15.54 15.56 15.39 15.74 15.54 15.70 15.79 15.72 15.58 15.73 15.65 15.61 15.62 15.75 15.63 15.71 15.71 15.62 15.68 15.64 15.72 15.71 15.73 15.64 15.71 15.63 15.60 15.68 15.23 15.39 15.69 15.70 15.62 15.63 15.58 15.59 15.54 15.51 15.54 15.51 15.52 15.55 15.56 15.53 15.50 15.61 15.59 15.50 15.65 15.59 15.08 15.08 15.23 15.13 15.07 15.06 15.08 15.12 15.23 15.12 15.09 15.26 15.18 15.21 15.08 15.07 15.10 15.13  95  Oxide Totals Minerals 08nma17-08p7-f1 08nma17-08p7-f2 08nma17-08p7-g1 08nma17-08p7-g2 08nma17-08p5-3-1 08nma17-08p5-3-2 08nma17-08p3-1-1 08nma17-08p3-1-2 08nma17-08p2-2-1 08nma17-08p2-2-2 08nma17-08p2-3-1 08nma17-08p2-3-2 08nma17-08p2-4-1 08nma17-08p2-4-2 08nma17-08p1-A-1 08nma17-08p1-A-2 08nma17-08p1-B-1 08nma17-08p1-B-2 08nma17-08p1-C-1 08nma17-08p1-C-2 09THS02-07p1-4-1 09THS02-07p1-4-2 09THS02-07p1-5-1 09THS02-07p1-5-2 09THS02-07p2-4-1 09THS02-07p2-4-2 09THS02-07p2-5-1 09THS02-07p2-5-2 09THS02-07p3-1-1 09THS02-07p3-1-2 09THS02-07p3-2-1 09THS02-07p3-2-2 09THS02-07p4-4-1 09THS02-07p4-4-2 09THS02-07p4-5-1 09THS02-07p4-5-2 08SOL22-06p4-D1 08SOL22-06p4-D2 08SOL22-06p3-A1 08SOL22-06p3-A2 08SOL22-06p3-B1 08SOL22-06p3-B2 08SOL22-06p2.5-1 08SOL22-06p2.5-2 08SOL22-06p2-D1 08SOL22-06p2-D2 08SOL22-06p1-E1 08SOL22-06p1-E2 08SOL22-06p1-F1 08SOL22-06p1-F2 08SOL22-06p1-G1 08SOL22-06p1-G2 08SOL22-06p1-H1 09THS01-06p4-A1 09THS01-06p4-A2 09THS01-06p4-B1 09THS01-06p4-B2 09THS01-06p2-D1 09THS01-06p2-D2 09THS01-06p2-F1 09THS01-06p2-F2 09THS01-06p2-G1 09THS01-06p2-G2 09THS01-06p1-A1 09THS01-06p1-A2 09THS01-06p1-B1 09THS01-06p1-B2 08NMA20-08-1p3-B1 08NMA20-08-1p3-B2 08NMA20-08-1p3-C1 08NMA20-08-1p3-D1 08NMA20-08-1p2-D1 08NMA20-08-1p2-D2 08NMA20-08-1p1-C1 08NMA20-08-1p1-C2 08SOL22-04p3-C1 08SOL22-04p3-C2 08SOL22-04p3-D2 08SOL22-04p2-D1 08SOL22-04p2-D2 08SOL22-04p2-E1 08SOL22-04p2-E2 08SOL22-04p1-F1 08SOL22-04p1-F2 08SOL22-04p1-G2  Cation Totals  SiO2 TiO2 46.77 46.66 46.25 45.66 48.98 47.62 46.13 44.43 52.52 53.28 47.52 45.73 47.27 46.91 52.70 50.88 53.19 52.41 48.30 48.20 44.36 43.88 43.98 44.46 44.67 43.76 44.15 43.83 46.92 46.69 43.14 43.97 43.67 44.37 46.34 44.80 43.46 43.80 44.19 44.73 43.71 43.15 43.53 44.06 43.27 43.05 44.23 43.82 43.23 43.65 44.42 44.69 44.91 43.09 42.89 42.65 42.79 42.93 42.46 42.45 41.93 43.20 42.75 41.85 41.97 43.75 43.00 44.12 44.44 43.80 46.64 43.14 43.71 43.53 44.38 42.14 43.78 43.56 41.84 42.96 42.97 43.12 43.81 42.35 41.84  0.32 0.31 0.38 0.39 0.25 0.29 0.37 0.50 0.06 0.04 0.37 0.39 0.28 0.26 0.13 0.11 0.10 0.10 0.25 0.27 0.38 0.48 0.42 0.46 0.38 0.47 0.49 0.49 0.34 0.31 0.42 0.45 0.43 0.46 0.36 0.52 0.33 0.35 0.29 0.30 0.38 0.35 0.33 0.31 0.34 0.35 0.33 0.28 0.34 0.32 0.32 0.32 0.38 0.50 0.57 0.65 0.58 0.53 0.58 0.43 0.41 0.55 0.46 0.40 0.42 0.57 0.49 0.47 0.48 0.53 0.38 0.49 0.50 0.51 0.48 0.36 0.24 0.36 0.36 0.33 0.29 0.32 0.28 0.30 0.34  Al2O3 Cr2O3 Mn2O3 MnO FeO 6.85 7.31 7.42 7.77 6.76 6.47 7.31 8.45 3.13 2.32 6.67 7.56 6.92 7.08 3.00 4.19 2.64 3.17 5.97 6.27 12.02 12.21 12.03 11.95 11.60 12.92 12.74 12.64 9.73 9.76 13.22 12.47 11.96 11.79 10.37 12.06 12.36 12.32 11.84 11.00 12.34 12.64 11.46 11.82 12.57 11.99 12.05 11.81 12.20 11.73 11.77 11.61 11.49 12.05 12.05 12.19 12.04 11.91 12.39 12.51 12.84 11.79 12.45 12.88 12.76 11.87 11.65 12.63 11.93 12.44 9.92 12.37 12.85 12.62 12.21 12.67 11.05 11.12 13.59 11.66 11.51 11.36 11.16 11.42 12.11  0.03 0.07 0.19 0.11 0.02 0.05 0.09 0.11 0.02 0.00 0.18 0.25 0.06 0.05 0.02 0.09 0.04 0.00 0.07 0.09 0.02 0.03 0.05 0.00 0.08 0.02 0.00 0.01 0.00 0.03 0.05 0.01 0.03 0.00 0.05 0.05 0.00 0.00 0.05 0.01 0.03 0.01 0.00 0.01 0.00 0.02 0.03 0.00 0.04 0.00 0.00 0.04 0.00 0.02 0.00 0.03 0.00 0.00 0.03 0.02 0.01 0.00 0.00 0.03 0.04 0.00 0.00 0.02 0.02 0.01 0.07 0.00 0.00 0.09 0.05 0.00 0.00 0.03 0.02 0.06 0.01 0.05 0.00 0.00 0.00  0.20 0.17 0.20 0.20 0.18 0.22 0.16 0.20 0.19 0.20 0.18 0.26 0.26 0.19 0.22 0.23 0.20 0.16 0.21 0.17 0.31 0.41 0.38 0.32 0.83 0.34 0.26 0.33 0.34 0.25 0.36 0.32 0.35 0.31 0.31 0.41 0.52 0.39 0.44 0.44 0.38 0.41 0.38 0.46 0.38 0.42 0.46 0.42 0.44 0.38 0.40 0.51 0.43 0.39 0.42 0.39 0.43 0.44 0.43 0.47 0.36 0.39 0.38 0.41 0.35 0.35 0.41 0.27 0.24 0.32 0.23 0.24 0.27 0.27 0.27 0.53 0.56 0.58 0.68 0.55 0.49 0.55 0.58 0.64 0.55  15.29 15.69 15.59 16.03 12.92 14.27 15.67 16.53 11.45 10.69 14.53 15.53 15.23 15.27 10.97 12.19 10.96 11.38 14.09 14.13 12.83 13.08 12.71 12.80 12.21 13.07 13.27 13.07 12.11 12.17 13.34 13.19 13.46 13.15 12.80 12.83 17.32 17.88 17.16 16.91 17.34 17.64 17.94 17.82 17.97 17.79 17.21 16.68 17.93 17.32 17.25 16.82 16.26 18.28 18.51 18.73 18.77 18.27 18.27 18.31 18.60 18.16 18.55 18.33 18.36 17.98 18.24 14.52 14.28 14.41 12.79 14.30 14.43 14.09 13.74 20.08 20.02 19.60 19.59 19.48 20.14 19.59 19.83 19.80 19.62  MgO 13.16 12.92 12.64 12.54 14.05 13.67 12.90 11.94 16.42 17.24 13.57 12.81 13.33 13.31 16.83 15.70 17.02 16.49 14.07 14.07 13.10 13.00 13.01 12.96 12.15 12.25 12.60 12.79 14.13 14.50 12.08 12.27 12.50 12.60 13.52 12.69 9.84 9.71 10.35 10.65 9.78 9.59 9.81 9.89 9.43 9.75 9.91 10.24 9.56 10.17 10.06 10.51 10.54 9.48 9.56 9.31 9.33 9.30 9.18 9.23 9.08 9.48 9.11 9.10 9.12 9.50 9.48 11.64 11.79 11.80 13.33 11.58 11.76 11.57 11.91 8.18 8.80 8.70 7.87 8.76 8.60 8.66 8.77 8.14 8.32  CaO 11.44 11.38 11.30 11.57 11.30 11.41 11.49 11.30 12.05 12.18 11.44 11.33 11.43 11.51 12.18 12.05 12.12 12.08 11.56 11.57 11.04 11.11 10.87 11.09 9.66 11.12 10.92 10.68 11.01 11.06 11.00 10.89 10.97 10.91 10.60 11.08 11.37 11.30 11.50 11.08 11.20 11.39 11.15 11.20 11.18 11.25 11.24 11.48 11.31 11.24 11.22 11.32 11.33 11.24 11.05 11.16 11.11 11.21 11.34 11.33 11.21 11.20 11.08 11.21 11.22 11.21 11.02 11.60 11.40 11.07 11.55 11.37 11.17 11.27 11.31 11.01 11.31 10.88 11.09 11.04 11.20 11.16 10.70 10.44 11.09  Na2O K2O 1.31 1.47 1.41 1.43 1.25 1.29 1.39 1.49 0.64 0.48 1.25 1.36 1.44 1.36 0.56 0.64 0.49 0.54 1.13 1.17 1.64 1.65 1.65 1.79 1.59 1.73 1.65 1.65 1.39 1.39 1.99 1.93 1.86 1.85 1.64 1.73 1.55 1.47 1.47 1.41 1.57 1.55 1.42 1.48 1.60 1.57 1.50 1.47 1.51 1.44 1.40 1.32 1.45 1.57 1.53 1.64 1.60 1.56 1.68 1.50 1.68 1.59 1.59 1.66 1.70 1.61 1.54 1.85 1.93 2.00 1.62 1.92 2.00 1.99 1.89 1.50 1.37 1.42 1.65 1.48 1.41 1.55 1.45 1.59 1.41  0.48 0.32 0.73 0.77 0.41 0.27 0.79 0.97 0.17 0.13 0.61 0.80 0.26 0.35 0.15 0.25 0.13 0.18 0.30 0.54 0.29 0.24 0.26 0.18 0.83 0.22 0.15 0.14 0.19 0.12 0.27 0.18 0.20 0.17 0.16 0.19 0.26 0.25 0.27 0.21 0.26 0.30 0.24 0.23 0.33 0.26 0.26 0.25 0.26 0.21 0.23 0.24 0.24 0.15 0.13 0.15 0.13 0.11 0.19 0.14 0.12 0.12 0.12 0.14 0.09 0.12 0.13 0.26 0.25 0.25 0.17 0.27 0.24 0.23 0.23 0.40 0.39 0.42 0.40 0.39 0.42 0.44 0.43 0.50 0.38  F  Cl 0.05 0.13 0.00 0.18 0.09 0.02 0.19 0.01 0.00 0.14 0.11 0.13 0.17 0.05 0.05 0.11 0.12 0.03 0.12 0.20 0.03 0.02 0.05 0.03 0.14 0.02 0.17 0.08 0.03 0.05 0.12 0.12 0.08 0.00 0.12 0.15 0.09 0.08 0.12 0.11 0.19 0.08 0.05 0.02 0.00 0.13 0.02 0.00 0.10 0.07 0.00 0.17 0.04 0.07 0.04 0.05 0.00 0.05 0.00 0.09 0.01 0.11 0.00 0.02 0.00 0.06 0.14 0.05 0.06 0.05 0.02 0.09 0.02 0.06 0.17 0.06 0.11 0.06 0.09 0.17 0.06 0.01 0.11 0.00 0.02  Sum 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03  95.90 96.42 96.12 96.64 96.23 95.58 96.50 95.93 96.66 96.72 96.44 96.16 96.66 96.35 96.82 96.44 97.00 96.57 96.07 96.68 96.04 96.11 95.41 96.05 94.15 95.95 96.40 95.72 96.19 96.34 95.97 95.82 95.51 95.63 96.31 96.52 97.10 97.57 97.68 96.84 97.17 97.12 96.32 97.31 97.07 96.60 97.24 96.47 96.93 96.54 97.09 97.57 97.08 96.84 96.75 96.96 96.77 96.32 96.56 96.48 96.25 96.60 96.49 96.04 96.03 97.02 96.11 97.43 96.82 96.70 96.73 95.77 96.96 96.23 96.63 96.95 97.64 96.73 97.19 96.87 97.09 96.80 97.11 95.19 95.72  Minerals 08nma17-08p7-f1 08nma17-08p7-f2 08nma17-08p7-g1 08nma17-08p7-g2 08nma17-08p5-3-1 