TRIUMF: Canada's national laboratory for particle and nuclear physics

Proceedings of the Workshop on Experiments and Equipment at Isotope Separators (WEEIS) : Harrison Hot… Buchmann, L.; D’Auria, John M. Apr 26, 1997

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
51833-TRI_1997_01.pdf [ 231.54MB ]
Metadata
JSON: 51833-1.0355472.json
JSON-LD: 51833-1.0355472-ld.json
RDF/XML (Pretty): 51833-1.0355472-rdf.xml
RDF/JSON: 51833-1.0355472-rdf.json
Turtle: 51833-1.0355472-turtle.txt
N-Triples: 51833-1.0355472-rdf-ntriples.txt
Original Record: 51833-1.0355472-source.json
Full Text
51833-1.0355472-fulltext.txt
Citation
51833-1.0355472.ris

Full Text

" .' TRIUMF '.' P.ROCEEDINGS .OFTHE. WORKSHOP'ON EXPERIMENTS".AND . . . . ; ' . ~ \ . - . . . ''EQUIPMENT AT ISOTOPE SEPARATO~' . ,... . . . ' . . .' J , • ' (WEEIS) .' " . . ' . HARRISON HOT SPRINGS, BRITISH COLUMBIA . . '. ..' . . APRiL 26-29,, 1997 . . .. ", ,:,. , CANADA's NATIONAL MESON FACILITY ASSOCIATE MEMBERS: . OPERATED AS A JOINT VENTUREB'Y: 'UNNERSITYOF AL~ERTA SIMON FRASER UNIVERSITY' . UNIVERSITY OF VICTORIA UNIVERSIty OF BRITISH COLuMBIA . . . UNIvERSITY OF MANITOBA ' UNIVERSrrE DE. MONTREAL . UNIVERSITY OF' TORONTO . UNIVERSITY OF REGINA . UNDER A CONTRIBUTION FROM THE NATIONAL RESEARCH COUNCIL'OF CANADA .... I. ." " ,. ," . , . ' " ' ' .. ,. , " ' " ~ , . ' ,,' , . PROCEEDINGS OF THE WORKSHOP ON EXPERIMENTS AND EQIDPMENT AT ISOTOPE SEPARATORS (WEEIS) HARRISON HOT SPRINGS, BRITISH COLUMBIA Postal Address: TRIUMF Publications Office 4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 APRIL 26-29, 1997 Co-editors: L. Buchmann J. D'Auria Introduction From April 26 to 29, 1997, the Workshop on Experiments and Equipment at Isotope Separators was held at TRIUMF and in Harrison Hot Springs to have a view of the future scientific program at ISAC and to prepare for submissions to the July 1997 TRIUMF Experiment Evaluation Committee meeting. About 80 participants presented and discussed experiments which were ordered according to four subject areas: nuclear astrophysics, nuclear physics, particle physics and fundamental symmetries, and condensed matter physics. The workshop started on April 26, 1997 with a TRIUMF-ISAC tour which included some muddy experiences for those who joined the walk over the construction site. Then, in the first session held in the TRIUMF auditorium, TRIUMF and ISAC were formally introduced by the director of TRIUMF, Alan Astbury, and the ISAC project leader Paul Schmor. After these presentation a bus was boarded and the workshop rejoined for a reception at the Harrison Hot Springs Hotel. The next day saw the resumption of the scientific part of the workshop in Harrison. In the fIrst session of this day details of the ISAC facility and procedures for submitting experiments were outlined to the participants before, in the next sesSion, the discussion of individual experiments started with the first presentation on nuclear astrophysics. Those sessions in which particular scientific issues were discussed continued well into Tuesday, with an interruption at Monday evening in which the four groups under the leadership of the convenors of the four subject areas met separately and discussed the requirements and preparations for individual experiments. The workshop dinner was also at Monday evening causing some people to move around in rhythmic steps. The workshop closed with a summary of the convenors of their subject areas and some concluding remarks by the scientific director of TRIUMF, Jean-Michel Poutissou. As in this previous presentation it was stressed that the TRIUMF Experiment Evaluation Committee (BEC) expects proposals for the ISAC facility for its July 1997 session. An extended panel has been set up for this session of the EEC. The deadline for experimental submissions to the EEC is June 13, 1997. The subsequent book contains the approximately thousand copies of the transparencies as they were presented at the Workshop on Experiments and Equipment at Isotope Separators as well as some additional information like the list of participants. The transparencies are ordered by the four subject areas, and not the time of presentation, to allow for an easier overview. I hope that this book my serve for a long time to all participants as a usable and useful reference to experiments which will be and are done at ISAC. Let me thank at this place the TRIUMF management, in particular Jean-Michel Poutissou, for making the workshop possible, and the convenors, i.e., John Behr for particles and symmetries, John D' Auria for nuclear astrophysics, K. Peter Jackson for nuclear physics, and Rob Kieft for condensed matter, for making it work. All of us are grateful to Elly Driessen and Maria Freeman for their help and their organizational skills they gave to the Workshop. We would also like to thank Anissa Ip for her help in putting together this book. Lothar Buchmann iii Contents Introduction L Buchmann (TRIUMF) ... .................. ...... ... .................... .. ........................ .. ........ ... . iii Section I: ISAC (Convenor: L. Buchmann) ... ... .... .................. ...... ... ......... .... ... ... .... .... .... .. ... ........ 1 Workshop Opening A. Astbury (TRIUMF) .. ..... ... .... .. .................... .. .. .... .. ....... .... ......... ....... .... ......... 3 ISAC Project Overview P. Schmor (TRIUMF) ........ .. ....... ........ .. ....... .... ................... ... ...... ... .... .... .. 5 ISAC Mass Separator P. Bricault (TRIUMF) ......................... ...... ...... .... .. .... ........ ... ..... .. ...... ....... .. 21 The ISAC Linear Accelerator R. Laxdal (TRIUMF) ....... ............................................................ ... 36 Remarks on Establishing ISAC's Science Program J-M. Poutissou (TRIUMF) ........ ....... ...... .. ... .... 45 High Power Target Development: History & Plans W. Talbert (Amparo CorpII'RIUMF) ...... ... ... .. 50 Section II: Nuclear Astrophysics (Convenor: J. D'Auria) ................................................... ..... .. 57 A Summary J D'Auria (SFU) ........................... ... ........................ ............. ................ .... ... ... .. .... ... 59 Constraints on 7Be(p;y/B from Elastic Scattering T. Shoppa (TRIUMF) ......... ......... ..................... 62 The Planned Seattle-TRIUMF 7Be(p;y)8B Experiment K. Snover (Washington) ............................ 64 The ISAC 7Be Beam Experiment L Buchmann (TRIUMF) ........... ... ........ .... ... ...... ....... ..... ........... 68 Experiments of Interest to Nuclear Astrophysics using 17F,18F and 56Ni Beams from A1LAS E. Rehm (Argonne) ............ ................. ........ .. ...... .......................................................................... 74 Ongoing and Future Experiments in Nuclear Astrophysics in Louvain-Ia-Neuve P. Leleux (Louvain-Ia-Neuve) ................ .. ............................................................. ......... ...... ......... 86 Decay Studies of Radioactive Isotopes in Nuclear Astrophysics L Buchmann (TRIUMF) ..... ........ 92 The 13N(p, yi40 Reaction J. King (Toronto) ... ....... ............ .. ......................... .. ..... ...... ................... 98 Measuring the 21Na(p, y)22Mg Reaction at ISAC N. Bateman (TRIUMF) .. ... ............................... 104 The 22Mg(p, y)23 AI and 23 AI(p, yi4Si reactions J. D'Auria (SFU). ............................. .. .... .. ..... .... . 