08nma17-08p5-3-2 08nma17-08p3-1-1 08nma17-08p3-1-2 08nma17-08p2-2-1 08nma17-08p2-2-2 08nma17-08p2-3-1 08nma17-08p2-3-2 08nma17-08p2-4-1 08nma17-08p2-4-2 08nma17-08p1-A-1 08nma17-08p1-A-2 08nma17-08p1-B-1 08nma17-08p1-B-2 08nma17-08p1-C-1 08nma17-08p1-C-2 09THS02-07p1-4-1 09THS02-07p1-4-2 09THS02-07p1-5-1 09THS02-07p1-5-2 09THS02-07p2-4-1 09THS02-07p2-4-2 09THS02-07p2-5-1 09THS02-07p2-5-2 09THS02-07p3-1-1 09THS02-07p3-1-2 09THS02-07p3-2-1 09THS02-07p3-2-2 09THS02-07p4-4-1 09THS02-07p4-4-2 09THS02-07p4-5-1 09THS02-07p4-5-2 08SOL22-06p4-D1 08SOL22-06p4-D2 08SOL22-06p3-A1 08SOL22-06p3-A2 08SOL22-06p3-B1 08SOL22-06p3-B2 08SOL22-06p2.5-1 08SOL22-06p2.5-2 08SOL22-06p2-D1 08SOL22-06p2-D2 08SOL22-06p1-E1 08SOL22-06p1-E2 08SOL22-06p1-F1 08SOL22-06p1-F2 08SOL22-06p1-G1 08SOL22-06p1-G2 08SOL22-06p1-H1 09THS01-06p4-A1 09THS01-06p4-A2 09THS01-06p4-B1 09THS01-06p4-B2 09THS01-06p2-D1 09THS01-06p2-D2 09THS01-06p2-F1 09THS01-06p2-F2 09THS01-06p2-G1 09THS01-06p2-G2 09THS01-06p1-A1 09THS01-06p1-A2 09THS01-06p1-B1 09THS01-06p1-B2 08NMA20-08-1p3-B1 08NMA20-08-1p3-B2 08NMA20-08-1p3-C1 08NMA20-08-1p3-D1 08NMA20-08-1p2-D1 08NMA20-08-1p2-D2 08NMA20-08-1p1-C1 08NMA20-08-1p1-C2 08SOL22-04p3-C1 08SOL22-04p3-C2 08SOL22-04p3-D2 08SOL22-04p2-D1 08SOL22-04p2-D2 08SOL22-04p2-E1 08SOL22-04p2-E2 08SOL22-04p1-F1 08SOL22-04p1-F2 08SOL22-04p1-G2  NOA 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23  Si  Ti 7.04 7.00 6.98 6.88 7.22 7.14 6.94 6.78 7.62 7.69 7.09 6.91 7.05 7.02 7.61 7.45 7.66 7.60 7.19 7.14 6.59 6.53 6.57 6.60 6.74 6.52 6.53 6.53 6.90 6.86 6.44 6.56 6.55 6.63 6.83 6.61 6.53 6.56 6.59 6.71 6.56 6.50 6.61 6.61 6.52 6.53 6.62 6.61 6.53 6.59 6.65 6.65 6.70 6.52 6.51 6.47 6.50 6.54 6.46 6.46 6.41 6.55 6.50 6.41 6.42 6.59 6.56 6.52 6.60 6.52 6.86 6.50 6.49 6.51 6.58 6.44 6.63 6.65 6.37 6.55 6.56 6.59 6.66 6.59 6.48  Al 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.06 0.01 0.00 0.04 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.03 0.05 0.05 0.05 0.05 0.04 0.06 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.06 0.07 0.07 0.07 0.06 0.07 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.04 0.06 0.06 0.06 0.05 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.04  1.22 1.29 1.32 1.38 1.18 1.14 1.30 1.52 0.54 0.40 1.17 1.35 1.22 1.25 0.51 0.72 0.45 0.54 1.05 1.10 2.10 2.14 2.12 2.09 2.06 2.27 2.22 2.22 1.69 1.69 2.33 2.19 2.11 2.08 1.80 2.10 2.19 2.17 2.08 1.94 2.18 2.24 2.05 2.09 2.23 2.14 2.12 2.10 2.17 2.09 2.08 2.04 2.02 2.15 2.15 2.18 2.16 2.14 2.22 2.24 2.31 2.11 2.23 2.32 2.30 2.11 2.09 2.20 2.09 2.18 1.72 2.19 2.25 2.22 2.13 2.28 1.97 2.00 2.44 2.09 2.07 2.05 2.00 2.09 2.21  Cr 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00  Mn3+ Mn2+ Fe2+ Mg 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.04 0.05 0.04 0.04 0.09 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.05 0.06 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.06 0.06 0.07 0.08 0.06 0.06 0.06 0.07 0.08 0.07  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1.93 1.97 1.97 2.02 1.59 1.79 1.97 2.11 1.39 1.29 1.81 1.96 1.90 1.91 1.33 1.49 1.32 1.38 1.75 1.75 1.59 1.63 1.59 1.59 1.54 1.63 1.64 1.63 1.49 1.50 1.67 1.65 1.69 1.64 1.58 1.58 2.18 2.24 2.14 2.12 2.17 2.22 2.28 2.24 2.27 2.26 2.15 2.10 2.27 2.19 2.16 2.09 2.03 2.31 2.35 2.38 2.39 2.33 2.33 2.33 2.38 2.30 2.36 2.35 2.35 2.27 2.33 1.80 1.77 1.79 1.57 1.80 1.79 1.76 1.70 2.57 2.54 2.50 2.49 2.48 2.57 2.50 2.52 2.58 2.54  2.95 2.89 2.84 2.82 3.09 3.05 2.90 2.72 3.55 3.71 3.02 2.88 2.96 2.97 3.63 3.43 3.65 3.57 3.12 3.11 2.90 2.88 2.90 2.87 2.73 2.72 2.78 2.84 3.10 3.17 2.69 2.73 2.80 2.81 2.97 2.79 2.21 2.17 2.30 2.38 2.19 2.15 2.22 2.21 2.12 2.20 2.21 2.30 2.15 2.29 2.25 2.33 2.34 2.14 2.16 2.11 2.11 2.11 2.08 2.09 2.07 2.14 2.07 2.08 2.08 2.13 2.15 2.57 2.61 2.62 2.92 2.60 2.60 2.58 2.63 1.87 1.99 1.98 1.79 1.99 1.96 1.97 1.99 1.89 1.92  Ca  Na 1.85 1.83 1.83 1.87 1.78 1.83 1.85 1.85 1.87 1.88 1.83 1.83 1.83 1.85 1.89 1.89 1.87 1.88 1.84 1.84 1.76 1.77 1.74 1.76 1.56 1.77 1.73 1.70 1.73 1.74 1.76 1.74 1.76 1.75 1.67 1.75 1.83 1.81 1.84 1.78 1.80 1.84 1.81 1.80 1.81 1.83 1.80 1.86 1.83 1.82 1.80 1.80 1.81 1.82 1.80 1.81 1.81 1.83 1.85 1.85 1.84 1.82 1.80 1.84 1.84 1.81 1.80 1.84 1.81 1.77 1.82 1.83 1.78 1.81 1.80 1.80 1.84 1.78 1.81 1.80 1.83 1.83 1.74 1.74 1.84  K 0.38 0.43 0.41 0.42 0.36 0.37 0.41 0.44 0.18 0.13 0.36 0.40 0.42 0.39 0.16 0.18 0.14 0.15 0.33 0.34 0.47 0.48 0.48 0.52 0.47 0.50 0.47 0.48 0.40 0.40 0.58 0.56 0.54 0.54 0.47 0.50 0.45 0.43 0.43 0.41 0.46 0.45 0.42 0.43 0.47 0.46 0.44 0.43 0.44 0.42 0.41 0.38 0.42 0.46 0.45 0.48 0.47 0.46 0.50 0.44 0.50 0.47 0.47 0.49 0.50 0.47 0.45 0.53 0.55 0.58 0.46 0.56 0.58 0.58 0.54 0.45 0.40 0.42 0.49 0.44 0.42 0.46 0.43 0.48 0.42  F 0.09 0.06 0.14 0.15 0.08 0.05 0.15 0.19 0.03 0.02 0.12 0.15 0.05 0.07 0.03 0.05 0.02 0.03 0.06 0.10 0.05 0.05 0.05 0.03 0.16 0.04 0.03 0.03 0.03 0.02 0.05 0.03 0.04 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.04 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.03 0.03 0.03 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.05 0.05 0.05 0.03 0.05 0.05 0.04 0.04 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.10 0.08  Cl 0.03 0.06 0.00 0.09 0.04 0.01 0.09 0.01 0.00 0.06 0.05 0.06 0.08 0.03 0.03 0.05 0.05 0.01 0.06 0.09 0.01 0.01 0.02 0.01 0.07 0.01 0.08 0.04 0.01 0.02 0.06 0.06 0.04 0.00 0.06 0.07 0.04 0.04 0.05 0.05 0.09 0.04 0.02 0.01 0.00 0.06 0.01 0.00 0.05 0.03 0.00 0.08 0.02 0.03 0.02 0.02 0.00 0.02 0.00 0.04 0.01 0.05 0.00 0.01 0.00 0.03 0.07 0.02 0.03 0.02 0.01 0.04 0.01 0.03 0.08 0.03 0.05 0.03 0.04 0.08 0.03 0.00 0.05 0.00 0.01  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01  Sum 15.55 15.58 15.58 15.69 15.39 15.46 15.68 15.70 15.20 15.21 15.53 15.65 15.57 15.55 15.21 15.30 15.20 15.21 15.46 15.53 15.57 15.59 15.57 15.57 15.48 15.55 15.58 15.56 15.42 15.47 15.66 15.60 15.63 15.55 15.49 15.56 15.58 15.55 15.57 15.51 15.59 15.59 15.55 15.53 15.57 15.62 15.50 15.53 15.59 15.55 15.48 15.52 15.47 15.58 15.57 15.61 15.58 15.56 15.60 15.59 15.63 15.58 15.55 15.62 15.61 15.53 15.59 15.61 15.60 15.63 15.47 15.66 15.63 15.63 15.61 15.62 15.59 15.54 15.63 15.62 15.61 15.59 15.56 15.58 15.60  96  T- and C- sites Minerals 08SOL12-08-P1C-1 08SOL12-08-P1C-2 08SOL12-08-P1C-3 08SOL12-08-P1C-4 08SOL12-08-P1F-1 08SOL12-08-P1F-2 08SOL12-08-P2B-1 08SOL12-08-P2B-2 08SOL12-08-P2D-1 08SOL12-08-P2D-2 08SOL12-08-P2D-3 08SOL12-08-P3A-1 08SOL12-08-P3A-2 08SOL12-08-P3A-3 08SOL12-08-P3B-1 08SOL12-08-P3B-2 08SOL12-08-P3B-3 08SOL12-08-P3C-1 08SOL12-08-P3C-2 08SOL12-08-P3C-3 08SOL12-08-P3C-4 08SOL12-08-P3C-5 08SOL12-08-P3E-1 08SOL12-08-P3E-2 08SOL12-08-P3E-3 08SOL12-08-P4F-1 08SOL12-08-P4F-2 08SOL12-08-P4G-1 08SOL12-08-P4G-2 08SOL12-08-P4G-3 08SOL12-08-P4G-4 08SOL12-08-P4H-1 08SOL12-08-P4H-2 08SOL12-08-P4H-3 08SOL12-08-P4a-1 08SOL12-08-P4a-2 09THS01-04-P1D-1 09THS01-04-P1D-2 09THS01-04-P1D-3 09THS01-04-P1C-1 09THS01-04-P1C-2 09THS01-04-P2D-1 09THS01-04-P2D-2 09THS01-04-P2C-1 09THS01-04-P2C-2 09THS01-04-P2A-1 09THS01-04-P2A-2 09THS01-04-P2F-1 09THS01-04-P2F-2 09THS01-04-P3A-1 09THS01-04-P3A-2 09THS01-04-P3D-1 09THS01-04-P3D-2 09THS01-04-P3D-3 08SOL121601-5C-2 08SOL121601-5C-3 08SOL121601-4C-1 08SOL121601-4C-2 08SOL121601-4C-3 08SOL121601-3C-3 08SOL121601-3D-1 08SOL121601-2E-1 08SOL121601-2E-2 08SOL121601-2F-1 08SOL121601-2F-2 08SOL121601-2D-1 08SOL121601-2D-2 08SOL121601-2D-3 08SOL121601-1D-1 08SOL121601-1D-2 08SOL121601-1E-1 08SOL121601-1E-2  Si-T 7.11 6.47 6.37 6.72 6.72 6.69 7.03 6.33 6.69 6.37 6.32 6.43 6.61 6.41 6.48 6.54 6.50 6.32 6.45 6.36 6.39 6.58 6.46 6.49 6.36 6.43 6.43 6.56 6.45 6.52 6.63 6.42 7.16 7.05 6.37 6.38 6.60 6.60 6.65 6.61 6.71 6.74 6.76 6.79 6.67 6.65 6.68 6.69 6.76 6.59 6.61 6.72 6.55 6.62 7.73 7.76 7.63 7.69 7.78 7.79 7.76 7.76 7.43 7.71 7.81 7.61 7.66 7.50 7.79 7.79 7.81 7.72  B-sites, A- sites and names  ivAl-T Ti-T 0.89 1.53 1.63 1.28 1.28 1.31 0.97 1.67 1.31 1.63 1.68 1.57 1.39 1.59 1.52 1.46 1.50 1.68 1.55 1.64 1.61 1.42 1.54 1.51 1.64 1.57 1.57 1.44 1.55 1.48 1.37 1.58 0.84 0.95 1.63 1.62 1.40 1.40 1.35 1.39 1.29 1.26 1.24 1.21 1.33 1.35 1.32 1.31 1.24 1.41 1.39 1.28 1.45 1.38 0.27 0.24 0.31 0.25 0.22 0.21 0.24 0.20 0.57 0.26 0.19 0.28 0.27 0.50 0.17 0.18 0.13 0.28  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.00 0 0 0 0.00 0 0.00 0 0.00 0.00 0 0.00 0.00 0.00 0  SumT 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7.94 7.95 8 8 8 7.97 8 7.98 8 7.90 7.93 8 7.96 7.97 7.94 8  viAl-C 0.12 0.31 0.32 0.18 0.26 0.39 0.24 0.21 0.26 0.32 0.43 0.40 0.34 0.39 0.34 0.37 0.35 0.46 0.47 0.45 0.40 0.39 0.43 0.43 0.38 0.33 0.41 0.32 0.33 0.36 0.27 0.36 0.67 0.05 0.44 0.37 0.28 0.28 0.25 0.15 0.25 0.23 0.27 0.25 0.23 0.22 0.21 0.23 0.24 0.24 0.22 0.24 0.23 0.26 0.05 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.05 0.00 0.02 0.00 0.00 0.09 0.00 0.00 0.00 0.03  Ti-C 0.02 0.05 0.06 0.05 0.05 0.06 0.04 0.07 0.05 0.05 0.04 0.04 0.06 0.04 0.05 0.06 0.05 0.04 0.04 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.04 0.03 0.03 0.04 0.05 0.05 0.05 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01  Cr-C Fe3-C Mn3-C Mg-C Fe2-C Mn2-C SumC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00  0.96 1.04 1.07 1.03 0.94 0.77 0.77 1.16 1.00 1.16 1.03 1.08 0.85 0.95 1.10 0.94 1.08 1.03 0.97 0.95 0.97 0.97 0.95 1.01 1.04 1.06 0.93 0.96 1.01 0.97 1.02 0.97 0.41 1.02 1.09 1.16 1.01 1.09 1.10 1.25 1.06 1.04 0.88 0.90 1.03 1.10 1.02 1.03 1.00 1.03 1.00 0.96 1.03 0.95 0.47 0.49 0.57 0.66 0.45 0.49 0.55 0.49 0.52 0.51 0.39 0.60 0.58 0.58 0.50 0.51 0.48 0.43  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  3.16 2.54 2.51 2.86 2.77 2.58 3.00 2.57 2.70 2.47 2.37 2.50 2.75 2.48 2.56 2.55 2.57 2.39 2.43 2.41 2.44 2.57 2.43 2.48 2.44 2.53 2.41 2.58 2.48 2.49 2.67 2.44 2.42 3.13 2.41 2.44 2.68 2.68 2.73 2.81 2.73 2.78 2.77 2.80 2.75 2.74 2.73 2.78 2.82 2.50 2.54 2.58 2.47 2.49 3.86 4.02 3.95 3.87 3.89 3.94 3.80 4.02 3.76 3.97 3.94 4.01 3.97 3.57 3.85 3.87 4.06 3.89  0.67 1.01 0.99 0.84 0.93 1.15 0.92 0.95 0.93 0.94 1.08 0.92 0.96 1.08 0.89 1.04 0.88 1.01 1.03 1.08 1.08 0.97 1.08 0.98 1.02 0.97 1.15 1.05 1.06 1.08 0.93 1.11 1.40 0.71 0.97 0.93 0.93 0.84 0.81 0.66 0.83 0.84 0.97 0.95 0.88 0.81 0.91 0.84 0.83 1.10 1.12 1.10 1.15 1.16 0.58 0.45 0.47 0.47 0.58 0.54 0.61 0.48 0.62 0.50 0.62 0.36 0.45 0.71 0.65 0.62 0.46 0.60  0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.04 0.07 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.06 0.07 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.03 0.03 0.00 0.00 0.04 0.03 0.03 0.00 0.02 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.00 0.03  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  Minerals 08SOL12-08-P1C-1 08SOL12-08-P1C-2 08SOL12-08-P1C-3 08SOL12-08-P1C-4 08SOL12-08-P1F-1 08SOL12-08-P1F-2 08SOL12-08-P2B-1 08SOL12-08-P2B-2 08SOL12-08-P2D-1 08SOL12-08-P2D-2 08SOL12-08-P2D-3 08SOL12-08-P3A-1 08SOL12-08-P3A-2 08SOL12-08-P3A-3 08SOL12-08-P3B-1 08SOL12-08-P3B-2 08SOL12-08-P3B-3 08SOL12-08-P3C-1 08SOL12-08-P3C-2 08SOL12-08-P3C-3 08SOL12-08-P3C-4 08SOL12-08-P3C-5 08SOL12-08-P3E-1 08SOL12-08-P3E-2 08SOL12-08-P3E-3 08SOL12-08-P4F-1 08SOL12-08-P4F-2 08SOL12-08-P4G-1 08SOL12-08-P4G-2 08SOL12-08-P4G-3 08SOL12-08-P4G-4 08SOL12-08-P4H-1 08SOL12-08-P4H-2 08SOL12-08-P4H-3 08SOL12-08-P4a-1 08SOL12-08-P4a-2 09THS01-04-P1D-1 09THS01-04-P1D-2 09THS01-04-P1D-3 09THS01-04-P1C-1 09THS01-04-P1C-2 09THS01-04-P2D-1 09THS01-04-P2D-2 09THS01-04-P2C-1 09THS01-04-P2C-2 09THS01-04-P2A-1 09THS01-04-P2A-2 09THS01-04-P2F-1 09THS01-04-P2F-2 09THS01-04-P3A-1 09THS01-04-P3A-2 09THS01-04-P3D-1 09THS01-04-P3D-2 09THS01-04-P3D-3 08SOL121601-5C-2 08SOL121601-5C-3 08SOL121601-4C-1 08SOL121601-4C-2 08SOL121601-4C-3 08SOL121601-3C-3 08SOL121601-3D-1 08SOL121601-2E-1 08SOL121601-2E-2 08SOL121601-2F-1 08SOL121601-2F-2 08SOL121601-2D-1 08SOL121601-2D-2 08SOL121601-2D-3 08SOL121601-1D-1 08SOL121601-1D-2 08SOL121601-1E-1 08SOL121601-1E-2  Mg-B Fe2-B Mn2-B Ca-B Na-B SumB Na-A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.02 0 0 0 0.00 0 0 0 0.06 0.03 0 0.01 0 0.04 0  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.04 0.04 0.00 0.03 0.03 0.03 0.00  1.72 1.75 1.77 1.78 1.75 1.75 1.76 1.80 1.75 1.73 1.76 1.69 1.80 1.76 1.70 1.74 1.70 1.72 1.71 1.76 1.76 1.72 1.72 1.70 1.73 1.75 1.76 1.78 1.75 1.74 1.72 1.77 1.61 1.74 1.72 1.71 1.74 1.71 1.71 1.66 1.69 1.70 1.77 1.75 1.73 1.70 1.74 1.73 1.72 1.76 1.78 1.76 1.78 1.78 1.80 1.80 1.85 1.77 1.81 1.81 1.77 1.84 1.90 1.83 1.84 1.87 1.86 1.78 1.82 1.81 1.84 1.83  0.28 0.25 0.23 0.22 0.25 0.25 0.24 0.20 0.25 0.27 0.24 0.31 0.20 0.24 0.30 0.26 0.30 0.28 0.29 0.24 0.24 0.28 0.28 0.30 0.27 0.25 0.24 0.22 0.25 0.26 0.28 0.23 0.39 0.26 0.28 0.29 0.26 0.29 0.29 0.34 0.31 0.30 0.23 0.25 0.27 0.30 0.26 0.27 0.28 0.24 0.22 0.24 0.22 0.22 0.11 0.10 0.09 0.12 0.08 0.08 0.11 0.09 0.10 0.11 0.08 0.03 0.07 0.22 0.09 0.09 0.08 0.11  2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.91 1.91 2.00 1.94 1.89 1.89 1.88 1.96 2.00 1.96 1.92 2.00 2.00 2.00 1.95 1.92 1.98 1.95  0.01 0.26 0.28 0.16 0.18 0.23 0.10 0.30 0.16 0.26 0.32 0.26 0.23 0.35 0.21 0.26 0.20 0.31 0.24 0.31 0.32 0.22 0.28 0.22 0.31 0.27 0.32 0.24 0.28 0.26 0.21 0.29 0.02 0.03 0.26 0.23 0.22 0.16 0.14 0.12 0.13 0.13 0.17 0.17 0.14 0.14 0.19 0.15 0.12 0.19 0.21 0.15 0.23 0.20 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.08 0.01 0.00 0.00 0.00 0.00 0.00  K-A 0.02 0.04 0.04 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.05 0.03 0.03 0.04 0.03 0.02 0.03 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.02 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01  SumA Prefix Modifier Name 0.03 0.30 0.32 0.18 0.21 0.26 0.11 0.34 0.18 0.29 0.37 0.29 0.26 0.39 0.24 0.28 0.23 0.35 0.30 0.36 0.35 0.25 0.32 0.25 0.34 0.30 0.36 0.27 0.32 0.29 0.24 0.33 0.06 0.04 0.30 0.27 0.25 0.19 0.16 0.14 0.14 0.15 0.19 0.19 0.17 0.16 0.20 0.17 0.14 0.21 0.23 0.17 0.25 0.22 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.06 0.01 0.01 0.09 0.02 0.02 0.01 0.01 0.01 0.01  Ferrian Ferri Ferri Ferri Ferrian Ferrian Ferrian Ferri Ferri Ferri Ferri Ferrian Ferrian Ferri Ferrian Ferri Ferri Ferrian Ferrian Ferrian Ferrian Ferrian Ferri Ferri Ferri Ferrian Ferrian Ferri Ferrian Ferri Ferrian Ferri Ferri Ferri Ferri Ferri Ferri Ferri Ferri Ferri  -  Ferri Ferri Ferri Ferri Ferri Ferri Ferri  -  Ferrian Ferrian  Ferrian Ferri Ferrian  Magnesiohornblende Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Magnesiohornblende Magnesiohornblende Tschermakite Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Actinolite Actinolite Actinolite Actinolite Actinolite Actinolite Actinolite Actinolite Magnesiohornblende Actinolite Actinolite Tremolite Actinolite Magnesiohornblende Actinolite Actinolite Actinolite Actinolite  97  T- and C- sites Minerals  98  08nma17-08p7-f1 08nma17-08p7-f2 08nma17-08p7-g1 08nma17-08p7-g2 08nma17-08p5-3-1 08nma17-08p5-3-2 08nma17-08p3-1-1 08nma17-08p3-1-2 08nma17-08p2-2-1 08nma17-08p2-2-2 08nma17-08p2-3-1 08nma17-08p2-3-2 08nma17-08p2-4-1 08nma17-08p2-4-2 08nma17-08p1-A-1 08nma17-08p1-A-2 08nma17-08p1-B-1 08nma17-08p1-B-2 08nma17-08p1-C-1 08nma17-08p1-C-2 09THS02-07p1-4-1 09THS02-07p1-4-2 09THS02-07p1-5-1 09THS02-07p1-5-2 09THS02-07p2-4-1 09THS02-07p2-4-2 09THS02-07p2-5-1 09THS02-07p2-5-2 09THS02-07p3-1-1 09THS02-07p3-1-2 09THS02-07p3-2-1 09THS02-07p3-2-2 09THS02-07p4-4-1 