108 The 150(a,yi9Ne reaction L. Buchmann (TRIUMF) ............................................... ..................... 111 Measurement of the 8Li(a,n)l1B Cross SectionR. Boyd (Ohio) .......... ... .. ... ...... .. .............. ..... ... ... 116 Nuclear Astrophysics: Experiments with a Recoil Mass Separator U. Greife (Bochum) ............... 124 The TRIUMF Recoil Product Detection Facility J. D'Auria (SFU) ............................................. 141 Electromagnetic Separation in the TRIUMF Recoil Product Detection Facility D. Hutcheon (TRIUMF) .......................................................... ... .... .. ........ .................................. 147 y-Detection at the TRIUMF Recoil Particle Detection Facility J. Rogers (TRIUMF) ............. .. .. .. 154 The Windowless Gas Target for ISAC G. Roy (Alberta) ... .. .................................... .... ..... ........ ... 162 Recoil Particle Detection And Identification U. Giesen (TRIUMF) ... .... .. ............... ..................... 169 Section III: Nuclear Physics (Convenor: K.P. Jackson) ....................................................... ... 175 A Summary K.P. Jackson (TRIUMF) ......................................................................................... 177 Nuclear Orientation and Nuclear Structure K. Krane (Oregon) ............................... .................... 180 Multielement Charged Particle Detectors for Research with Radioactive Beams A. Shotter (Edinburgh) ..................................... .... .................................................................. .... 190 Efficiencies of 37CI and 40 Ar Neutrino Detectors Determined via Measurements of fi-delayed Protons from Radioactive Beams A. Garcia (Notre Dame) ......................................... 201 Determination of Relative Sign of ParentlDaughter Hyperfine Interactions in Successive Decays via NMR-ON S. Ohya (Niigata) ..... .... .. ................... ..................................... 212 Nuclear Physics Experiments at Louvain-Ia-Neuve W. Galster (Louvain-Ia-Neuve) .................... 218 v Coulomb Excitation in Inverse Kinematics with Radioactive Nuclear Beams R. Casten (Yale) ... 227 Experimental Studies of Interaction and Properties of Neutron-rich Nuclei at ISAC A. ReshetinlE. Konobeevski (INR RAS) ..................................................... .................................. 239 Prospects for Atomic Mass Measurements with the Canadian Penning Trap Mass Spectrometer K. Sharma (Manitoba) ............................................................................................................... 249 Laser Spectroscopy in RFQ Traps 1.K.P. Lee (McGill) .......... ......... ...... ............................. .. .. ... .. 258 The 81t Spectrometer 1. Waddington (McMaster) ......... ... ............... ... ......... .......... ....... .. .... .. ....... 271 Super Allowed Fermi Decay of 74Rb D. Moltz (Berkeley) ........................................................ ... 277 Some Aspects of the Experimental Program at SPIRAL C. Le Brun (ISMRA) .......................... ... 284 Section IV: Condensed Matter (Convenor: R. Kieft) ............................... ............... ....... ......... 291 A Sununary R. Kiefl (UBC) ... ........................ ..... .................................................. ......... ..... ... ..... 293 Solid State Physics at ISOLDE D. Forkel-Wirth (CERN/ISOLDE) ............................................. 296 Perturbed Angular Correlations (in Semiconductors) T. Wichert (Saarbriicken) .......................... 305 Studies of Defects in Structural Intermetallics at ISAC G. Collins (Washington) .... .................... 319 Solid State Studies in Oxides: Requirements And Experiments R. Platzer (Oregon) ................... 326 Surface Science with Nuclear Spin Polarized 8Li H. Ebinger (Marburg) ..................................... 332 Probing the Vortex State of Superconductors R. Kieft (UBC) ............ .... .............. ......... ... ..... ..... .. 339 Physics Just Beneath the Surface of High-Tc Cuprate Superconductors M. Gingras (Waterloo) .. 349 j3-NMR on Point Defects in Semiconductors and Metals B. Ittermann (Marburg) ....................... 361 Optically Pumped Polarized 8Li Beam for Material Studies A. Zelenski (TRIUMF) .................... . 368 j3-NMR as a Probe of Small Structures and Interfaces R. Kieft (UBC) .................................. ..... .. 374 On-line Nuclear Orientation with Insulating Hosts B. Turrell (UBC) .......................................... 379 Accelerator Mass Spectrometry at ISAC R.R. 1ohnson (TRIUMF) .............................................. 388 Section V: Particles and Symmetries (Convenor: J. Behr) ....................................................... 397 A Sununary 1. Behr (TRIUMF) .................................... ....... ..................................................... .. 399 The Electron-Neutrino Correlation in 32Ar Decay E. Adelberger (Washington) ............... ............ 402 Symmetry Tests with Nuclei Polarized at Low Temperatures 1. Deutsch (Louvain-la-Neuve) ..... 409 Weak: Interaction Studies with Laser-trapped 21Na M. Rowe/G. Gwinner (Berkeley) ................... 420 The 82Rb j3-asymmetry Experiment: Progress and Plans D. Vieira (Los Alamos) ......................... 429 j3-v Correlations in Laser Traps 1. Behr (SFUII'RIUMF) ............................................................ 434 Laser Trapping and Cooling of Francium Obtained from a Radioactive Source H. Gould (Berkeley) ................................................................................... ................................ 444 Laser Spectroscopy of Francium in a Magneto-Optical Trap W. Zhao (Stony Brook) ................ .. 448 High-Precision Experiments in Traps and Storage Rings 1. Kluge (GSI) ..................................... 456 Symmetry Measurements at the Canadian Penning Trap G. Savard (Argonne) ............................ 467 Section VI: Nuclear Orientation (Convenor: P. Delheij) ......................................................... 477 Fundamental Physics at the Nuclear Orientation System: Working Group Overview P. Delheij (TRIUMF) ............................... ...... ................ ............................................................ 479 APPENDICES ............ .................................................................... ............................ .............. 483 Ust of Participants ................................................................................................................................... 485 Program. of the Workshop ......................................................................................................................... 488 The ISAC Facility at TRIUMF: A Prospectus ........................................................................................... 491 VI · Section I . ISAC' Convenor: L.Buchmann • TRIUMf Workshop Opening A. Astbury Director of TRIUMF • Ca{1Qd.o.'~. Nabona\ \..",b .MQn\\:obo.'Mcu\l'eaH~~\~"c'fc..,!;o • B~~\c. Sc,ev-oce. f"'c.ili\...· 5ubo\:omic. ?h"S\CS r500Me'lc;'iclo~ro~ -----.'J '.l LI-\--15"0r'1A",~ J • Nuc\ea't flh~s\c.'i:. spec.\.'fOme\:efs: '("\, p,p .... SAS"?: Po.t\\j . CHAOS. • P",,.hi:le. "Ph;jsic.'i:. : on-site : 'It I r-e'PY . . ,~t--~\te. tt>\e. SNO: ~ESY.' ......... "'lC.nn. •• pn. · .... :.:., .. " :" :',.:"': . ,' : .. '~ ' .