09THS02-07p4-4-2 09THS02-07p4-5-1 09THS02-07p4-5-2 08SOL22-06p4-D1 08SOL22-06p4-D2 08SOL22-06p3-A1 08SOL22-06p3-A2 08SOL22-06p3-B1 08SOL22-06p3-B2 08SOL22-06p2.5-1 08SOL22-06p2.5-2 08SOL22-06p2-D1 08SOL22-06p2-D2 08SOL22-06p1-E1 08SOL22-06p1-E2 08SOL22-06p1-F1 08SOL22-06p1-F2 08SOL22-06p1-G1 08SOL22-06p1-G2 08SOL22-06p1-H1 09THS01-06p4-A1 09THS01-06p4-A2 09THS01-06p4-B1 09THS01-06p4-B2 09THS01-06p2-D1 09THS01-06p2-D2 09THS01-06p2-F1 09THS01-06p2-F2 09THS01-06p2-G1 09THS01-06p2-G2 09THS01-06p1-A1 09THS01-06p1-A2 09THS01-06p1-B1 09THS01-06p1-B2 08NMA20-08-1p3-B1 08NMA20-08-1p3-B2 08NMA20-08-1p3-C1 08NMA20-08-1p3-D1 08NMA20-08-1p2-D1 08NMA20-08-1p2-D2 08NMA20-08-1p1-C1 08NMA20-08-1p1-C2 08SOL22-04p3-C1 08SOL22-04p3-C2 08SOL22-04p3-D2 08SOL22-04p2-D1 08SOL22-04p2-D2 08SOL22-04p2-E1 08SOL22-04p2-E2 08SOL22-04p1-F1 08SOL22-04p1-F2 08SOL22-04p1-G2  Si-T 6.94 6.89 6.87 6.79 7.15 7.04 6.85 6.67 7.55 7.62 6.99 6.80 6.94 6.91 7.55 7.37 7.59 7.53 7.09 7.06 6.46 6.39 6.44 6.48 6.63 6.41 6.40 6.38 6.77 6.71 6.34 6.45 6.43 6.51 6.70 6.51 6.43 6.45 6.49 6.59 6.46 6.40 6.49 6.49 6.41 6.42 6.52 6.51 6.42 6.47 6.54 6.54 6.61 6.41 6.37 6.35 6.37 6.43 6.36 6.35 6.29 6.45 6.38 6.29 6.30 6.49 6.44 6.44 6.52 6.42 6.78 6.41 6.38 6.42 6.51 6.32 6.52 6.53 6.27 6.44 6.44 6.48 6.53 6.46 6.35  B-sites, A- sites and names  ivAl-T Ti-T 1.06 1.11 1.13 1.21 0.85 0.96 1.15 1.33 0.45 0.38 1.01 1.20 1.06 1.09 0.45 0.63 0.41 0.47 0.91 0.94 1.54 1.61 1.56 1.52 1.37 1.59 1.60 1.62 1.23 1.29 1.66 1.55 1.57 1.49 1.30 1.49 1.57 1.55 1.51 1.41 1.54 1.60 1.51 1.51 1.59 1.58 1.48 1.49 1.58 1.53 1.46 1.46 1.39 1.59 1.63 1.65 1.63 1.57 1.64 1.65 1.71 1.55 1.62 1.71 1.70 1.51 1.56 1.56 1.48 1.58 1.22 1.59 1.62 1.58 1.49 1.68 1.48 1.47 1.73 1.56 1.56 1.52 1.47 1.54 1.65  SumT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  viAl-C 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  0.13 0.16 0.17 0.15 0.31 0.16 0.13 0.16 0.08 0.02 0.15 0.13 0.14 0.14 0.05 0.09 0.03 0.07 0.13 0.14 0.52 0.48 0.51 0.54 0.65 0.63 0.58 0.54 0.42 0.37 0.62 0.61 0.51 0.55 0.46 0.58 0.59 0.58 0.54 0.50 0.61 0.61 0.50 0.55 0.61 0.53 0.61 0.58 0.56 0.52 0.58 0.55 0.60 0.52 0.48 0.48 0.48 0.53 0.54 0.55 0.55 0.52 0.57 0.57 0.56 0.56 0.50 0.61 0.59 0.56 0.48 0.58 0.59 0.62 0.62 0.55 0.46 0.49 0.67 0.50 0.47 0.49 0.49 0.51 0.52  Ti-C 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.06 0.01 0.00 0.04 0.04 0.03 0.03 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.03 0.05 0.05 0.05 0.05 0.04 0.06 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.07 0.06 0.06 0.07 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.04  Cr-C Fe3-C Mn3-C Mg-C Fe2-C Mn2-C SumC 0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.02 0.03 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00  0.72 0.76 0.67 0.69 0.49 0.66 0.70 0.76 0.42 0.43 0.65 0.76 0.75 0.76 0.42 0.52 0.46 0.45 0.67 0.64 0.93 0.98 0.97 0.82 0.83 0.78 0.97 1.09 0.85 0.99 0.81 0.78 0.88 0.81 0.94 0.75 0.74 0.80 0.75 0.85 0.74 0.74 0.86 0.82 0.77 0.81 0.70 0.66 0.78 0.84 0.76 0.79 0.62 0.83 0.98 0.90 0.93 0.79 0.74 0.85 0.90 0.79 0.87 0.87 0.86 0.72 0.88 0.61 0.57 0.76 0.53 0.64 0.77 0.62 0.59 0.92 0.81 0.83 0.78 0.86 0.87 0.75 0.93 0.88 0.87  0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.09 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.03 0.05 0.06 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.06 0.06 0.07 0.08 0.06 0.06 0.06 0.07 0.07 0.06  2.91 2.84 2.80 2.78 3.06 3.01 2.86 2.67 3.52 3.68 2.98 2.84 2.92 2.92 3.59 3.39 3.62 3.53 3.08 3.07 2.84 2.82 2.84 2.82 2.69 2.67 2.72 2.77 3.04 3.11 2.64 2.69 2.74 2.76 2.91 2.75 2.17 2.13 2.27 2.34 2.16 2.12 2.18 2.17 2.08 2.17 2.18 2.27 2.12 2.25 2.21 2.29 2.31 2.10 2.12 2.06 2.07 2.08 2.05 2.06 2.03 2.11 2.03 2.04 2.04 2.10 2.12 2.53 2.58 2.58 2.89 2.56 2.56 2.54 2.61 1.83 1.95 1.94 1.76 1.96 1.92 1.94 1.95 1.85 1.88  1.18 1.17 1.27 1.30 1.09 1.10 1.25 1.32 0.96 0.84 1.14 1.17 1.12 1.12 0.89 0.96 0.85 0.92 1.06 1.09 0.63 0.62 0.59 0.74 0.68 0.82 0.64 0.50 0.61 0.48 0.83 0.84 0.78 0.80 0.61 0.81 1.41 1.40 1.35 1.23 1.41 1.45 1.38 1.37 1.45 1.40 1.42 1.41 1.44 1.30 1.36 1.27 1.37 1.44 1.32 1.43 1.41 1.49 1.55 1.44 1.43 1.48 1.44 1.43 1.45 1.51 1.40 1.17 1.18 1.00 1.03 1.13 0.99 1.12 1.10 1.60 1.69 1.63 1.68 1.58 1.65 1.72 1.54 1.64 1.62  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  Minerals 08nma17-08p7-f1 08nma17-08p7-f2 08nma17-08p7-g1 08nma17-08p7-g2 08nma17-08p5-3-1 08nma17-08p5-3-2 08nma17-08p3-1-1 08nma17-08p3-1-2 08nma17-08p2-2-1 08nma17-08p2-2-2 08nma17-08p2-3-1 08nma17-08p2-3-2 08nma17-08p2-4-1 08nma17-08p2-4-2 08nma17-08p1-A-1 08nma17-08p1-A-2 08nma17-08p1-B-1 08nma17-08p1-B-2 08nma17-08p1-C-1 08nma17-08p1-C-2 09THS02-07p1-4-1 09THS02-07p1-4-2 09THS02-07p1-5-1 09THS02-07p1-5-2 09THS02-07p2-4-1 09THS02-07p2-4-2 09THS02-07p2-5-1 09THS02-07p2-5-2 09THS02-07p3-1-1 09THS02-07p3-1-2 09THS02-07p3-2-1 09THS02-07p3-2-2 09THS02-07p4-4-1 09THS02-07p4-4-2 09THS02-07p4-5-1 09THS02-07p4-5-2 08SOL22-06p4-D1 08SOL22-06p4-D2 08SOL22-06p3-A1 08SOL22-06p3-A2 08SOL22-06p3-B1 08SOL22-06p3-B2 08SOL22-06p2.5-1 08SOL22-06p2.5-2 08SOL22-06p2-D1 08SOL22-06p2-D2 08SOL22-06p1-E1 08SOL22-06p1-E2 08SOL22-06p1-F1 08SOL22-06p1-F2 08SOL22-06p1-G1 08SOL22-06p1-G2 08SOL22-06p1-H1 09THS01-06p4-A1 09THS01-06p4-A2 09THS01-06p4-B1 09THS01-06p4-B2 09THS01-06p2-D1 09THS01-06p2-D2 09THS01-06p2-F1 09THS01-06p2-F2 09THS01-06p2-G1 09THS01-06p2-G2 09THS01-06p1-A1 09THS01-06p1-A2 09THS01-06p1-B1 09THS01-06p1-B2 08NMA20-08-1p3-B1 08NMA20-08-1p3-B2 08NMA20-08-1p3-C1 08NMA20-08-1p3-D1 08NMA20-08-1p2-D1 08NMA20-08-1p2-D2 08NMA20-08-1p1-C1 08NMA20-08-1p1-C2 08SOL22-04p3-C1 08SOL22-04p3-C2 08SOL22-04p3-D2 08SOL22-04p2-D1 08SOL22-04p2-D2 08SOL22-04p2-E1 08SOL22-04p2-E2 08SOL22-04p1-F1 08SOL22-04p1-F2 08SOL22-04p1-G2  Mg-B Fe2-B Mn2-B Ca-B Na-B SumB Na-A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1.82 1.80 1.80 1.84 1.77 1.81 1.83 1.82 1.86 1.87 1.80 1.81 1.80 1.82 1.87 1.87 1.85 1.86 1.82 1.82 1.72 1.73 1.70 1.73 1.54 1.74 1.70 1.66 1.70 1.70 1.73 1.71 1.73 1.71 1.64 1.73 1.80 1.78 1.81 1.75 1.77 1.81 1.78 1.77 1.77 1.80 1.78 1.83 1.80 1.79 1.77 1.78 1.79 1.79 1.76 1.78 1.77 1.80 1.82 1.81 1.80 1.79 1.77 1.80 1.80 1.78 1.77 1.81 1.79 1.74 1.80 1.81 1.75 1.78 1.78 1.77 1.80 1.75 1.78 1.77 1.80 1.80 1.71 1.71 1.80  0.18 0.20 0.20 0.16 0.23 0.19 0.17 0.18 0.14 0.13 0.20 0.19 0.20 0.18 0.13 0.13 0.14 0.14 0.18 0.18 0.28 0.27 0.30 0.27 0.46 0.26 0.30 0.34 0.30 0.30 0.27 0.29 0.27 0.29 0.36 0.27 0.20 0.22 0.19 0.25 0.23 0.19 0.22 0.23 0.23 0.20 0.22 0.17 0.20 0.21 0.23 0.22 0.21 0.21 0.24 0.22 0.23 0.20 0.18 0.19 0.20 0.21 0.23 0.20 0.20 0.22 0.23 0.19 0.21 0.26 0.20 0.19 0.25 0.22 0.22 0.23 0.20 0.25 0.22 0.23 0.20 0.20 0.29 0.29 0.20  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.99 2 2 2 2 2 2 2 1.99 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  0.19 0.22 0.21 0.25 0.12 0.18 0.23 0.25 0.03 0.00 0.16 0.20 0.21 0.21 0.02 0.05 0.00 0.01 0.14 0.15 0.18 0.20 0.17 0.24 0.00 0.24 0.16 0.13 0.09 0.09 0.30 0.26 0.26 0.24 0.10 0.22 0.25 0.20 0.23 0.15 0.23 0.26 0.19 0.19 0.23 0.25 0.20 0.25 0.24 0.20 0.17 0.15 0.20 0.24 0.20 0.25 0.23 0.25 0.31 0.25 0.29 0.25 0.23 0.29 0.30 0.24 0.21 0.34 0.34 0.31 0.26 0.36 0.31 0.35 0.31 0.20 0.20 0.16 0.26 0.20 0.21 0.25 0.13 0.18 0.22  K-A 0.09 0.06 0.14 0.15 0.08 0.05 0.15 0.19 0.03 0.02 0.11 0.15 0.05 0.07 0.03 0.05 0.02 0.03 0.06 0.10 0.05 0.04 0.05 0.03 0.16 0.04 0.03 0.03 0.03 0.02 0.05 0.03 0.04 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.04 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.03 0.02 0.03 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.05 0.05 0.05 0.03 0.05 0.05 0.04 0.04 0.08 0.07 0.08 0.08 0.07 0.08 0.08 0.08 0.10 0.07  SumA Prefix Modifier Name 0.28 0.28 0.35 0.40 0.20 0.23 0.38 0.43 0.07 0.02 0.27 0.35 0.26 0.27 0.05 0.10 0.02 0.04 0.20 0.25 0.24 0.24 0.22 0.27 0.16 0.28 0.19 0.16 Ferri 0.12 0.11 0.35 0.30 0.30 0.27 0.13 0.25 0.30 0.25 0.28 0.19 0.27 0.31 0.24 0.23 0.30 0.30 0.25 0.30 0.29 0.24 0.21 0.20 0.24 0.27 0.22 0.28 0.26 0.27 0.34 0.28 0.31 0.28 0.25 0.31 0.32 0.27 0.24 0.39 0.39 0.35 0.29 0.41 0.36 0.40 0.36 0.28 0.27 0.24 0.34 0.27 0.29 0.33 0.21 0.27 0.29  Ferrian  Ferrian  Ferrian Ferrian  Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian  Ferrian Ferrian Ferrian Ferrian  Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian  Ferrian  Ferrian  Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian Ferrian  Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Actinolite Actinolite Magnesiohornblende Magnesiohornblende Magnesiohornblende Magnesiohornblende Actinolite Magnesiohornblende Actinolite Actinolite Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Magnesiohornblende Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Magnesiohornblende Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Magnesiohornblende Magnesiohornblende Tschermakite Tschermakite Tschermakite Tschermakite Magnesiohornblende Tschermakite Tschermakite  Appendix C.2 Plagioclase Electron Microprobe Data and Structural Formula Calculation Results Oxide Totals  99  Mineral 08SOL12-08-P1A-1 08SOL12-08-P1A-2 08SOL12-08-P1A-3 08SOL12-08-P1A-4 08SOL12-08-P1B-1 08SOL12-08-P1B-2 08SOL12-08-P1B-3 08SOL12-08-P1D-1 08SOL12-08-P1D-2 08SOL12-08-P1D-3 08SOL12-08-P1D-4 08SOL12-08-P1E-1 08SOL12-08-P1E-2 08SOL12-08-P1E-3 08SOL12-08-P2A-1 08SOL12-08-P2A-2 08SOL12-08-P2A-3 08SOL12-08-P2A-4 08SOL12-08-P2C-1 08SOL12-08-P2C-2 08SOL12-08-P2C-3 08SOL12-08-P2C-4 08SOL12-08-P2E-1 08SOL12-08-P2E-2 08SOL12-08-P2E-3 08SOL12-08-P2F-1 08SOL12-08-P2F-2 08SOL12-08-P2F-3 08SOL12-08-P2F-4 08SOL12-08-P2F-5 08SOL12-08-P3F-1 08SOL12-08-P3F-2 08SOL12-08-P3F-3 08SOL12-08-P3F-4 08SOL12-08-P3D-1 08SOL12-08-P3D-2 08SOL12-08-P3D-3 08SOL12-08-P3D-4 08SOL12-08-P3D-5 08SOL12-08-P4A-1 08SOL12-08-P4A-2 08SOL12-08-P4A-3 08SOL12-08-P4A-4 08SOL12-08-P4A-5 08SOL12-08-P4A-6 08SOL12-08-P4B-1 08SOL12-08-P4B-2 08SOL12-08-P4B-3 08SOL12-08-P4B-4 08SOL12-08-P4C-1 08SOL12-08-P4C-2 08SOL12-08-P4C-3 08SOL12-08-P4D-1 08SOL12-08-P4D-2 08SOL12-08-P4D-3 08SOL12-08-P4D-5 08SOL12-08-P4D-6 08SOL12-08-P4D-7 08SOL12-08-P4E-1 08SOL12-08-P4E-2 08SOL12-08-P4E-3 08SOL12-08-P4E-4 08SOL12-08-P4E-5  SiO2 Al2O3 Fe2O3 Mn2O3 MgO CaO Na2O K2O 63.34 22.82 0.21 0.01 0.01 3.24 9.47 0.37 64.65 22.86 0.34 0.03 0.00 3.80 9.44 0.05 63.17 22.99 0.13 0.00 0.00 3.62 9.34 0.05 63.32 22.79 0.26 0.02 0.00 4.16 9.38 0.05 63.72 22.89 0.12 0.00 0.03 3.85 9.50 0.06 64.58 22.98 0.08 0.03 0.01 3.84 9.33 0.06 63.56 23.06 0.12 0.00 0.00 4.11 9.22 0.05 64.20 22.97 0.28 0.03 0.00 3.95 9.29 0.05 63.11 23.20 0.13 0.00 0.00 4.16 9.07 0.06 64.31 22.93 0.17 0.00 0.00 3.94 9.30 0.03 64.07 22.45 0.15 0.02 0.00 3.44 9.69 0.07 64.37 23.20 0.20 0.04 0.02 4.00 9.31 0.05 64.16 22.87 0.16 0.00 0.00 3.68 9.36 0.03 64.57 22.90 0.24 0.00 0.01 3.77 9.34 0.05 64.14 23.02 0.17 0.02 0.00 3.92 9.54 0.03 63.55 23.63 0.23 0.00 0.00 4.78 8.92 0.04 63.20 23.39 0.15 0.01 0.00 4.52 9.13 0.07 65.30 22.51 0.14 0.00 0.01 3.39 9.60 0.06 63.53 23.32 0.11 0.00 0.01 4.35 8.93 0.05 63.51 23.44 0.07 0.00 0.01 4.47 9.04 0.05 63.80 23.23 0.04 0.01 0.00 4.26 9.10 0.05 63.67 23.58 0.05 0.00 0.00 4.45 9.09 0.06 63.89 23.02 0.10 0.01 0.01 4.05 9.30 0.03 63.10 23.63 0.07 0.00 0.00 4.69 8.79 0.04 63.53 23.21 0.12 0.02 0.01 4.24 9.13 0.04 64.39 22.74 0.16 0.00 0.00 3.83 9.49 0.02 63.70 23.30 0.09 0.01 0.01 4.31 9.13 0.05 64.22 23.13 0.05 0.00 0.00 3.90 9.21 0.07 63.63 22.75 0.05 0.01 0.00 3.80 9.30 0.06 63.93 22.97 0.12 0.00 0.00 3.92 9.32 0.04 63.67 22.90 0.24 0.00 0.01 4.06 9.31 0.06 64.32 22.83 0.28 0.00 0.00 3.92 9.41 0.06 63.83 22.97 0.43 0.00 0.00 4.08 9.20 0.04 64.54 23.13 0.25 0.00 0.01 4.06 9.24 0.04 63.10 23.39 0.08 0.00 0.01 4.52 9.01 0.03 63.67 23.43 0.11 0.01 0.00 4.48 8.84 0.04 62.95 23.32 0.00 0.01 0.00 4.44 8.84 0.06 64.46 22.92 0.02 0.00 0.01 3.92 9.44 0.05 63.44 23.19 0.13 0.02 0.00 4.61 8.93 0.05 63.99 23.16 0.30 0.00 0.00 4.09 9.29 0.06 64.20 22.87 0.28 0.03 0.00 3.77 9.50 0.07 63.53 23.68 0.21 0.01 0.00 4.67 8.92 0.04 63.21 23.53 0.18 0.00 0.00 4.55 9.08 0.06 64.89 22.34 0.22 0.03 0.02 3.49 9.63 0.04 64.02 23.16 0.29 0.03 0.00 4.05 9.43 0.05 64.25 22.99 0.16 0.01 0.01 3.95 9.30 0.05 64.45 22.67 0.15 0.01 0.00 3.72 9.34 0.04 63.43 23.53 0.19 0.01 0.01 4.54 9.06 0.06 63.04 23.33 0.12 0.00 0.00 4.42 9.04 0.04 64.63 22.55 0.26 0.00 0.01 3.62 9.57 0.05 63.83 22.75 0.19 0.00 0.00 3.88 9.21 0.04 63.55 23.25 0.15 0.00 0.00 4.38 9.06 0.08 63.70 22.90 0.32 0.01 0.00 3.94 9.29 0.06 63.97 22.90 0.49 0.04 0.01 3.88 9.26 0.06 63.02 23.23 0.21 0.01 0.00 4.20 9.11 0.06 62.86 23.42 0.19 0.01 0.00 4.64 8.76 0.07 64.59 23.15 0.15 0.00 0.02 3.95 9.23 0.05 63.82 23.03 0.22 0.00 0.00 4.05 9.16 0.05 63.20 23.40 0.05 0.00 0.00 4.54 8.72 0.04 63.07 23.65 0.06 0.00 0.01 4.80 8.66 0.07 63.61 23.36 0.04 0.00 0.01 4.34 8.78 0.04 63.47 22.75 0.00 0.00 0.01 3.75 9.02 0.04 63.98 23.08 0.15 0.00 0.00 3.93 9.01 0.03  Cation Totals Total 99.48 101.18 99.31 99.98 100.18 100.90 100.12 100.78 99.73 100.69 99.89 101.19 100.25 100.86 100.84 101.14 100.48 101.02 100.30 100.60 100.48 100.89 100.40 100.33 100.29 100.64 100.60 100.58 99.59 100.30 100.26 100.82 100.54 101.28 100.15 100.57 99.62 100.84 100.38 100.88 100.72 101.06 100.61 100.65 101.03 100.73 100.37 100.82 99.99 100.68 99.90 100.47 100.23 100.61 99.84 99.95 101.14 100.33 99.96 100.31 100.17 99.06 100.18  Mineral 08SOL12-08-P1A-1 08SOL12-08-P1A-2 08SOL12-08-P1A-3 08SOL12-08-P1A-4 08SOL12-08-P1B-1 08SOL12-08-P1B-2 08SOL12-08-P1B-3 08SOL12-08-P1D-1 08SOL12-08-P1D-2 08SOL12-08-P1D-3 08SOL12-08-P1D-4 08SOL12-08-P1E-1 08SOL12-08-P1E-2 08SOL12-08-P1E-3 08SOL12-08-P2A-1 08SOL12-08-P2A-2 08SOL12-08-P2A-3 08SOL12-08-P2A-4 08SOL12-08-P2C-1 08SOL12-08-P2C-2 08SOL12-08-P2C-3 08SOL12-08-P2C-4 08SOL12-08-P2E-1 08SOL12-08-P2E-2 08SOL12-08-P2E-3 08SOL12-08-P2F-1 08SOL12-08-P2F-2 08SOL12-08-P2F-3 08SOL12-08-P2F-4 08SOL12-08-P2F-5 08SOL12-08-P3F-1 08SOL12-08-P3F-2 08SOL12-08-P3F-3 08SOL12-08-P3F-4 08SOL12-08-P3D-1 08SOL12-08-P3D-2 08SOL12-08-P3D-3 08SOL12-08-P3D-4 08SOL12-08-P3D-5 08SOL12-08-P4A-1 08SOL12-08-P4A-2 08SOL12-08-P4A-3 08SOL12-08-P4A-4 08SOL12-08-P4A-5 08SOL12-08-P4A-6 08SOL12-08-P4B-1 08SOL12-08-P4B-2 08SOL12-08-P4B-3 08SOL12-08-P4B-4 08SOL12-08-P4C-1 08SOL12-08-P4C-2 08SOL12-08-P4C-3 08SOL12-08-P4D-1 08SOL12-08-P4D-2 08SOL12-08-P4D-3 08SOL12-08-P4D-5 08SOL12-08-P4D-6 08SOL12-08-P4D-7 08SOL12-08-P4E-1 08SOL12-08-P4E-2 08SOL12-08-P4E-3 08SOL12-08-P4E-4 08SOL12-08-P4E-5  Si 2.812 2.820 2.806 2.801 2.809 2.821 2.803 2.812 2.795 2.817 2.830 2.808 2.821 2.823 2.809 2.779 2.783 2.846 2.796 2.790 2.802 2.788 2.809 2.779 2.798 2.823 2.797 2.815 2.818 2.812 2.806 2.817 2.805 2.812 2.785 2.794 2.790 2.820 2.793 2.802 2.815 2.780 2.779 2.842 2.801 2.814 2.830 2.782 2.787 2.832 2.818 2.795 2.807 2.809 2.790 2.780 2.816 2.807 2.791 2.778 2.800 2.821 2.814  Al 1.194 1.176 1.204 1.188 1.189 1.183 1.199 1.186 1.211 1.184 1.168 1.193 1.185 1.180 1.188 1.218 1.214 1.156 1.210 1.213 1.202 1.217 1.193 1.226 1.205 1.175 1.205 1.195 1.187 1.191 1.190 1.178 1.189 1.188 1.217 1.212 1.218 1.182 1.204 1.195 1.182 1.221 1.219 1.153 1.194 1.187 1.173 1.217 1.215 1.164 1.184 1.205 1.189 1.185 1.212 1.221 1.189 1.194 1.218 1.228 1.212 1.192 1.196  Fe3 0.007 0.011 0.004 0.009 0.004 0.003 0.004 0.009 0.004 0.006 0.005 0.007 0.005 0.008 0.006 0.007 0.005 0.005 0.004 0.002 0.001 0.002 0.003 0.002 0.004 