~ . ." : .: . ' <,.~.>~~ . :., ! ~: :I' ; " ":"" ; . :. ·l~to\X! ... , tod'Q. ~O:'fVMc~ut\CoI5·~ · Lite Sc.iencis • MediCa\·?tostam ~ b-eo.\:menc J • 0. histot::! of ?ion..\:.hel'o.p':i rr- b'tQ,,,:\:l,)mo\)t~ (<a3) ~~~,~ec:\ t-L"'I'o.+ . ?lo&ok C"'t\Ce-tL~\q) • pToton·the.'fap.:::I ' \'tIe\o.no~ '*" \:ne ~ . "BL2C. ~1oo~'I'. : .f\l!l: pmitn\. at .... l..US: ~1\5 . : no'9l t~Ul\'e<l f.'2.oi'\I~~"f: o ~ton Iffad,o.tiD\"\. .fac\li~.!l • 5 i~\r. Event \lp~,~h I" so.\:e:\\~\-£ e\t:.c:h('t\i(.!. CP42 • NOR"D10N isotope ?1"odoo:\on TR"30 . Main c:.~clo\::fon • col~boro.bOn.: E.BC.OI smo.\l G~cId;.TOnS • cO'ntro.cl:. G-rommon • explo&i'(~ de\.ee\'ot" ~l 'te~~nt. "'-~ obs ~'\4 · ....... . • l"ec.ent ~~ : ,e~c\:.\oT\ ct. \<AO\-l pto-poso.\ ~ te'o '"",. • a?~to)\, q~eat$ ot wo\t.if'.9 -to't \<AC».l • FUtufe. :rune 'qS'" "~J.11~t:leotS. o~ted~und\"9 , : l e; ~n\;~i" ~\C. ~tI)m - inft.('Ashuc\ute'tO\e. . *** • cu'\\d 0 'tocilOOo\-ie. ceom~\~:!,SAC: \.'5l1a'l/u... .. *~ .~ in 'Ki..,..a" CO\'li.t~~ to ~ in CE~" ' i30M/~t!. _ • TRl UM f \!> 0. \o'b ~ ~OO tunhme ~[~AS.,.s\ude~ - ~ "3~:5.1,8/~· • im?'emen\:.\"9 Cl "n ... e 'iea.-r 1l\Gn • • Apt\\ ~~b \~J ~ '\~~d o.:l~ . • ne\-.'tul'\d.S h t.\<\c.t:: {c,~ A~,;,\ 2.oco 3 4 • feh'Q4 "N~'to KAON bu't"Ye~" 1:.ol"R\l)Mf • Ap\. ' q4 ?'toQuce 5~ea't ?-on .... $40M/~'t \nc\ooe.CE~N • Jl)ne'q4; CERN/L\-\C • l5A( uP9ioded ,\SOL \OrR \.SMeV!u. • BA~ \ c. ~'folj ?'fOposo.\,. L. $1'l"M I • te\l\-si'tect lSAC - P055\'b\\\be5-t..oohm\te6.:>\orB ~\-SK..v • June ''15 QWD.'fdea ~ \b1M (Fed.s) 1f,Q-7M ("B.C) • ~o I5AC' ?to?e-r\:j" \.5~'Yu. p\an-£o'f\OOtA . • Costs \nc:re.a.sed. $\<a-7M _~3.Mex£>-tac. $ \5'.ct'\ ~t\es O??tox; $ 5D M to\:.o.\ • Arr\. 'en Teo.c.hed. 5\:a.~eot ?u\\\ns ?toS· \\\ t>'oce. • TR\UMf~ futute. ~ t.he" ne~t. 13 'j,e.a'f'; . • mo.~o'\ 'te\)\e'W \o.te~~/ea't\~ qq • neeo. tuncl-o \'(\ ?\ac.e Ap\ 2000 • 'vino.t \5 \n'the \-UN1e. ~'\ TR\\)Mf • roo'\e 0' C.E'?N/ \...\J.,C de ~ "I~p..C to 'n \£jhe'f e"(\e-rg'::l . • u~Sta . .1 ('0 eo.c:" ek-\\~v:: • 15f:l..C bU\\l:o.nck ~e.'N\c.e..o. "\"\ -.,J ISAC TRIUMF~ --_. ISAC PROJECT OVERVIEW P. W. Schmor April26, 1997 WEEIS APRIL 26. 1997 ISAC TRIUMF~ ~-----. ISAC HISTORY • FIRST PROPOSED for TRIUMF - Mount Gabriel Workshop in 1984 - Parksville Workshop In 1985 • defined basic accelerator parameters • T1S0L FACILITY - Operating facility • provides target/yield & experimental data • ISAC FACILITY - Funding Approval on June 1995 • 5 year project (April 1, 1995 to March 31,2000) - Technical Construction (Federal Government) - Conventional Construction (Provincial Government) WEEIS APRIL 26, '997 ~ r:n ~ {i ~ ~ ~ a ~ V}~ • ...... C') ~ ~ ~ ~ ~ ~ 0 ~ ~ ., ~ .... ~ ~ (Jl I5Ac..: R a.ct..' cr-a..c.. J,:v<.. :r O"M. 13.(.~ 0..#- -rRIUt-tJ:. .... --.._. " ._" " ~~ EST' ~~'. ~ 9 ·" " ·" ' 105t.1HZ DT) H 9 , J:Ac; Liry ISAC IS~ ~/~+~ ~ ~O) + MErrBT, 1IIMt4~ ", . ILOW 7)/0/) .. ,. 0 : :'~I~;g'E'N" 'E'(i~~;;-PiRIMENTS~J .. EXPERIMENTAL ~ tr.> 1-. aG< ~ f!v..c. ~ BEAMLINES AND EXPERIMENT AL FACILITIES, ~ i l :I ' 'll"'J~.-J ( ) V l >', './ . I f ~; I I ~ t>ir.;~;;{~) ... f("':''':'' 'p,,,r;' !1 ' ' C':J ~ASS 8"",,,,,,"£, m , I • .-"'" I ·' SEPARATOR' " BUNCHER ~lIS-1 ~' .. , (11.7MHz) l EL2e~" ! 1 HALL ISAC UNDER CONSTRUCTION. - "1 r II . _ I ·Cb TISOL PROTON HALL FACILITY EXTENSION TRINAT-oL:.... FEET 0 10' 20' -..-J __ ' i. I L..._ I o II i !." J I~, " . _____ ..... _ .. J -. I h,:~..,.. ,1 --Llj,-"" I r)11 l'P J SERVICE ANNEX , OPTICALLY PUMPED~_ POLARIZED ION SOURCE (OPPIS) .~:..l. t " " I I , MESON HALL /1- Cc9 C e,rtt~ : . SOO No..;' J DO p..J} CHEMISTRY ANNEX III TR 3D ISOTOPE PRODUCTION CYCLOTRON CP 42 ISOTOPE PRODUCTION CYCLOTRON TR 13 ISOTOPE PRODUCTION CYCLOTRON MESON HALL EXTENSION 500 MeV ISOTOPE PRODUCTION FACILITY MESON HALL SERVICE ANNEX TRIUMFe.. ,ISA~ ISAC FACILITY • ISOTOPE SEPARATOR and ACCELERATOR 4,900 m2 of Building Space Beam Line 2A Tunnel Target Service & Office Building • Target Vault, Storage Bunker & Hot Cells, Penthouse Mass Separator Pit & Mezzanine • Accelerator/Experimental Hall & Counting Rooms 6, 100 m3 of Concrete 182,000 kg of Structural Steel 20 ton & 35 ton Rolling Cranes 3 MW Power & 250 kW Diesel Generator MASS SEPARATOR PIT ~',h;~'i ' l TARGE.T MODULZ AREA 12A MODULE STORAGE .----- --HOT C!LL SUrrOAY·NOAlli o o HOTC£LL NORTH/SOUTH TARGET. BE-AM LINE SUPPORT AREA CO/'llTAMINATlON CONTROL. 264' LEVEL CD ,[] i1" ~" l !li;;1idi! i " MASS SEPARATOR IHllA"'!'\( CD SIRVICE ROOM T.H. ACC(SS -io,,-----AIR lOC'S "1"- (I • ' . ..n I I TAnCET HAll :i I I MODULE ASSEMBLY 'j TARCET MODULE I I STORACE AREA ~ , , IT] I , , , I I .~ , . .... "r~~sll ION AUtOT( TARen SOURCE FIRST "APl.OUPt:C IONISOURCl CONTROL AID CONTROL ASSUmLY COLD LAB ROOlt ROOlt ROOM '--- ElECTRICAL \.,.....J 1"'-- f\ SERYlCE \.: , '-_...J... ____ T ROOM f.:-II\/JJ ili·'II' I ( "'VAlOR !/\JIIIAIR !iliHil 278' LEVEL 280' LEVEL "-l TRIUMFQ~ IZ/H£ COU"tulO 1100 ... 1 ABove AT U. 30 • . 00' ,-----------, /\ ~:-: ! I --, I II Illp:~~ .,~~~i~ .. i~"·~~~-._II1-IIIII-I.I~~- ~ ] 289' LEVEL ISOTOPE PRODUCTION Projectile Energy Intensity Beam Size BEAM Protons 460-500 MeV ~ 100~A ~ 1 c~ TARGET Target Length Power Load Temperature foils, powders, liquid =20cm ~20kW 25 - 2600' C TRIUMF& ISAC --+ 00 BL2A FEA TURES • Independent of Other Cylotron Beam Lines • 1 00 ~A Facility • TISOL (BL4A) Operates during & after ISAC construction - Provides experience & experimental results - Useful test facility for targets & ion sources • Includes 2 Target Stations - Enhanced reliability - Less down time for Target/Source changes • Opportunity for Future Expansion - Space to North & East for Additional Facilities ION PRODUCTION • ON·L1NE ION SOURCES Types SiJrface, CUSP, ECR, ~·wave, Plasma, Laser, 7Be • ION SOURCE TEST STAND Operating Since August 1996 LBL Collaboration inititated with CUSP Ion Source • OFF·LlNE ION SOURCE Being built for accelerator commissioning For generation of stable isotopes 78e TEST STAND - Under Construction - Final Destination beside Off-Line Ion Source • Permits Simultaneous RNB Experiments TRIUM~ ISAC - .... ION SOURCE TEST STAND • OPERATIONAL SINCE AUGUST 1996 • SEVERAL ION SOURCES BEING EXAMINED - gas efficiency, emittance, energy spread, divergence, ... • EPICS Evaluation for ISAC • LOW ENERGY DIAGNOSTICS EVALUA TlON - wire scanners, harps, Faraday Cups, Emittance Scanners • LBNL COLLABORA TION - CUSP Ion Source IGUN SIMULA TlONS OF EXTRACTION OPTICS GIOS SIMULA TIONS OF BEAM TRANSPORT l-1~ ~ C"RI.) u I ! !L~co~ .. eGic.t' M~I ____ ~ ____ -L ____ ~ ____ ~ ____ + u-l I"'~""""'!"':' •• f" ' ::r-- . "", .' »-1 ,: . , . . " < ,)-1 ..., . 1 ( ' .":,,T' u~I----'----'r----r~--.----+ ~ .. 6$ .. 11 ... mm ~ 1 ' C"i"". f s ... ",.(~ (0 ... ,-(,,<,0" u » •..... ". i:. ''''~\ ~r s~ " :J N ' ~~ : :- .; '~r ') u~I----,----,r----r----.----+ u .. as .. 11 ee mm Oc.hr·(C ;.y.<' 41..f " c.~.eGi(;'." .: " , ... ;., » -... '; 2)-1 . "~~'" ul ~ "I .. 8' mm .. o ~ > =s;;:=--~ .. .. as eo mm 87 .. 11 .. ,,~, ~' ~~ m~ I ~~ ~~ " I O~j"~ :=;j ~ i~~ f, ~i 22-APR-1997 7. " " Sra S;,~ llf.! ! HI .1 •. " ': ." 102 fI(/;'-:-~J I " " , /..' ,:1if: Ii ili • I • i1. !H I"'!! ,._," . ."'RW ~ ~mll- O.,ltnm m-mra 'RW~ .h,,- 0 .11 mm . lRNS .... ht- o .~ rom. 10 t .... I.l Joe. I m . Q) ~'J'd ("'t,)JItour = 4 . 3~ 2RYS dh - 3.$ mrbd. ~ til e •. ' e!l 0 IU 81.0 81 .' 7.0 0 V -' mm ? 0; ~ I. , e. g Tl)lill u' C). _ a E' ~ " el, • 14'" ...., 15.0 34 .9 e$.