0.005 0.003 0.002 0.002 0.004 0.008 0.009 0.014 0.008 0.003 0.004 0.000 0.001 0.004 0.010 0.009 0.007 0.006 0.007 0.009 0.005 0.005 0.006 0.004 0.008 0.006 0.005 0.011 0.016 0.007 0.006 0.005 0.007 0.002 0.002 0.001 0.000 0.005  Mn3 sum1 0.000 4.014 0.001 4.008 0.000 4.014 0.001 3.999 0.000 4.004 0.001 4.009 0.000 4.006 0.001 4.008 0.000 4.010 0.000 4.007 0.001 4.004 0.001 4.010 0.000 4.011 0.000 4.010 0.001 4.004 0.000 4.005 0.000 4.002 0.000 4.008 0.000 4.010 0.000 4.006 0.000 4.007 0.000 4.007 0.000 4.006 0.000 4.008 0.001 4.007 0.000 4.003 0.000 4.006 0.000 4.011 0.000 4.007 0.000 4.007 0.000 4.004 0.000 4.004 0.000 4.008 0.000 4.009 0.000 4.005 0.000 4.010 0.000 4.009 0.000 4.003 0.001 4.002 0.000 4.007 0.001 4.006 0.000 4.008 0.000 4.005 0.001 4.004 0.001 4.005 0.000 4.007 0.000 4.008 0.000 4.006 0.000 4.006 0.000 4.005 0.000 4.008 0.000 4.005 0.000 4.008 0.001 4.012 0.000 4.009 0.000 4.008 0.000 4.011 0.000 4.009 0.000 4.010 0.000 4.009 0.000 4.013 0.000 4.014 0.000 4.015  Ca 0.154 0.178 0.172 0.197 0.182 0.180 0.194 0.186 0.197 0.185 0.163 0.187 0.173 0.176 0.184 0.224 0.213 0.158 0.205 0.211 0.200 0.209 0.191 0.221 0.200 0.180 0.203 0.183 0.180 0.185 0.192 0.184 0.192 0.190 0.214 0.210 0.211 0.184 0.218 0.192 0.177 0.219 0.214 0.164 0.190 0.185 0.175 0.213 0.209 0.170 0.183 0.206 0.186 0.182 0.199 0.220 0.185 0.191 0.215 0.226 0.205 0.179 0.185  Na 0.815 0.799 0.805 0.805 0.812 0.791 0.789 0.789 0.778 0.790 0.829 0.787 0.798 0.791 0.810 0.756 0.780 0.811 0.762 0.770 0.775 0.771 0.792 0.751 0.779 0.807 0.777 0.783 0.798 0.795 0.795 0.799 0.784 0.781 0.771 0.752 0.760 0.801 0.763 0.789 0.808 0.757 0.774 0.818 0.800 0.790 0.795 0.770 0.775 0.813 0.788 0.773 0.794 0.788 0.782 0.751 0.780 0.781 0.747 0.740 0.750 0.778 0.768  K sum2 ANORTHITE 0.021 0.991 0.156 0.003 0.979 0.182 0.003 0.980 0.176 0.003 1.005 0.196 0.004 0.998 0.182 0.003 0.974 0.185 0.003 0.985 0.197 0.003 0.978 0.190 0.003 0.979 0.202 0.002 0.977 0.190 0.004 0.996 0.163 0.003 0.978 0.191 0.001 0.972 0.178 0.003 0.970 0.182 0.002 0.995 0.185 0.002 0.983 0.228 0.004 0.997 0.214 0.003 0.973 0.163 0.003 0.970 0.211 0.003 0.983 0.214 0.003 0.978 0.205 0.004 0.984 0.212 0.001 0.985 0.194 0.002 0.975 0.227 0.003 0.982 0.204 0.001 0.988 0.182 0.003 0.983 0.206 0.004 0.970 0.189 0.003 0.982 0.183 0.002 0.982 0.188 0.004 0.991 0.194 0.003 0.986 0.186 0.002 0.978 0.196 0.002 0.973 0.195 0.002 0.987 0.217 0.002 0.965 0.218 0.003 0.973 0.216 0.003 0.988 0.186 0.003 0.983 0.221 0.003 0.984 0.195 0.004 0.989 0.179 0.002 0.978 0.224 0.003 0.992 0.216 0.002 0.984 0.166 0.003 0.993 0.191 0.003 0.978 0.190 0.002 0.972 0.180 0.003 0.987 0.216 0.002 0.987 0.212 0.003 0.986 0.172 0.002 0.974 0.188 0.004 0.983 0.210 0.003 0.983 0.189 0.003 0.974 0.187 0.003 0.984 0.202 0.004 0.975 0.226 0.003 0.968 0.191 0.003 0.975 0.196 0.002 0.964 0.223 0.004 0.970 0.233 0.002 0.956 0.214 0.003 0.959 0.186 0.001 0.955 0.194  HIGH ALBITE 0.823 0.816 0.821 0.801 0.814 0.812 0.800 0.807 0.795 0.809 0.832 0.806 0.820 0.816 0.813 0.770 0.782 0.834 0.786 0.783 0.792 0.784 0.805 0.771 0.794 0.817 0.791 0.807 0.813 0.809 0.803 0.810 0.801 0.803 0.781 0.780 0.780 0.811 0.776 0.801 0.817 0.774 0.780 0.831 0.806 0.807 0.818 0.781 0.785 0.825 0.809 0.786 0.807 0.809 0.794 0.770 0.806 0.801 0.775 0.763 0.784 0.811 0.804  K-FELDSPAR 0.021 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.002 0.004 0.003 0.001 0.003 0.002 0.002 0.004 0.003 0.003 0.003 0.003 0.004 0.001 0.003 0.003 0.001 0.003 0.004 0.004 0.002 0.004 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.002 0.004 0.002 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.005 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.002 0.003 0.002  Oxide Totals  100  Mineral 09THS01-04-P1A-1 09THS01-04-P1A-2 09THS01-04-P1A-3 09THS01-04-P1A-4 09THS01-04-P1A-5 09THS01-04-P1A-6 09THS01-04-P1B-1 09THS01-04-P1B-2 09THS01-04-P1B-3 09THS01-04-P2B-1 09THS01-04-P2B-2 09THS01-04-P2B-3 09THS01-04-P2B-4 09THS01-04-P2B-5 09THS01-04-P2E-1 09THS01-04-P2E-2 09THS01-04-P2E-3 09THS01-04-P3C-1 09THS01-04-P3C-2 09THS01-04-P3C-3 09THS01-04-P3C-4 09THS01-04-P3B-1 09THS01-04-P3B-2 09THS01-04-P3B-3 09THS01-04-P3B-4 09THS01-04-P3B-5 08SOL12-16-01A-1 08SOL12-16-01A-2 08SOL121601-5B-1 08SOL121601-5B-2 08SOL121601-4A-1 08SOL121601-4A-2 08SOL121601-4B-1 08SOL121601-4B-2 08SOL121601-4B-3 08SOL121601-3A-1 08SOL121601-3A-2 08SOL121601-3B-1 08SOL121601-3B-2 08SOL121601-2A-1 08SOL121601-2A-2 08SOL121601-2A-3 08SOL121601-2B-1 08SOL121601-2B-2 08SOL121601-2B-3 08SOL121601-2C-1 08SOL121601-2C-2 08SOL121601-1A-1 08SOL121601-1A-2 08SOL121601-1B-1 08SOL121601-1B-2 08nma17-08p7-2 08nma17-08p7-3 08nma17-08p7-b1 08nma17-08p7-b2 08nma17-08p7-c1 08nma17-08p7-c2 08nma17-08p7-d1 08nma17-08p7-d2 08nma17-08p7-d3 08nma17-08p5-1-1 08nma17-08p5-1-2 08nma17-08p5-2-1 08nma17-08p5-2-2 08nma17-08p4-1-1 08nma17-08p4-1-2 08nma17-08p3-2-1 08nma17-08p3-2-2 08nma17-08p1-F-1 08nma17-08p1-F-2 08nma17-08p1-D-1 08nma17-08p1-D-2  SiO2 Al2O3 Fe2O3 Mn2O3 MgO CaO Na2O K2O 63.05 23.66 0.09 0.00 0.00 4.52 8.82 0.03 63.90 23.49 0.11 0.00 0.00 4.51 9.07 0.08 62.92 23.38 0.06 0.01 0.00 4.50 8.90 0.05 63.78 23.43 0.11 0.00 0.00 4.38 9.18 0.06 63.46 23.19 0.06 0.00 0.00 4.20 9.19 0.06 63.33 23.45 0.10 0.01 0.00 4.39 9.14 0.05 62.62 23.50 0.06 0.00 0.00 4.37 9.04 0.07 64.05 23.44 0.08 0.00 0.00 4.38 9.17 0.06 63.39 23.32 0.11 0.00 0.00 4.22 8.98 0.08 63.51 23.51 0.27 0.01 0.00 4.27 9.01 0.07 62.23 23.77 0.25 0.00 0.02 4.86 8.65 0.07 62.03 24.39 0.19 0.02 0.00 5.56 8.40 0.06 62.62 23.84 0.27 0.02 0.00 4.94 8.67 0.07 63.84 23.08 0.26 0.00 0.00 4.35 8.99 0.05 62.87 23.63 0.12 0.00 0.00 4.68 8.79 0.07 63.54 23.01 0.07 0.00 0.00 4.25 8.91 0.05 63.12 23.42 0.13 0.01 0.00 4.30 9.23 0.08 62.54 23.92 0.23 0.00 0.01 5.28 8.54 0.05 63.86 22.82 0.10 0.01 0.00 3.96 8.88 0.06 64.81 22.80 0.13 0.00 0.01 3.75 9.20 0.08 63.56 23.25 0.08 0.00 0.00 4.41 9.17 0.04 62.89 24.05 0.20 0.02 0.00 5.25 8.66 0.08 62.95 23.68 0.13 0.01 0.00 4.85 8.58 0.06 63.96 23.58 0.13 0.02 0.01 4.70 8.99 0.08 62.94 23.70 0.13 0.00 0.01 4.67 8.91 0.06 63.97 23.46 0.19 0.00 0.01 4.47 9.03 0.08 68.89 19.73 0.09 0.01 0.01 0.34 11.25 0.08 65.56 22.18 0.12 0.00 0.02 3.13 10.13 0.06 69.16 19.85 0.09 0.02 0.01 0.34 11.67 0.02 19.64 0.10 0.00 0.01 0.42 11.39 0.07 68.59 68.84 20.01 0.11 0.01 0.00 0.90 11.58 0.06 69.12 19.97 0.07 0.02 0.00 0.48 11.72 0.08 69.52 19.78 0.14 0.02 0.01 0.33 11.76 0.05 68.63 19.67 0.09 0.00 0.00 0.41 11.32 0.04 68.68 19.81 0.14 0.00 0.00 0.50 11.52 0.03 68.91 19.71 0.01 0.00 0.00 0.32 11.76 0.07 69.59 20.05 0.09 0.00 0.01 0.19 11.73 0.07 68.32 20.09 0.08 0.02 0.00 0.42 11.38 0.05 68.96 20.03 0.11 0.02 0.01 0.40 11.65 0.05 68.94 19.69 0.08 0.03 0.01 0.24 11.53 0.05 68.54 19.89 0.05 0.00 0.01 0.61 11.53 0.06 68.05 19.87 0.28 0.00 0.06 0.75 11.37 0.04 68.85 20.07 0.08 0.00 0.00 0.47 11.39 0.04 66.43 21.02 0.18 0.00 0.01 1.72 10.66 0.06 65.44 22.34 0.23 0.00 0.01 3.24 9.90 0.05 68.47 19.66 0.10 0.00 0.00 0.44 11.43 0.05 68.91 19.81 0.17 0.01 0.00 0.83 11.36 0.05 68.63 20.10 0.14 0.01 0.00 0.67 11.32 0.06 77.64 14.90 0.06 0.03 0.01 0.77 8.34 0.04 62.90 23.69 0.05 0.02 0.00 4.89 9.18 0.08 69.58 20.06 0.16 0.03 0.01 0.43 11.51 0.04 64.96 22.01 0.17 0.00 0.00 3.06 9.54 0.23 64.22 21.81 0.20 0.01 0.00 2.87 9.51 0.21 65.14 22.05 0.24 0.00 0.00 3.07 9.60 0.18 64.87 21.86 0.14 0.00 0.00 2.91 9.80 0.14 65.54 21.76 0.12 0.00 0.02 2.82 10.06 0.19 65.04 21.68 0.14 0.00 0.00 2.77 10.06 0.16 65.64 21.88 0.13 0.00 0.00 2.89 9.69 0.17 64.89 21.84 0.12 0.01 0.00 2.75 9.97 0.17 65.20 21.89 0.12 0.00 0.02 2.84 9.65 0.25 0.17 0.02 0.00 2.66 9.86 0.25 65.07 21.61 65.34 21.58 0.16 0.00 0.00 2.87 9.97 0.20 65.01 21.57 0.16 0.00 0.01 2.83 9.85 0.16 64.96 21.79 0.22 0.00 0.00 2.75 9.81 0.22 64.83 21.55 0.14 0.00 0.00 2.77 9.61 0.28 65.39 21.66 0.23 0.01 0.00 2.84 9.99 0.23 64.99 21.73 0.14 0.02 0.00 2.79 9.83 0.30 65.34 21.76 0.10 0.01 0.01 2.84 9.65 0.25 65.20 21.49 0.21 0.01 0.00 2.62 9.96 0.19 65.54 21.98 0.20 0.00 0.00 3.13 9.76 0.24 65.40 21.80 0.19 0.01 0.00 2.83 9.90 0.21 65.90 21.97 0.16 0.00 0.01 2.86 9.78 0.17  Cation Totals Total 100.16 101.15 99.82 100.95 100.17 100.46 99.66 101.18 100.10 100.65 99.84 100.65 100.44 100.58 100.17 99.84 100.30 100.58 99.68 100.77 100.51 101.15 100.25 101.47 100.41 101.20 100.41 101.21 101.17 100.21 101.51 101.46 101.61 100.16 100.68 100.79 101.73 100.36 101.23 100.58 100.69 100.42 100.91 100.08 101.21 100.15 101.14 100.92 101.79 100.80 101.80 99.98 98.84 100.28 99.73 100.51 99.85 100.41 99.75 99.96 99.64 100.12 99.58 99.74 99.18 100.35 99.79 99.96 99.68 100.85 100.34 100.85  Mineral 09THS01-04-P1A-1 09THS01-04-P1A-2 09THS01-04-P1A-3 09THS01-04-P1A-4 09THS01-04-P1A-5 09THS01-04-P1A-6 09THS01-04-P1B-1 09THS01-04-P1B-2 09THS01-04-P1B-3 09THS01-04-P2B-1 09THS01-04-P2B-2 09THS01-04-P2B-3 09THS01-04-P2B-4 09THS01-04-P2B-5 09THS01-04-P2E-1 09THS01-04-P2E-2 09THS01-04-P2E-3 09THS01-04-P3C-1 09THS01-04-P3C-2 09THS01-04-P3C-3 09THS01-04-P3C-4 09THS01-04-P3B-1 09THS01-04-P3B-2 09THS01-04-P3B-3 09THS01-04-P3B-4 09THS01-04-P3B-5 08SOL12-16-01A-1 08SOL12-16-01A-2 08SOL121601-5B-1 08SOL121601-5B-2 08SOL121601-4A-1 08SOL121601-4A-2 08SOL121601-4B-1 08SOL121601-4B-2 08SOL121601-4B-3 08SOL121601-3A-1 08SOL121601-3A-2 08SOL121601-3B-1 08SOL121601-3B-2 08SOL121601-2A-1 08SOL121601-2A-2 08SOL121601-2A-3 08SOL121601-2B-1 08SOL121601-2B-2 08SOL121601-2B-3 08SOL121601-2C-1 08SOL121601-2C-2 08SOL121601-1A-1 08SOL121601-1A-2 08SOL121601-1B-1 08SOL121601-1B-2 08nma17-08p7-2 08nma17-08p7-3 08nma17-08p7-b1 08nma17-08p7-b2 08nma17-08p7-c1 08nma17-08p7-c2 08nma17-08p7-d1 08nma17-08p7-d2 08nma17-08p7-d3 08nma17-08p5-1-1 08nma17-08p5-1-2 08nma17-08p5-2-1 08nma17-08p5-2-2 08nma17-08p4-1-1 08nma17-08p4-1-2 08nma17-08p3-2-1 08nma17-08p3-2-2 08nma17-08p1-F-1 08nma17-08p1-F-2 08nma17-08p1-D-1 08nma17-08p1-D-2  Si 2.780 2.792 2.785 2.792 2.798 2.786 2.778 2.796 2.795 2.788 2.759 2.733 2.761 2.803 2.775 2.807 2.784 2.755 2.821 2.832 2.795 2.755 2.775 2.787 2.772 2.793 2.993 2.855 2.987 2.989 2.970 2.980 2.990 2.991 2.982 2.988 2.987 2.974 2.978 2.992 2.977 2.967 2.980 2.913 2.849 2.987 2.980 2.973 3.257 2.766 2.985 2.860 2.859 2.860 2.863 2.871 2.868 2.874 2.864 2.869 2.874 2.874 2.873 2.867 2.875 2.871 2.868 2.875 2.878 2.863 2.870 2.873  Al 1.229 1.210 1.220 1.209 1.205 1.216 1.228 1.206 1.212 1.216 1.242 1.266 1.239 1.194 1.229 1.198 1.217 1.242 1.188 1.174 1.205 1.242 1.230 1.211 1.231 1.207 1.010 1.138 1.010 1.009 1.018 1.015 1.003 1.010 1.014 1.007 1.015 1.031 1.020 1.007 1.018 1.021 1.024 1.086 1.146 1.011 1.010 1.026 0.737 1.228 1.014 1.142 1.145 1.141 1.137 1.124 1.127 1.129 1.136 1.135 1.125 1.119 1.123 1.134 1.126 1.121 1.130 1.128 1.118 1.131 1.127 1.129  Fe3 0.003 0.004 0.002 0.004 0.002 0.003 0.002 0.003 0.004 0.009 0.008 0.006 0.009 0.009 0.004 0.002 0.004 0.008 0.003 0.004 0.003 0.007 0.004 0.004 0.004 0.006 0.003 0.004 0.003 0.003 0.003 0.002 0.004 0.003 0.005 0.000 0.003 0.003 0.004 0.003 0.002 0.009 0.003 0.006 0.008 0.003 0.005 0.004 0.002 0.002 0.005 0.006 0.007 0.008 0.005 0.004 0.005 0.004 0.004 0.004 0.006 0.005 0.005 0.007 0.005 0.008 0.005 0.003 0.007 0.007 0.006 0.005  Mn3 sum1 0.000 4.013 0.000 4.005 0.001 4.007 0.000 4.005 0.000 4.005 0.000 4.006 0.000 4.008 0.000 4.005 0.000 4.011 0.000 4.014 0.000 4.011 0.001 4.007 0.001 4.009 0.000 4.007 0.000 4.009 0.000 4.008 0.000 4.005 0.000 4.005 0.000 4.013 0.000 4.011 0.000 4.002 0.001 4.004 0.000 4.010 0.001 4.003 0.000 4.008 0.000 4.007 0.000 4.008 0.000 3.998 0.001 4.001 0.000 4.002 0.000 3.991 0.001 3.997 0.001 3.999 0.000 4.004 0.000 4.000 0.000 3.996 0.000 4.005 0.001 4.008 0.001 4.002 0.001 4.004 0.000 3.997 0.000 4.001 0.000 4.006 0.000 4.006 0.000 4.004 0.000 4.001 0.000 3.996 0.000 4.004 0.001 3.998 0.001 3.996 0.001 4.006 0.000 4.008 0.001 4.011 0.000 4.008 0.000 4.005 0.000 4.000 0.000 4.000 0.000 4.008 0.000 4.005 0.000 4.009 0.001 4.005 0.000 3.998 0.000 4.002 0.000 4.007 0.000 4.006 0.000 4.000 0.001 4.004 0.000 4.007 0.000 4.004 0.000 4.001 0.000 4.004 0.000 4.008  Ca 0.213 0.211 0.213 0.205 0.199 0.207 0.208 0.205 0.200 0.201 0.231 0.262 0.233 0.205 0.221 0.201 0.203 0.249 0.187 0.176 0.208 0.247 0.229 0.220 0.220 0.209 0.016 0.146 0.016 0.019 0.042 0.022 0.015 0.019 0.023 0.015 0.009 0.020 0.018 0.011 0.029 0.035 0.022 0.081 0.151 0.021 0.039 0.031 0.035 0.230 0.020 0.144 0.137 0.145 0.138 0.132 0.131 0.136 0.130 0.134 0.126 0.135 0.134 0.130 0.132 0.134 0.132 0.134 0.124 0.147 0.133 0.134  Na 0.754 0.768 0.764 0.779 0.786 0.780 0.777 0.776 0.768 0.766 0.744 0.718 0.741 0.766 0.753 0.764 0.789 0.729 0.760 0.779 0.782 0.736 0.733 0.760 0.761 0.764 0.948 0.855 0.978 0.962 0.969 0.979 0.981 0.956 0.970 0.989 0.976 0.960 0.975 0.971 0.971 0.961 0.956 0.906 0.836 0.967 0.952 0.951 0.678 0.782 0.957 0.815 0.821 0.817 0.839 0.855 0.860 0.822 0.853 0.823 0.845 0.851 0.844 0.839 0.827 0.850 0.841 0.823 0.853 0.827 0.842 0.827  K sum2 ANORTHITE 0.002 0.969 0.220 0.004 0.984 0.214 0.003 0.980 0.218 0.003 0.988 0.208 0.003 0.988 0.201 0.003 0.989 0.209 0.004 0.989 0.210 0.003 0.984 0.208 0.004 0.971 0.205 0.004 0.971 0.207 0.004 0.978 0.236 0.003 0.984 0.267 0.004 0.979 0.238 0.210 0.003 0.973 0.004 0.978 0.226 0.003 0.968 0.208 0.005 0.997 0.204 0.003 0.981 0.254 0.004 0.951 0.197 0.004 0.959 0.183 0.002 0.991 0.209 0.004 0.987 0.250 0.003 0.966 0.237 0.004 0.984 0.223 0.003 0.984 0.224 0.004 0.978 0.214 0.005 0.969 0.016 0.004 1.005 0.145 0.001 0.995 0.016 0.004 0.986 0.020 0.003 1.014 0.041 0.004 1.006 0.022 0.003 0.999 0.015 0.002 0.978 0.020 0.002 0.995 0.023 0.004 1.008 0.015 0.004 0.989 0.009 0.003 0.983 0.020 0.003 0.997 0.019 0.003 0.985 0.012 0.003 1.002 0.028 0.002 0.998 0.035 0.002 0.980 0.022 0.003 0.990 0.081 0.003 0.990 0.153 0.003 0.990 0.021 0.003 0.993 0.039 0.003 0.985 0.032 0.002 0.715 0.048 0.005 1.017 0.226 0.002 0.979 0.020 0.013 0.972 0.148 0.012 0.969 0.141 0.010 0.972 0.149 0.008 0.984 0.140 0.011 0.998 0.133 0.009 1.000 0.131 0.010 0.968 0.140 0.010 0.992 0.131 0.014 0.971 0.138 0.014 0.985 0.128 0.011 0.997 0.136 0.009 0.987 0.136 0.012 0.981 0.132 0.016 0.974 0.135 0.013 0.997 0.134 0.017 0.989 0.133 0.014 0.971 0.138 0.011 0.987 0.125 0.013 0.986 0.149 0.012 0.987 0.135 0.009 0.970 0.138  HIGH ALBITE 0.778 0.781 0.779 0.789 0.796 0.788 0.786 0.789 0.790 0.789 0.760 0.730 0.757 0.787 0.770 0.789 0.791 0.743 0.799 0.812 0.788 0.746 0.759 0.772 0.773 0.782 0.979 0.851 0.983 0.976 0.956 0.974 0.982 0.978 0.975 0.981 0.987 0.977 0.979 0.986 0.968 0.963 0.975 0.915 0.845 0.976 0.959 0.965 0.948 0.769 0.978 0.838 0.847 0.841 0.852 0.857 0.860 0.850 0.860 0.848 0.858 0.853 0.855 0.855 0.849 0.853 0.850 0.848 0.864 0.838 0.854 0.852  K-FELDSPAR 0.002 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.003 0.005 0.003 0.004 0.005 0.002 0.004 0.004 0.004 0.003 0.005 0.005 0.004 0.001 0.004 0.003 0.004 0.003 0.002 0.002 0.004 0.004 0.003 0.003 0.003 0.003 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.002 0.013 0.012 0.010 0.008 0.011 0.009 0.010 0.010 0.014 0.014 0.011 0.009 0.013 0.016 0.013 0.017 0.014 0.011 0.013 0.012 0.010  Oxide Totals  Cation Totals  Mineral 09THS02-07p1-3-1 09THS02-07p1-3-2 09THS02-07p1-1-1 09THS02-07p1-1-2 09THS02-07p1-2-1 09THS02-07p1-2-2 09THS02-07p2-1-1 09THS02-07p2-1-2 09THS02-07p2-1-3 09THS02-07p2-2-1 09THS02-07p2-2-2 09THS02-07p2-3-1 09THS02-07p2-3-2 09THS02-07p4-1-1 