$ ~ I I 10° 10-' ... 81.$ ., .. mm I I I I I ", d ~, - \ \ # of Vollocc pl • . - ~1. - # of Position pls. = ~ 1. Beam E:nergy = 31.50 I<~V \ \ \ 90 .7- 8G.7- G3 .~: \ 0 .55 0.48 0.25 Emillence error = 12 .77. I I I I I 0 .0 0.2 0 .4 0 .6 0.8 1.0 7T-mm - mrad 16 :28 : 5~ -I-<0 12 Sur .face = fl~wa~ LoVl 9o()l'ce e:cR 7:-3 0.001 0.0009 0.0008 0.0007 . 0.0006 " " co S 0.0005 .t::. '" "C CD . 0.0004 0.0003 0.0002 0.0001 o o ~o PUMP W~ ~'\~~ J~n . . ., 'I . ,l, ~m2co5 . Jell i.1 ij ;! 5 Ber I BEAM .... /. \ ....• SCHEMATIC DRAWING or THE ION SOURCE .---10 B.am CurrenV.'lBe.m Volt.ge ·Brlahln ••• • .-------- .-------15 20 25 30 Beam Voltage (kV) ~-35 ·40 . ./ , ~ ~5 50 ....... o I eo TRIUMF~ ISAC .- .... 50 BL2A STATUS 40 • VAULT UPGRADE COMPLETED 30 • JIB CRANE INSTALLED • EXTRACTOR INSTALLED in APRIL 1997 - Beam Extraction Planned for May 1997 '. ~o • COMBINATION MAGNET INSTALLED • VAULTITUNNEL CORING COMPLETE • INSTALLATION of TUNNEL COMPONENTS in FALL 1997 VACUUM PUMPS at TRIUMF • QUADS & POWER SUPPLIES at TRIUMF ] 10 o • 2A VAULT DIPOLES (27 deg) DELIVERY in OCTOBER I -20 • TUNNEL DIPOLES (15 deg) DELIVERY in SEPTEMBER • 2A STEERING MAGNET DELIVERY in SEPTEMBER WEEIS APRIL 26. 1997 ·' ··'f·1' .. \ : I~_(>J I·;I'.~+ ·BL2A EXTRACTION PROBE • ; SilO ~ r r· ~·v INSTALLED IN CYCLOTRON WIll: ; ,"I'lm I I I TCT2 ~ \ WSH ~ WSTJ ~ WST2 ~ Existin9 burm Vault 'tItoll WST! ~ ) I I I -'.0 o 10 Bearr1 LlYle Com ~Y\R /'tk I I ~ TCT! " \ ~ Vault well I 20 JO 2A BL2A FROI\IT END '0 11'EEIS APRIL 26, 1997 ~ ~ TRIUM~ ISAC - TARGET /SERVICE BUILDING • TARGET VAUL T - Target & Beam Dump - Module & Target Storage - Hot Cells • TARGETIBL2A SERVICES - Faraday Cages for Ion Sources - BL2A Power Supplies - Offices & Meeting Rooms - Chemistry Laboratory, Ion Source Testing Laboratory • PENTHOUSE - Heat Exchanger - Exhaust Filters . .'0:t .,. Ccntcinment Box Top Cop Pumpin9 D:Jc! yt!W of [n'ronee &: £XU Sid, Pon,l. .. \~u.t::r.\IiItt':W\.rw-:J TRIUMFe ISAC '-TARGET VAUL T -" I\.) • Two Target Locations (East & West) - West Target Ready only for Inital Operation - Each Target Location has 5 Remotely Serviced Modules • module #1 has proton beam diagnostics • module #2 has target, ion source & ion extraction optics • module #3 has proton beam dump • module #4 has ion beam optics & diagnostics • module #5 has ion beam optics & diagnostics Shielding in place for 100 I1A • Target Module Storage Space • Two Independent Hot Cells • Working Group Developing Concepts for High Power Targets 3 Ion ~eQM Modules j:;:~~"1"~/~:~::" >'~T-' ~ rJ~l1 I I"l~ r ~ _L . "... . ~-- I-I -~~ Hr----~"!~----~~I~----~~ I ~~ . ..... ~~~ , . ~ ~. ~ . . ''J': .. ~~ 1 {\. . ~r:r ·1 : : . : , ::: " .Il . . . ' .~ . : " ~ . 101.10 101.00 . .. . ', .• .. ; .. JlI----I ': ';"1-;; : '.~ ' I-,/:.,.W ~~~~~L~G~''''r-~ .... ~' *;;;;;;;;;;;~~-.~J ~ - t -f-J ~~ - - . H E 1+ i -1.. _ .... __ 1 ........ "-....... 1 I - . 1 .... J us \: = .. I • - - '.I:: ' .... ~ -.... - .... ~-... --'. -- ::.... -;11 ~lJ.OO1)p.- 1."10 uoJ- ~ .......... ~.;;:::.,~--= .. -- _I~~~~J.1I- ,,,,..~.,...... ~ - A • '.L. • • • . ---:::L ~ J . .. ' •. .  . . . .. . ~. . _ . ., .~ " .. ft · .. . ' . . .. , .. . • ... .,; . . . .! . ,. ~. ... d • . .. ... . . .. .4 17, 11 ~ '.~ ,<: I:;;> ~.' , i 1 · .. .. ., ",. .!q, .. . oq~ .. . ~ . .. .. ~ tlCH VQl..TAC( l~rs . .. ' '.4. .' ,4 . . ', '.' : 'DIOWaI iliON NtO (.(110(1( SteO.DN: 1 . " ... 278 ' I I I I I I I I I I I I A -~ I II - -=:-=- -=-=-:...--n-. I I I I R£"OV.:sL£ SHiElD STORA~ ? I J . . . " .. ~ ,: '\: I I I I I I I I I I I . .• <I .. ~';je.f- l0oduL, + sh;ddiVl.;j EL. 284' ~Joat . , . , .. . d .& • . : -.-' ..... --~ 4'-"" SECTIQN AA ~ . .. ViEWS SHOWING SHOWING WATER COOLING ROUTES MODULE APPROACH , Vaccum Flange, Feedthroughs & Seals at Top - Low Radiation, Hands on operation 195 em of Steel Shielding - within secondary vacuum system - contains ducting for primary vacuum system • for target & RIB systems - contains service chase 75 cm for primary vacuum - target, Ion source, diagnostics, optics elements - elements serviced & aligned remotely in hot cell , Transported to Hot Cell by Crane for Servicing STATUS of TARGET/SERVICE BUILDING BUILDING to be COMPLETED by NOV. 1997 , HOT CELL WINDOWS DELIVERED , MANIPULA TORS SPECIFIED MODULE TANK DETAILING NEARL Y COMPLETE - Tank Needed by Fall 1997 TARGET MODULE DETAILING IN PROGRESS ENTRY & DUMP MODULE DETAILING NEARL Y COMPLETE , STEEL SHIELDING 'Free'Source FOB Oak Ridge, TN , first 16 ten ton blocks delivered • 83 additional blocks purchased ...... U) TRIUMF~ W~ STATUS of MASS SEPARATOR • Preseparator • Concept complete • Magnet being detailed • 3D Magnet Calculations complete Separator TWO CONCEPTS 1 TASCC Separator System • Decision required by April 1997 2 BricaulVWeick System • Ready (or Design/Build Tender Includes Ion Energy Spread Compensation • Designs permit Mass Resolution o( 10,000 ISAC .;moss separator 0) b) , . ~ . m I5m!m=8e-5, 6E=O.O eV LlilllLJ , LJ[J ,. GMJ . [[], Om/m=B,-5, 0[=1.0 ,v [3J []ij] Om/m=B,-5, 0[=50 ,v ~ 00 , 'm/m-,"-'. ,,_m. " 0) ofter the mognetic seporotion. b) ofter the electrostotic energy compensotion @ Pierre G. Brlcaull. Oct. 1996 I J ~ !: ! 11 X~55' .O Y-2353.4 2-J222.' TC4~" '1'fQ(.r~ $h..'f-:fl'K SCI'" I((.e: R "-' 10,000 in 1+= 2.00 E-:: -torr: "uttll"'" ...... ~ , . . LOW ENERGY BEAM LINE (LEBT) • Electrostatic Optics prior to & (0110 wing Separator - Tune Mass-Independent (or given energy - Negative Ions require opposite polarity (or power supplies • Energy - 2 keVIAMU ((or accelerators) - 60 ke V (maximum (or low-energy experimental-area) • Magnetic Separator - A < 240 with Variable Resolution (Intensity) - Located in pit at target elevation - Pre-separator localizes unwanted radioactive Isotopes • Optional Energy Compensation (Separator at Potentiai) • Prebuncher (1 1.67 MHz time structure) . • Switchyard directs beam to Accelerators or LE Exp. Area WEEIS APRIL 26. '997 -" +>-J11.6a~ 366 [DIMENSIONS IN INCHES I STATUS of Low Energy Beam Transport • Power Svpplies being Delivered • Vacuum Pumps Delivered • One Spherical Bend Manv(acllJred (or Evalvation • Separator Area Stili Reqvlres DefinitIon • Support Structvre Concept awaiting Engineering Approval • ConsIderable Fraction of System beIng Manu(actvred ~ NORTH DETAIL "A" ISOMETRIC VIEW OF LEBT-BEAM LINE U .uo 1."/ H.'. ISAC Basic Accelerator Specifications • INPUT BEAM Energy Ion Mass Ion Charge • OUTPUT BEAM Energy (Variable) llElE Pulse Separation 2keVIAMU IqI/A~ 1130 + 1 (initially) 0.15 - 1.5 Mev/AMU ~ 0.1% 86 nS ~ U1 TRIU.~ ACCELERATORS • LEBT PREBUNCHER BEING BUlL T (11.7, 23.3, 35, 46.7 MHz) • RFQ (35 MHz) - TANK OUT FOR TENDERING - RINGS AND SUPPORT BEING DETAILED • BUNCH ROTATOR - optional- (35 MHz) • REBUNCHER (35 MHz) • DTL (105 MHz) - FIRST TANK (of 5) BEING DETAILED - RF TUBES DELIVERED - BUNCHER CONCEPT (3 @ 105 MHz) - QUAD TRIPLET NOT DESIGNED (4 required) • HEBT Bunchers not designed (many required at 35 MHz) • CHOPPER not designed (11.7 MHz) RFQ Ein = 2 kev/AMU • 35 MHz cw Operating Frequency - Every third bucket filled if beam prebunched • Input prebunched at 11.7 MHz - Sawtooth (~ 4 harmonics) - Provides high acceptance of dc beam - Leads to a good Longitudinal Emittance from RFQ - Provides requested time structure • Eout = 150 kev/AMU Split-ring 4-rod • En = O,251t mm.mrad • Tank: length = 8 m, diameter = 1 m Prototype structure (1.2 m) tested at full power Rebimcher Q/A~1/6 E=0.15-1.5 MeV/u Charge Selection Slit • ~ ~"qL.,,,, · ~~g,. g~gQ . .,~ J1; '. ~ ~ ~ ~ ~ fTP8"~'i3l1d'liSl "":";';'" '-. ~ FOIL . ~lt'~ §§ §§ "-. ~~M/' MEBT E=150keV /u ffi:~M/' Q/A~1/30 DTL 105 MHz LS4( HEBT --t> RFQ 35 MHz fI cui e ro..