09THS02-07p4-1-2 09THS02-07p4-2-1 09THS02-07p4-2-2 09THS02-07p4-3-1 09THS02-07p4-3-2 08SOL22-06p4-C1 08SOL22-06p1-B1 08SOL22-06p1-B2 09THS01-06p4-D1 09THS01-06p4-D2 09THS01-06p4-E1 09THS01-06p4-E2 09THS01-06p4-F1 09THS01-06p4-F2 09THS01-06p4-G1 09THS01-06p4-G2 09THS01-06p3-1 09THS01-06p3-2 09THS01-06p2-A1 09THS01-06p2-A2 09THS01-06p2-B1 09THS01-06p2-B2 09THS01-06p2-C1 09THS01-06p2-C2 09THS01-06p1-D1 09THS01-06p1-D2 09THS01-06p1-F1 09THS01-06p1-F2 08NMA20-08-1p3-A1 08NMA20-08-1p3-A2 08NMA20-08-1p2-A1 08NMA20-08-1p2-A2 08NMA20-08-1p2-B1 08NMA20-08-1p2-B2 08NMA20-08-1p2-C1 08NMA20-08-1p1-A1 08NMA20-08-1p1-B1 08SOL22-04p3-A1 08SOL22-04p3-A2 08SOL22-04p3-B1 08SOL22-04p2-B1 08SOL22-04p2-B2 08SOL22-04p1-A1 08SOL22-04p1-A2 08SOL22-04p1-B1  Mineral 09THS02-07p1-3-1 09THS02-07p1-3-2 09THS02-07p1-1-1 09THS02-07p1-1-2 09THS02-07p1-2-1 09THS02-07p1-2-2 09THS02-07p2-1-1 09THS02-07p2-1-2 09THS02-07p2-1-3 09THS02-07p2-2-1 09THS02-07p2-2-2 09THS02-07p2-3-1 09THS02-07p2-3-2 09THS02-07p4-1-1 09THS02-07p4-1-2 09THS02-07p4-2-1 09THS02-07p4-2-2 09THS02-07p4-3-1 09THS02-07p4-3-2 08SOL22-06p4-C1 08SOL22-06p1-B1 08SOL22-06p1-B2 09THS01-06p4-D1 09THS01-06p4-D2 09THS01-06p4-E1 09THS01-06p4-E2 09THS01-06p4-F1 09THS01-06p4-F2 09THS01-06p4-G1 09THS01-06p4-G2 09THS01-06p3-1 09THS01-06p3-2 09THS01-06p2-A1 09THS01-06p2-A2 09THS01-06p2-B1 09THS01-06p2-B2 09THS01-06p2-C1 09THS01-06p2-C2 09THS01-06p1-D1 09THS01-06p1-D2 09THS01-06p1-F1 09THS01-06p1-F2 08NMA20-08-1p3-A1 08NMA20-08-1p3-A2 08NMA20-08-1p2-A1 08NMA20-08-1p2-A2 08NMA20-08-1p2-B1 08NMA20-08-1p2-B2 08NMA20-08-1p2-C1 08NMA20-08-1p1-A1 08NMA20-08-1p1-B1 08SOL22-04p3-A1 08SOL22-04p3-A2 08SOL22-04p3-B1 08SOL22-04p2-B1 08SOL22-04p2-B2 08SOL22-04p1-A1 08SOL22-04p1-A2 08SOL22-04p1-B1  SiO2 Al2O3 Fe2O3 Mn2O3 MgO CaO Na2O K2O Total 61.59 24.01 0.24 0.02 0.01 5.27 8.61 0.06 99.82 63.08 23.46 0.20 0.00 0.01 4.68 8.81 0.08 100.33 62.46 23.54 0.14 0.00 0.00 4.74 8.71 0.08 99.66 61.39 24.54 0.11 0.01 0.00 5.91 8.06 0.07 100.09 59.73 25.13 0.18 0.00 0.02 6.72 7.66 0.04 99.47 60.60 24.84 0.17 0.01 0.00 6.41 7.89 0.12 100.02 62.37 23.24 0.10 0.00 0.00 4.55 8.98 0.06 99.31 60.25 25.32 0.09 0.00 0.00 6.73 7.69 0.04 100.11 59.95 25.21 0.17 0.01 0.00 6.86 7.65 0.06 99.90 62.88 23.16 0.11 0.01 0.00 4.54 8.80 0.06 99.56 61.09 24.23 0.05 0.00 0.00 5.73 8.25 0.07 99.43 60.44 25.28 0.12 0.01 0.00 6.79 7.69 0.06 100.38 61.81 23.71 0.16 0.00 0.01 5.10 8.63 0.07 99.49 62.77 23.47 0.17 0.00 0.00 4.76 8.86 0.06 100.09 61.16 23.86 0.17 0.00 0.00 5.43 8.38 0.06 99.07 60.46 25.39 0.11 0.00 0.00 6.92 7.59 0.03 100.51 59.36 25.04 0.09 0.02 0.00 6.77 7.78 0.04 99.10 60.31 25.22 0.13 0.05 0.00 6.81 7.75 0.03 100.30 59.75 24.85 0.15 0.03 0.00 6.73 7.87 0.05 99.43 62.28 23.67 0.23 0.00 0.00 4.99 8.42 0.06 99.65 62.06 23.29 0.19 0.00 0.01 4.82 8.64 0.04 99.06 63.22 23.44 0.15 0.00 0.00 4.75 8.80 0.07 100.43 60.29 25.10 0.17 0.03 0.01 6.43 7.79 0.06 99.88 62.63 23.91 0.23 0.02 0.00 5.37 8.46 0.05 100.67 60.91 24.85 0.19 0.00 0.00 6.46 7.85 0.04 100.30 61.31 24.64 0.25 0.03 0.00 6.27 7.92 0.04 100.45 60.42 24.87 0.10 0.03 0.01 6.65 7.73 0.06 99.85 61.55 24.52 0.07 0.01 0.01 6.07 7.98 0.06 100.26 60.62 24.56 0.13 0.02 0.00 6.39 7.84 0.05 99.60 61.45 24.75 0.05 0.03 0.00 6.22 7.96 0.04 100.50 60.14 24.95 0.08 0.01 0.00 6.69 7.72 0.04 99.63 60.60 24.99 0.03 0.00 0.00 6.88 7.37 0.04 99.92 60.52 24.49 0.12 0.01 0.00 6.52 7.83 0.02 99.50 61.69 24.15 0.06 0.00 0.00 5.70 8.34 0.05 99.99 60.68 24.50 0.13 0.00 0.01 6.03 7.90 0.04 99.30 61.34 24.51 0.17 0.02 0.00 5.91 8.17 0.02 100.14 60.27 24.57 0.23 0.00 0.00 6.32 7.87 0.04 99.31 61.05 24.90 0.13 0.00 0.00 6.70 7.72 0.04 100.54 62.10 24.27 0.19 0.00 0.01 5.55 8.40 0.04 100.55 62.15 23.79 0.12 0.02 0.00 5.03 8.63 0.04 99.79 61.63 24.27 0.10 0.00 0.00 5.50 8.55 0.02 100.07 62.11 23.44 0.12 0.00 0.01 5.02 8.68 0.07 99.45 63.10 23.44 0.30 0.01 0.01 4.50 8.88 0.07 100.30 62.90 23.49 0.29 0.01 0.00 4.74 8.88 0.09 100.39 62.55 23.57 0.22 0.00 0.00 4.81 8.72 0.10 99.98 63.33 23.60 0.17 0.00 0.00 4.86 8.83 0.06 100.85 62.83 23.48 0.23 0.00 0.00 4.78 9.04 0.06 100.43 62.85 23.69 0.24 0.01 0.01 4.83 8.80 0.06 100.50 62.77 23.48 0.23 0.00 0.02 4.69 8.73 0.07 99.99 63.78 23.47 0.20 0.00 0.09 4.63 8.88 0.09 101.14 62.91 23.39 0.15 0.00 0.00 4.65 8.86 0.06 100.01 63.00 23.49 0.11 0.00 0.00 4.67 8.88 0.07 100.24 62.98 23.42 0.08 0.01 0.00 4.76 8.68 0.09 100.02 63.62 23.78 0.12 0.01 0.00 4.79 8.70 0.11 101.12 68.83 19.83 0.13 0.00 0.00 0.21 11.32 0.06 100.38 69.07 19.97 0.14 0.00 0.00 0.30 11.47 0.06 101.00 69.22 19.71 0.11 0.00 0.00 0.06 11.57 0.06 100.73 69.62 19.61 0.04 0.00 0.00 0.08 11.36 0.06 100.77 68.75 19.54 0.04 0.00 0.00 0.06 11.34 0.08 99.82  Si 2.74 2.78 2.77 2.72 2.67 2.69 2.78 2.68 2.67 2.79 2.73 2.68 2.75 2.78 2.74 2.68 2.67 2.68 2.68 2.76 2.77 2.78 2.68 2.76 2.70 2.71 2.69 2.72 2.70 2.71 2.69 2.69 2.70 2.74 2.71 2.72 2.70 2.70 2.74 2.76 2.73 2.77 2.78 2.77 2.77 2.78 2.77 2.77 2.78 2.79 2.78 2.78 2.78 2.78 2.99 2.99 3.00 3.01 3.00  Al 1.26 1.22 1.23 1.28 1.33 1.30 1.22 1.33 1.32 1.21 1.27 1.32 1.24 1.22 1.26 1.32 1.33 1.32 1.31 1.24 1.23 1.22 1.32 1.24 1.30 1.28 1.31 1.28 1.29 1.29 1.31 1.31 1.29 1.26 1.29 1.28 1.30 1.30 1.26 1.24 1.27 1.23 1.22 1.22 1.23 1.22 1.22 1.23 1.22 1.21 1.22 1.22 1.22 1.22 1.02 1.02 1.01 1.00 1.01  Fe3 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  Mn3 sum1 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.00 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.01 0.00 4.00 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.00 0.00 4.01 0.00 4.00 0.00 4.00 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.00 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01 0.00 4.01  Ca 0.25 0.22 0.23 0.28 0.32 0.31 0.22 0.32 0.33 0.22 0.27 0.32 0.24 0.23 0.26 0.33 0.33 0.32 0.32 0.24 0.23 0.22 0.31 0.25 0.31 0.30 0.32 0.29 0.31 0.29 0.32 0.33 0.31 0.27 0.29 0.28 0.30 0.32 0.26 0.24 0.26 0.24 0.21 0.22 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.23 0.22 0.01 0.01 0.00 0.00 0.00  Na 0.74 0.75 0.75 0.69 0.66 0.68 0.78 0.66 0.66 0.76 0.71 0.66 0.75 0.76 0.73 0.65 0.68 0.67 0.68 0.72 0.75 0.75 0.67 0.72 0.67 0.68 0.67 0.68 0.68 0.68 0.67 0.64 0.68 0.72 0.68 0.70 0.68 0.66 0.72 0.74 0.73 0.75 0.76 0.76 0.75 0.75 0.77 0.75 0.75 0.75 0.76 0.76 0.74 0.74 0.95 0.96 0.97 0.95 0.96  K sum2 ANORTHITE 0.00 1.00 0.25 0.00 0.98 0.23 0.00 0.98 0.23 0.00 0.98 0.29 0.00 0.99 0.33 0.01 0.99 0.31 0.00 1.00 0.22 0.00 0.99 0.33 0.00 0.99 0.33 0.00 0.98 0.22 0.00 0.99 0.28 0.00 0.99 0.33 0.00 0.99 0.25 0.00 0.99 0.23 0.00 0.99 0.26 0.00 0.98 0.33 0.00 1.01 0.32 0.00 0.99 0.33 0.00 1.01 0.32 0.00 0.97 0.25 0.00 0.98 0.24 0.00 0.98 0.23 0.00 0.98 0.31 0.00 0.98 0.26 0.00 0.98 0.31 0.00 0.98 0.30 0.00 0.99 0.32 0.00 0.98 0.30 0.00 0.99 0.31 0.00 0.98 0.30 0.00 0.99 0.32 0.00 0.97 0.34 0.00 0.99 0.31 0.00 0.99 0.27 0.00 0.98 0.30 0.00 0.98 0.29 0.00 0.99 0.31 0.00 0.98 0.32 0.00 0.98 0.27 0.00 0.98 0.24 0.00 1.00 0.26 0.00 0.99 0.24 0.00 0.98 0.22 0.00 0.99 0.23 0.01 0.98 0.23 0.00 0.98 0.23 0.00 1.00 0.23 0.00 0.98 0.23 0.00 0.98 0.23 0.22 0.00 0.97 0.00 0.98 0.22 0.00 0.98 0.22 0.00 0.97 0.23 0.01 0.97 0.23 0.00 0.97 0.01 0.00 0.98 0.01 0.00 0.98 0.00 0.00 0.96 0.00 0.00 0.97 0.00  HIGH ALBITE 0.74 0.77 0.77 0.71 0.67 0.69 0.78 0.67 0.67 0.78 0.72 0.67 0.75 0.77 0.73 0.66 0.67 0.67 0.68 0.75 0.76 0.77 0.68 0.74 0.69 0.69 0.68 0.70 0.69 0.70 0.67 0.66 0.68 0.72 0.70 0.71 0.69 0.67 0.73 0.75 0.74 0.75 0.78 0.77 0.76 0.76 0.77 0.76 0.77 0.77 0.77 0.77 0.76 0.76 0.99 0.98 0.99 0.99 0.99  K-FELDSPAR 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00  101  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0053137/manifest

Comment

Related Items