-+W L-c-.jd FEET o· S' , o· 111111 E=2kV/ u Q/A~1/30 Pre-Bunched @ 11.67 MHz ....... m ::: .. _ ...... _ .. "-"-".- .. _(0_"-;0-" -1,- , , - ;-- --- or-" --_--"-" - " - ',-" , rzrQ fank _._._.+ .. . '1'.I.,.,.,il';~'-' -mmmtmmmrm~· ... • : • '. " " - ; .. . • '._ ,": . ... . -' . . ~ : " ." , . -. ,', ," . ' I i ~ - ~' i Rr'~":' ~ _. .J- ' j : =t!lE-~-, : I :- " 0 ~t~,UCM I : - . ISJI OM ' O 1_ : L . . _ .. ..!- • • • • :r .. .. -.... ::1.. .. ::1 .. .. -... 0 t ... ' .... 1. •• ! . ~~ .. ~ . . . ~ . . --.J !.II r r r r r r r r r TRIUMF~ ISAC -MEBT, Stripper & Rebuncher • RFO to Stripper - 4 quads (rotated 45 deg) • 35 MHz Bunch Rotator Proposed • Thin Carbon Foil Stripper - Charge State Booster (qlA <: 1/6) • Charge State Selector - Two 45 deg benders - 0000 - slit - 0000 • Rebuncher - Compensates for debunchlng, 35 MHz • Matching Optics - 4 quads to match to OTL Tl. ~U o.d~ d.t., \ ij"/':' ')"'r T'l-.. ! @ T3 r, ... ""j..!f' TRIUM~ ISAC .-DRIFT TUBE LINAC • qlA <: 116 - . Requires Stripper after RFO • qlA <: 1130 -+ qlA <: 1/6 E'n = 0.15 MeVIAMU • 0.15 ~ EOIlf ~ 1.5 MeVIAMU • Interdigital H rf Structure • 105 MHz cw (every gth bucket filled if prebuncher operating) • 5 Tanks with 3 Rebunchers - each tank separated by quad triplet • 3 Bunchers preserve time structure & energy variability - 5.6 m long by O.B m diameter structure First Tank nearly ready for Oetailing T'f Ts-ft"'''f I,,, I' _~~ . ..t : .,,,_--!-:._-_-:-.. -- .=::~:I._~=-J:-,.:j .-=-~ _ ~_-~-.. . I.~J... ... _ -J£(£._h"i 5!l:~~/#&.i~~? .,. 3-;1 L s ftC DIL g-l ruc-iure. ..... -...,J TR'UMF~ .SAC ~'---+. LOW ENERGY EXPERIMENTAL AREA • Low Background Nuclear Spectroscopy Location • General Purpose Spectroscopy Locations • Two Neutral Atom Trap Locations on Mezzanine - TRINAT (TRIUMF Neutral Atom Trap) • Colinear Laser Spectroscopy Location - Polarized BU (or 7) Facility • Materials Science Location • On-line Nuclear Orientation Location • Ion Trap • He Jet Location X .. -IO' .O Y .. ;)4S4.0 Accelerated Beam Experimental Area • Recoil Spectrometer - Reaction Product Detection Facility (RPDF) - Working Group Established • 7Be Reaction Station - Working Group Established • General Purpose Scattering Chamber • Multi-Purpose Facility - Coulomb Excitation Station • Material Sciences Station l_lO~'r'" .~I ... ~-~r~rol' ~- ft-." - ~ ... - ~ ~8L " _ . ' :..v.. "... ... C ~ ~ P!! " . _. _ . ""-') , X--lot.O 1'·l222.0 '-»' .. 0 .... / ruruRZ -, R.r .Q ~-' .... / 1--109,0 Y·2t l ~.ae l·~'4 ,O V-() CPS ~~ *~~:H~~ . 2.')"'.0 ous \ ~JI.n •. o T_",'." l-l222 .' . ISAC Exp/Acc. Hall -"" co TRlum. ISA.~ .. EXPERIMENTAL HALL RIL 18,1997 ISAC MILESTONES • TRAILERS RELOCATED • EXPERIMENTAL HALL COMPLETED • TARGET HALL COMPLETED - includes second level office addition • BL2A COMPLETED • TARGET/ION SOURCE COMMISSIONED • RFQ COMMISSIONED - Off-Line Ion Source - 7 ring (60 keViNucleon) - 19 ring (150 keV/Nucleon) • DTL COMMISSIONED • FIRST BEAM for LE EXPERIMENTS FIRST BEAM for HE EXPER(MENTS Mar 96 Jul97 Nov 97 Apr 98 Dec 98 Dec 97 July 98 May 99 Sep99 Jan 99 Apr 00 TRIUM~ ISAC - ~ INITIAL BEAMS • PROTON BEAM S; 10 J.lA - Targets not ready for 100 J.lA - Radiation Protection in place for 100 J.lA • EXTRACTED BEAMS - Alkali from Surface Ion Source early 1999 (or late 98?) - Various from CUSP (?) Ion Source late 1999 • LOW ENERGY (Late 1998) - (S; 60 keV) - No Mass Limits (in principle) • HIGH ENERGY (accelerated) (Early 2000) - (.15s; Es;1 .5 MeV/amu) - MassS; 30 FUTURE POSSIBILITIES • Heavier Masses (smaller q/A) - Low Energy Charge State Booster • ECRIS (R. Geller et aI, ICIS'95 RSI) - no need for intermediate stripper for M < 60 • EBIS (pulsed) - Longer lived isotopes • Higher Energy (E > 1.5 MeV/A) - Add to Linac & expand building to East - New building & Accelerator on Upper Parking Lot • Cyclotron or Linac (?) -'-CD 20 -~ o '''-I r--.--.------.::t- I I _ ._.JI Ig~~ I I I I I I I I I I I I I I I I I I • I , I I L_. __ . __ . __ . __ . lJ u L..- r-,.---' ISA C Mass Separator P. Bricault TRIUMF with the collaboration of Helmut Weick, Hermann Wollnik and Will Talbert Schematic Diagram of typical energy and mass region for various applications of R. I. B. 10 20 50 100 200 Projectile Energy Intensity A (amn) Pierre 13rieault GANIL ]992 RIB production Primary )Jearn Protons 460-500 MeV ::; 100 ~lA Beam size on target ::; 1 cm2 Target Length Power load Temperature Target Foils, powders, liquid =:: 20 cm ~20kW . 25 - 2600 deg. Cclcius 21 22 Ion Production • On-line ion sources types; Surface, CJ]SP, ECR, Jlwave, FEBIAD, Laser • Ion source test stand Operating since August 1996 LBNL collabor~tion initiated with CUSP Ion Source • Off-line Ion Source Will be built for accelerator commissioning For stable isotopes production • 7Be Test Stand - Under construction and will be intalled beside off-line ion source • Will permits simultaneous operation of the LE and HE areas. "-C'l E I ~ , 10 "', I !" 10 • • • E 10'1 - - - - - .. - - - -- -'-./ • ..... . ~ E • ••• II .3 ~ 10 2-10 '''' I 10 ~ .;. . & -Li • I • 1.3 A' _ 13c. I~ 13 IJ 1 1 • • A (ainu) I~ I,/, _ 19;: 19p. . ti", "0 "- I t, I ,ut2(, - 2W .. I J4 HJI ~Pc. 31«. : 3'1-.4r, J~G{, :He... ~ kr - ~911r ~'A b ( 22/~r _ UIIlJt :121/1." , , " , I 100 • • P.~/O,OOO · . Torget Module -.. West Tgrget Stglion EL 284' • -. ' . ' ,' .... . . .. . ' ~ . ' . :. ' . . ,' . . '. . .. : -, ' ~ .. "! ' • . 4 " ' • • •• A~" . ..•. . ., . , 4"\ . : .... ~ .• .•• . ': : ~ . : ',' . , '. . ... . ' . ' '!' • : 41 ' • . ~ .', ,-. " .. j~--:i:~~;;;;;;;;;;;;;==i'fJ:=~nll.~· :,. ' : ~ .:' -24 Torgel' Module !'Lc~L!g[!Jcl SIo.!!Q!2 '/4- Co. Un •• (2) 3,e- CooliftcJ - £,wt,.clioft o.clrode " (2) ,-"",-,SP'::<... w5e - ::..~ \J.e-..J ~ ... ~f.. ~-£.>'t,""""," .:.:> ......... 1':1" .. -------f-- 0. j 0 0 0 .. 0 0 .. :': • 4' • ~ 00 4- .~ . . ff., ., . . " ; 0 °0 • o S':I"1""'r.. i [' 0, j I 'j'_O:O'; .' O. ; ! '. . . o 0 ~ .. ! • .. . ': " ,: ~ .; .. ~" See i LI~~~~~ - -.!-~I~-S~-rfoce Source 25 26 Y Y-MAX = +/- 0.050 TlU Z -MAX = 4.260.U x X -MAX = + /- 0.050 TlU Z -MAX = 4.26[U PlOT OF (Xversa Y) AT Z = 4.262£+00 llU DATE 0'/1 P/Il' '7 :'" 'J : 4- 10 'jj IJ:tiU:4'i-27 TITLE OF GIOS INPUT: ISAC MASS SEP~~ATOR TR54 ; 8/ ovril/1997 I I I I I I I I I I I I . r I I SIZE OF V~NDOW DEFINITION OF THE INlTIAL PP~SE SPACE X = +/ -1.000E -03 lLU I I I I I I I I I I I. I I -6 -4 -2 0 2 4 6 5 A I 3 1 o -1 -2 -3 -l I -5 X= +/ -7.500E-02 TlU Y = + /-S.OOOE -03 TlU STATISTICAL INFORMATIONS A = +/-1.000E-02 RAD DM = 1.500E -{}1 t 100% OK = O.DOOE-HID *100% Y = + /-1.000E -03 flU B = + /-1.0COE -J2 R~D NUMBER OF STARTED PARTICLES: 2000 NUMBER OF ARRIVED PARTIClES: 2000 (100.0 7.) NUMBER OF COUNTED PARTIClES: 2000 (loo.0 7.) 28 <p. ft,1.~O e '" i+.~· L/r" I.m "" (~/~ .... )lf · :s 1. 91 -.:) 'Dii ::: 1. 8~ .... 29 1. D I IT] II ~Il === == 11[]18~81 ' . 15' llU I·"'. · ~ • • " \I 1·,.1 •• / . . . ... TlU l-mll: • n .... u 1.S. ~ ~·,.v~I' C" t.v-id J r---.a... ~e...s til 'er <" 10 /V S eJ f:ft3i AD < IOi/;...~ A£ < IOu! II-..'Jh. ~~~ ~l;;l.. IJE-/w ~.AM~ ~ (0 N 2t>uJ M,Gvr f,() -' &c:.1l. ;f ~ D "'-/ £) .e# (2.., y~" tfl-) Cvs f 6. 30 <2w 30 I i i I i I i i @ Mass separation after the first stage and after the second stage ~ Ir\7\7\l m/6m=10000 . 6E=0. eV UlliW llVJLJJ 1i1 , lQM], m/6m=10000. 6E=± 2.5 eV 'lfMl , oonJ, m/6m=10000. 6E=± 5 eV ~ oonJ m/6m=10000. 6E=± 10 eV X=121.04 q:>aaEllDla=iilQI.w::;eE;l?r=rY=2762.0 Z=3534.0 I ~~~~~~~----------~~----\. @ Pierre Bricault April 1997 X-554.0 Y-2353.4 Z-3222.4 M 4SS //'().n-je Q.u:.., Ii.,.{ ,~ .... y--~.,. <~38 v~ < bokY HaM dWj-<w<' ...... 13~a-. ~·IftU<4.. ~Art. :l. __ 6 < SOlCnr"" 'It<1l>A. fl1 <U1 1tb.l~l'\N..e& I'~ R ~ /0, DIDO 7 ~JA..J.'a.LA../r:' • 'J;.~~~~ tP.~2.3~ 7>~p ..... 1uM. ~ Ibo' 4:.~~ """--Jl.-. />'. &.....~ .MJt.,,-,/ ~ .f). ,'0 ""-5"1' '. ~ ".u.<-I JI- .f.h:!c 'J).../.t..J..-.' ~ ;1.S,AM-'2).L/~' a..-y- :z x12-r ~ Ii .......... ~ £-.'1-~ .,(p " £...~ ~ c!:.J. a.....-t-. ':1.2.,-. 5-7' ~D~ ,;z >«. .J4,c. '"7)~~ ~~ ;u 1z.r 'fly!u.h-~ ~. 1,.-.. € .... tu-. ~ £....'/- -f'r c ..... :f. ~ ~ t:....-.. u......-tw- .2..-. ISAC Beam Commissioning Sequences . ., o D • Mass Separator ( with stable beam) • Equipments needed: Ta oven, Surface Ion source, Alkali elements; Na, K, Rb and Cs. - Ion source - Matching section I (exit module) - Pre-separator - Matching section II - Mass separator, first stage + H. V. - Matcing section III - Mass separator, first stage Mass separator, second stage -LEBT • Measurements required: - Beam Transmission at different location - Emittance; H and V - Beam profile along thebeam line at various energy and intensities 31 32 ISAC Beam Commissioning Sequences • Target Station with Proton beam on target • Equipments needed: Ta oven, CaO or Ta target, Sur-face Ion sour-ce - Ion source - Matching section I (exit module) - Pre-separator • Measurements required: - Beam Transmission at different location - Emittance; H and V - Beam profilc along thcbcam line at various cncrgy and intcnsities - Production yiclds ISAC Beam Commissioning Sequences • Mass Separator ( with R I B) • Equipments needed: Ta oven, 14.'O"~ t't.....k..:.u. : Surface Ion source CR.-.c....1- .l..}-.t ... ,,'-r{S~;..~ - Ion source - Matching section I (exit module) - Pre-separator - Matching section II - Mass separator, first stage + H. V. ~ Matcing section III - Mass separator, first stage Mass separator, second stage -LEBT • Measurements required: - Beam Transmission at diffcrcnt location - Emittancc; H and V .:... Bcam profilc along thebeam line at various energy and intensities - Production yields 3GG 31 1.G25 ~wis SEPARATOR J SLITS I OIMENSIONS IN !NCIIES 1 210 ------- - ----_. ~ NORTH DETAIL" A" ISOMETRIC VIEW OF LEBT~BEAM LINE UJ UJ 2:1 AVr. 1000/ H.W. 34 1 I -....::.:::. ...c-' I ( _ I L ) fV ) 1.1 J' I ISAC Basic Accelerator Specificationa • Input Beam Energy 2 keY/nucleon Ion Mass q/ A ~ 1130 Ion Charge 1 (initially) • Output Beam - Energy var-iable 0.15 to 1.5 Me V Inucleon - ~E/E ::; 0.10/0 - Pulse separation 86 ns HEBT 1'11!f11: 131, 10~ rltf)" I I 1 i i I . I ~ I ... I ,C I ;. " . I., ibr:h I EL 2 89' lOW Initial Beams • Proton beam::; 10 !-LA - Target limitation • High Intensity target working group • Extracted beams - Alkali elements from surface ion source, AK end of 1998 - I3N, 150, using J-lwave ion source • . Low Energy - E S; 60 keY, no mass limit • High Energy - 0.15 S; E S; 1.5 MeV/nucleon - Mass S; 30 Future possibilities . . - Heavier Masses (q/A > 116) No need for, the stripperin the MEBT - Low energy charge State Booster • . ECRIS (R.GelleretaI. ICIS'95) . ' • EBIS -Higher Energy (E> 1.5 MeV 1 nucleon) - Add cavity to Iinac & expand building to East (0.15 ::; E ::; 6 MeV/nucI(~on) - Cyclotron (3 to 30 MeV/nucleon) 35 36 The ISAC Linear Accelerator R. Laxdal TRIUMF ISAC Accelerator 150 keV/u 3':A/q':6 OTL 105 MHz r Stripping r~~=ea=B=====z=dl Foil ~ tr 15v keV/u % 6':A/q':30 ~ RFQ 35 MHz From Moss Separator ~~~"~----I a~ Pre-Buncher 11.7 MHz Off Line Ion Source SPEC 1 I=lcli TIONS - HA"tIHU£ rlt"AJ5""~~I~ - Col.) OP£eAr,.o.c/ - IIJ:r6CT£1> BE""" - {, ~ AI,. ~ Jo - f{FQ - DII-E - Z. .Av/fA. ~=I). ooz.) - t¥-,., t: 50 ~ .... · MrM - Prc-b .. ,.cJ..J 1/.111I(p 3 ~ III., ~ " E."" = I~O ..AVIlA. - /. 5 ~.I/IIA. &.A... At - IllS" o!!! - 0.1 ~ IJ Ci" ISAC Timing '--- 86 nsec----": ~ por\jCle~t I Bunches I o 0 11.7 101Hz Buncher J!) MHz RfQ 1O!) MHz OTl X-PX AT RF ENTR/,NCE .o+---------~~~~~~~~~~-~~----------_t 30 20 -20 -30 £.(967.) .066 7f mm.mrod -.o+-~~~--~----------,---------~~--------:* -0.2 -0. 1 XrC~) 0.1 0.2 Y-PY AT RFQ ENTRANCE 40 30 20 ", 10 ~ 0 t-1O -20 -30 -40 -0.2 -0.1 0.0 0.1 0.2 Y(CU) PHASE-ENERGY : AT RFQ ENTRANCE ~~+-~--~~=-~~~~~~~~~--~~------+ 4 ! HARMON~ BUNCHING ~.4 ; i 5V.2 +-+---..-4--4r-r----t..:.-..,------:""'-------r:----__:± -~ -4oj) ~ 37 I S,AC- RFQ - 4 VANE SPLIT RIIIJG STRIl(.TvttE· - I". MO"uLe:~ - '-/0 c.", ~ ... <~ • - L' lr ... - 1'7.1..11 • I So /;.0.) . X-PX AT RFQ EXIT : £.(987.) = -~+-~~~~_oT.2--~~~_o~.-,------0.~0------~D.-,------:D~.2~----~D~ X(CU) Y-PY AT RrQ EXIT -4 -64-----~------~~--~------,_----~------+ -D~ _0.2 _0.1 0.0 0.1 0.2 D~ Y(CU) PHASE-ENERGY AT RFQ EXIT 4~4+_----------~----------L---------~----------_t (987.) - 7.1 7f keV.ns:c " " 4.53 .. ~ .. -4.4V 4.48_~Il------------T"5----------Dr----------.5-----------:llt 'PHAS£(J5 101HZ OEG) 38 ~p&. B.u:'lUT" COi>JT"tHllII~T''',.J IN ~FQ o I ZoO %.'10 ~ (f/.7I1Hl) 15~ UNIlGCGULIIT£,O Sb nUG / 11'l. /.71. I.T1. 11. .~ If I. o -SDl.'-'TIOIIIS: - LE/tVf. IT" - 011£'( 1. 77. Charge Selection FOIL E=150keV /u Q/A~1/30 - C ffO? I'" MEST - C.oIST ... JT ;J - ~"11'4 fJI.u. g".<, - CHOP IN H~&r - ",,#., ... /J4/> t7 - tlIrIAtJtitI'Hi!O c.o4r,.,.,AlilN . MEBT II. II ~IL .11 II. I I ( J ... DTL Chopper ~ Bunch Rotator 105 MHz RFQ Table 1: The most probable equilibrium charge state, q, and the expected range of mass to charge values, A/q, for representative isotopes with 1/30$ A $1/6 stripping in a. carbon foil at 150 keY /u. Isotope q A/q 6-8He 2 3-4 8 - 11 Li 2 4 - 5.5 7 - 11 Be 2 3.5 - 5.5 9 -18C 3 3-6 13 - 20N 3 3-6 14 - 220 3-4 3.5- 7.3 17 - 24F 4 4.3 - 6.9 17 - 26Ne 4 4.3 - 6.5 20 - 30Na 5 4-6 21- 30Mg 5 4.2- 6 24 - 30Al 5-6 4-;-6 26Si 6 4.3 29P 6 4.8 305 6-7 4.3 - 5 Parameter Tankl Tank2 Tank3 Tank4 Ta.nk5 Total p (%) 1.8-+2.3 2.3-+3.1 3.1-+4.1 4.1-+5.0 5.0-+5.6 IV celis 9 13 15 14 13 64 L (em) 2.5-+3.2 3.3-+4.4 4.4-+5.9 5.9-+7.1 7.1-+8.1 L (em) 26 50 77 90 98 341 a (mm) 10 14 16 16 16 g/a.....m (g/l = 0.5) 1.2 1.2 1.4 1.8 2.2 Eo (square). (MV /m) 2.64 2.86 3.03 2.86 2.71 Eo (true) (MV /m) 2.9 3.1 3.3 3.0 2.8 Eo·To (MV/m) 2.38 2.57 2.73 2.57 2.44 Eo ·To (MV/m) 2.11 2.37 2.54 2.39 2.25 To 0.82 0.82 0.83 0.84 0.85 V." (MV) 0.54 1.18 1.96 2.15 2.20 8.1 VT (kV) 47 69 97 109 116 F. 3.4 3.8 4.3 4.7 5.0 E. (MV/m) 10 12 14 14 14 Q 11000 13000 19000 23000 25000 Z (M!l/m) 374 410 471 421 376 p[ (kWJm) 16 18 18 18 18 P (kW) 4 8 14 16 18 60 Euvt (MeV lu) 0.23 0.44 0.78 1.14 1.50 Ta.ble 4: Summary of parameter specifications for each IH tank for the design particle of q/A = 1/6. All cavities operate a.t 105MHz. The parameters are defined in the text. The quoted IH shunt impedance values are from KAFIA. The power/unit length and power ca.lcwatiOIls for the m stTllct'll1'e assume a shunt impedance 75% of the value quoted. 39 40 ISAC Separated Function DTL ACBA CB A C B A C A ........ 0.8 13 0.6 '-' >. 0.4 ,j 0.2 - acceleration 8 . Three Gap Spiral Resonators C¢s=-600) - longitudinal focussing C. Quadrupole Triplets - transverse focussing I Beam Dynamics I ~~~~~ 0.0 -t-----+--~-+-------+-----_+ o -e. -40 <I -80 -120-'---_--~-~....l--~-~-_I_ o 100 200 JOO 400 Length (cm) Variable Energy 1.2 Q) CJ) 1.0 0 ........ 0 0.8 > 0.6 Q) > 0.4 ........ 0 N r') '<t Q) 0.2 -'>< .>t .>< -'< c c c c n:: 0 u 0 u ~ ~ ~ ~ 0.0 Q) (fJ -40 0 ..c [L -gO Q) > ........ 0 -120 Q) n:: -160 O. Final TRANSVeRSE. 1 50 ... j -"'11."-Energy (MeV /u) LONG I TUI>IAlIIL.. -.( 1 ",\00-£~" S"arr.1~{·1lS .{". (1:: ().oo l. ..for 1/:: 30 £,. .. jJ £. • 0 . f TT .,. .. ,.. £~ • 1-' 7T ~t..v;.. • itS LE8T ~Fa ~FTU frm_ $uDU. ~T(. ItFru.. OTt. EM, rr",Alct.s I' I~ltc.. f.r £ S Ito J:..v/ ... £.. = /,.,. "I.: - ns (~"orl! ~If. rA<."es - ,..~ 111 ~ __ .. t "(I#,,~) T~II"'StlU$£ S"atT .... . 10(, ~T7 I." rr e", "" ... / . I rr em .. r " . 7 'ItT • 1.171 ((".018 ) 7Ji,.",., O.7'{fT~/.. • .. e ( o· ~ "IT ~ '''' -» /).0 S" '7. '''S) 41 Ll) .>< c 0 ~ 1. 42 RFQ .Exil Bofore Stripping Foil 4.9 -t---""-----'----'----+ 4.9 +----'----'-----'----t-4.7 S" .8, 4.5 4.3 £1 - 14.9 keY nsoc 4.1 +----,----,----,----+ -1.0 -0.5 0.0 0.5 1.0 t (n .. c) After Str ipping Foil 4.9 +----'----'----'----t 4.7 .~ . ~ 4 .5 w 4.3 £, - 20.0 keY nsec 4.'4----r--___r---,---+ -1.0 -0.5 0.0 0.5 1.0 I (osec) OTL Exit ,,~ .0(+----'-----'---.1..---+ 41.& c. - 22.1 keY nsec ;~ _: ;1(7 4'\:.~+----r--___r---,---+ -1.0 -0.5 0.0 0.5 1.0 t (osec) 4.7 .~.'. 4 .3 £:1 = 14.9 keY nsec 4.1-t----r--___r---,---+ -1.0 -0.5 0.0 0.5 1.0 t (ns.c) 4 .9 -t-__ ---L_O_T_L_E.J.~tt_r_onc_. _ _'_ __ _t 4.7 .~ .:5 4.5 •'·'d·'''' . '" ... . . ..; ~ ;:~ w ...... . . 4.3 £1 - 22.1 keY nsec 4.'4----,------r------:-.,---+ -1.0 -0.5 0.0 0.5 1.0 I (OS. c) History of Longitudinal Phase Space thr ough MEBT and DTL Case A With 105MHz Bunch Rotator HEBT D.T.L. /l,1TI:HIAI. St:lI:NCF. JlIII.n " lflil 'f}.'i l : I s 0. 0 oA A- O. 000 a- 0. 20 A- O. 000 a- 0.20 u= 45. 000 45.000 MeV FREDz 35. 00 MHz Ulc 8565.51 •• EMIlI- 5. 00 5.00 0. 01 EMITO- 5. 00 5.00 0.01 10.0 .. X 10.000 .r d A- 0. 000 e- 10 . 00 60.00eg 1000. 0 K~ v 30. a I. 60. Deg Hor 1z, long Vert TO A- -0 . 002 B- 0.999 A- 0. 004 B- 1.006 ( "\ \... ../ 10.0 .. X 10 . 000 or d A- 0. 008 8- 13. 042 60 . 0 Oeg 1000.0 K v - . . length-13135. 18 00 KPDF H V z 43 44 E=0.15MeV/u -8~~~==T--=T===~~~==F===P=~~~ -4 -2 0 2 4 time (ns) 4 4 3 3 2 2 "D :0- 1 .' 0 0 ... 0 E '-' 10 -x-1 ->.-1 -2 -2 -3 -3 .... o \ '0; . -4 -4+-~~-r~~~~~~ -0.6-0.4-0.2 0.0 0.2 0.4 0.6 -0.6-0.4-0.2 0.0 0.2 0.4 0.6 x (em) y (em) HEB r t t Jt = -£ At "" o. 'I ns /M/'Z = I/o / ... /'1. ~ 1~ If,(H~ •• REQcJ'~E "E8cJAlCHE.,(5 EvE!!/( rOE/CS Fe/!. Remarks on Establishing ISAC's Science Program 1-M. Poutissou Associate Director of TRIUMF, Science Director ISAC SCIENCE Establishing the ISAC initial program: 1. Existing Proposals cUld Letters of Intent :2. Call for Letters of Intent Nov9G . . 3. Letters of Intent reviewed by EEC Dec96. 4. Workshop on Experiments and Equipment at Isotope Separators Apr97. 5. Call for full Proposals May97. 6. Special EEC panel review Ju197. JSAC LETIERS OF INTENT PRESENTED TO THE EEC - JULY) 994 Positron Poladudon in tbe Decay or OptiCally Trapped 17Ki A Second-Gene!1\tion Symmetry-Test Prof. 1. Deutsch Institut de Physique Nuc1eaire D~partment de Physique Univcrsit~ Catholique de Louvain Chemin du Cyclotron 2 B-1348 Louvain-Ia-Ncuve Belaium o. Hiusser - TRIUMF Tilled Estil Polarisation and Magnelie Moments in Mirror Iiu.mi M. Has$ Department ofNuc1car Physics Wcizmann Institute of Science Rchovot 76100 Israel C. Broude W.F.Rogcrs H.G. Berry J . Deutsch M.J:!aa. 45 46 .SAC LEITERS OF INTENT PRESENTED TO TilE EEC - DECEMBER 5 & 6/1996 Proposed Study of the 'Li(a,nl"n Reaction Dr. R.N. Boyd Associate Dean College of Mathematical & Physical Sciences The Ohio State University 154 Denney Hall 164 West 17th Avenue Columbus, OH 43210-1316 U.S.A. L. Buchmann J.M. D'Auria J.D. King 1. Tanihata Low Energy Coulomb Excitation in Inverse Kinematics Experiments at TRlUMF Dr. C.J. Banon Clark University Worcester, MA 01610 U.S.A. Dr. R.F. Casten, Wright Nuclear Structure Laboratory, Yale University Dr. N.V. Zamfir, Brookhaven National Laboratory, Upton, NY 11973 Dr. D.S. Brenner, Clark University Dr. R.L. Gill, Brookhaven National Laboratory Dr. B.D. Foy, Clark University Nnclear Astrophysics at ISAC-I Dr. Frank Streider Fakultat fur Physik und Astronomic Ruhr-Universitat Bochum Institut fur Experimentalphysik III Postfach 10 21 48 0-44780 Bochum, Germany Dr. U. Griefe Prof. Claus Rolfs Dr. Hanns-Peter Trautvetter Proposed Study of the "O{a,yl"Ne Reaction L. Buchmann - TRIUMF J.M. 0 ' Auria - SFU R. Helmer - TRIUMF D. Hutcheon - TRIUMF K.P. Jackson - TRIUMF J.D. King - University of Toronto A. Olin - TRIUMF R.N, Boyd c.J. Barton E. Streider L. Buchmann P. Parker - Yale Univcrsity-WNSL, 272 Whitney Avenue, New Haven, CT 06511-8124 J. Rogers - TRIUMF Proposed Stndy of the "N(p,yl"O Reaction 1.0 . King Depanment of Physics University of Toronto 60 St. George Street Toronto, ON M5S 1A7 R.E. Azuma - Depanment of Physics, University of Toronto, 60 SI. George Street, Toronto, ON, M5S IA7 J.M. D'Auria - SFU R.N. Boyd - Depanment of Physics, Ohio State University, 174 West 18th Avenue, Columbus, OH 43210, U.S.A. L. Buchmann - TRIUMF Sub-Barrier Fusion of C and Li nsing Radio~clive Ion Beams Felix Liang Nuclear Physics Laboratory Box 354290 University of Washington Seattle, WA98195 U.S.A. R. Vandenbosch - Nuclear Physics Laboratory, Box 354290, University of Washington, Seattle, WA 98195, U.S.A. J.M. D'Auria - SFU LI-vn Experimental Studies ofln teraction and Proper1ie.~ of Ncutron-Rich Nuclei atlSAC Alexander I1jinov Russian Academy of Sciences Institute for Nuclear Research 60th October Anniversary Prospect, 7a Moscow, 117312 Russia 1!:.Y!!! Superallowed Fermi Dec~y or"Rb Dennis M. Moltz Lawrence Berkeley National Laboratory MS88 Berkeley, CA 94720 U.S.A. Measurement of the Rate of the "N~(p,y)I1Mg J.M. D' Auria - SFU N. Bateman - TRIUMF L. Buchmann - TRIUMF U. Giesen - TRiUMF R. Helmer - TRIUMF A.S. lIjinov D.M. Moltz N. Batem~n D. Hunter - Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A IS6 A. Hussein - University of Northern British Columbia, P.O. Bag 1950, Station A, Prince George, B.C., V2L 5P2 D. Hutcheon - TRIUMF K.P. Jackson - TRIUMF J. King - University of Toronto R. Korteling - Simon Fraser University A. Olin - TRIUMF P. Parker - Yale University-WNSL, 272 Whitney Avenue, New Haven, CT 06511-8124 J. Rogers - TRIUMF G. Roy - University of Alberta A Program in Explosive Nucleosynthesis using a Recoil Products Detection Facility at ISAC J.M. D'Auria Department of Chemistry Simon Fraser University Burnaby, B.C. V5A 1S6 D. Hutcheon - TRIUMF Weak Interactions And Fundamental Symmetries with A Nuclear Orientation Set-up P.PJ. Delheij C.A. Davis K.P. Jackson R.F. Kicfl J.M. D' Auria P. Delheij Dr. Brian G. Turrell- Head, Department of Physics, The University of British Columbia, Hennings 337, 6224 Agricultural Road, Vancouver, B.C., V6T lZI 47 48 ISAC - LETTERS OF INTENT TO UE PRESENTED TO TilE EEC - JULY 17-19, 1997 J. To site the 81< Spectromcter at ISAC D. Ward - TASCC, Chalk River Laboratories, Ontario G.C. Ball A. Galindo-Uribarri V. Janzen D.C. Radford J.C. Waddington, McMaster University, Hamilton, Ontario JA. Cameron S. Flibottc T.E. Drake, University of Toronto 2. Surface Studi~s bv Nuclcar Stimulated D~_,orJltion I. Kelson - University ofTci Aviv, Tel Aviv, Israel V. Ashkcnazy - University of Tel Aviv, Tel Aviv, Israel D. Forkel-Wirth - CERN H. Haas - Berlin V. Levy - Tel Aviv T.E. Madey - Rutgers 3. To Study the Wear Uchaviour ofImplanted lIe-7 in HDPE IIi!> Joints Dr. H. Schweickert - Hauptabteilung Zyklotron, Forsehungszentrum Karlsruhe GmbH, Technik und Umwelt, 0-76344 Eggenstein-Leopoldshafen, Germany 4. To Implant 'Ue and "Na into Mnchine Parts to be used with the Thin Layer Activation Techniqne (TLA) K. Oxorn - ANS Technologies, Montreal, Quebec S. Fundamcntal Wcak Intcraction Studies through Kincmatie Shirts in Delayed Particlc Spcctra E . Hagberg - TASCC, Chalk River Laboratories, Ontario KOJ IJO JC. Hardy V.T. Koslowsky G. Savard . For your information, the ISAC Review Panel composition is as follows : Chairman : Secretary: Members: Dr. Karlheinz Langanke - Aarhus University Dr. Harold W. Fearing - TRIUMF Dr. P. Gregers Hansen - Michigan State University Dr. Wick C. Haxton - University of Washington, Seattle Dr. Achim Richter - Technische Hochschule Darmstadt Dr. Ian Towner - Queen's University Dr. Michael Wiescher - University of Notre Dame BEAMLINES AND EXPERIMENTAL FACILITIES. !SAC UNDER CONSTRUCTION. I -$ SOMC( ANNEX OPTlCAllY pu~PED POLARIZEO toN SOUf!C£ (OPPIS) ... ('SON HAl..L EXTENSION 500 WeV ISOTOP£ PRODUCTK)N rAClUTY W(SON t-W.1. SERVICE NlNEX 49 CP 42 ISOTOPE PROOUCTION C'I'O...OTRON 50 High Power Target Development: History & Plans W. Talbert Amparo CorpfTRIUMF SUMMARY 1. Early Papers Eaton, Ravn et ale (1986) - EMIS-ll Talbert, Hsu and Prenger (1991) - EMlS-12 2. ruST Project (1993-1996) Development of tantalum target approach • Considered water, helium, radiative cooling • Radiative cooling simplest approach • Evaluated "emissivity" enhancements Test at ISOLDE • Target heated by insertion in an ISOLDE oven • Yields of Alkalis comparable to ISOLDE approach, but in some cases lower than ISOLDE III (at the SC) • Release from RIST target faster, tails much less than for ISOLDE Test at Rutherford Appleton Laboratory (RAL) • Slated to go up to 100~, with SOO-MeV protons from ISIS • External heating of target by electron bombardment developed problems • Test called off by RAL management prior to execution 3 Conceptual Studies at TRIUMF, Amparo Corporation 1993-94 studies at TRIUMF with tantalum target (Hodges, Talbert) (TRI-DN-94-1) • Cylindrical geometry, co~cept had features of inexpensive, flexible, ALARA activation, reliable cooling. • Contact thermal resistance for temperature stand-off • Conduction process to water-cooled heat sink • Annular beam advantageous Interaction length study (Talbert, Hsu -- following preliminary work by Dombsky) -- [1994, published in NIM A362, 229 (1995)] • Developed criteria for determining "optimum" target length • 500 - 1000 MeV proton energy 1994-95 SBIR Phase I study (Talbert, Fikani, Hsu, Hodges) [published in CAARI'96 Proceedings, AlP Publication No. CP392 (1997), and subxnitted to RSIJ • Revisited tantalum target with different thermal barriers • Evaluated thermal barriers for titanium, molten lead targets • Introduced new classes of thermal barriers: CBCF, refractory compounds, porous metals 1996-97 SBIR Phase I study (Talbert, Fikani) • "Powder-form" targets chosen with ORNL participation • Proton energy of 200 MeV, new interaction length criteria developed • Measurements of thermal conductivity at ORNL, TPRL • "Powder-form" targets shown to be unsuitable for high-powers STRATEGY FOR ISAC TARGET DEVELOPMENT 1. SBIR Phase II Proposal Submitted -- decision on funding in July, 1997 • Proposes thermal test of a prototype target using metal target material • Test would be carried out at TRIUMF, up to 100 JAA beam current (where?) • Test would NOT monitor radioactivity production or yield • Test is meant to validate numerical (analytical) calculations for energy deposit, thermal behavior. 2. Facilities Available for Target Development • TISOL -- up to 10 JAA (with yields) • ISAC target station -- need for second target station for target development? (without yields) • MegaScience Forum activity -- could be used to enable second target station? • Is RAUISIS still available? • Complications from ambitions elsewhere for ISL-type proposals? 51 52 3. Feasibility Tests at TRIUMF • Recognize that each target system is a significant development effort • Choice of target for final feasibility -- physics motivated, or success motivated? • Target issues to be addressed: ** Cooling design ** Heating approach ** Handling beam transients ** Ion source to be used, monitoring techniques • Develop short-range, long-range plans EATON, RAVN and the ISOLDE Collaboration: "Beam Heating of Thick Targets for On-Line Mass Separators" EMIS-ll Proceedings -- NIM B26, 190 (1987) • Used FLUKA86 code for energy deposition calculations • Molten Pb, Au, La; UC2, MgO, Ir , Nb powder targets; Ta, Ti, Zr foils • Radiation cooling adequate for UC2, MgO, Ir targets at 100 f,lA • Enhanced radiation cooling OK for Nb powder; Ti, Zr foils (3X increase in surface area) • Enhanced radiation plus cond,:!ctive cooling OK for Ta foil • Liquid targets require more cooling than this approach BUT--• Emissivity of 0.41 assumed -- optimistic • No internal target heat transfer considered • FLUKA86 didn't include fission channel (for Pb, Au, UC2 targets) • Mistaken analysis for conductive-assisted cooling TALBERT,HSUandPRENGER ''Beam Heating and Cooling of Thick Targets for On-line Production of Exotic Nuclei" EMIS-12 Proceedings, NIM B70, 175 (1992) • Recalculated Eaton, Ravn et al. systems, for a range of energies (600 - 1200 MeV) • Illustrated beam "blooming" with progression down length of target • Binary target systems energy depositions did not reproduce Eaton, Ravn et al. • Confirmed radiative cooling predictions of Eaton, Ravn et al. • Suggested thermal barrier app.roach for conductive cooling. BUT, • No thermal transport within target material • Assumed a constant length target (20 cm) for all target materials TARGET ISSUES TO KEEP IN MIND • First, and foremost, thermal conductivity of target material ** Need for good target material characterization ** A project in itself is measurement, enhancement of powder target material thermal conductivities • Compatibility with target containment materials ** Limited "wealth" of experience at TISOL, ISOLDE ** Literature available, but sometimes "obscure" • Every target system is a development project in itself! ** Especially at high intensities ** Need a target test program, and "ready" facility WATER OUTLET HELIUM-FILLED ~~~~~~~~~~~;a~~~~~'1=="G~AP (0.025 em) BEAM radius 3.0 em 2.0cm 1.0 5em t WATER INLET Figure from Talbert, Hsu and Prenger Graphite ~1UIrff<,.."",,~""~~<V/jCIIlC.:r-'~--.~~..nN """""""""""""""""""""", Conceptual target for thel'mal barriers 53 54 3000 I--z-Oem ~ - -z-3 em 1-1-----Z-6 em 2500 p '~~ i 2000 :::J i:! 1500 --.. a. E 1000 ~ ..... -500 o 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Radius, em Tanl.alum target, contact thermal resistance (central beam) 3000 - I 2500 - .. _- .. ~ --2-0, 0.4 mmCBCF .t - - - Z-3, 0.4 mm CBCF -- - ·Z-6,0.4 mm CBCF 1-' 2000 ~ l! 1500 2i E 1000 I! 500 <6.0 0.5 1.0 1.5 2_0 2_5 3.0 Radius, em Tantalum !.arget, CHCF barrier, annular beam ZSOO 2000 ; 1500 i! ~looo I! 500 ~ --Z-o, 0.5 mm Zr02 - - Z-3, 0.5 mm Zr02 - - - Z-6, 0.5 mm Zr02 "'=I L... <6.0 0.5 1.0 1.5 2.0 2.5 3.0 Radius, em Tit.nnium target, central beam, zr02 barrier 2500 1-' 2000 ~ 1500 l! 2i E ~ 1000 / J./ ;.- L ~ Ti Target k-; ~ i-' / ~ ... /+ h ~ .... /. --R-O,Z-o ~/ --R-.7 mm. Z-o . R-o, Z-3 em . R-.7 mm. 2-3 em - .. -R-o, 2-6 em - - • R-.7 nwn. Z-6 em I 5000.0 O.Z . 0.4 0.6 0.8 1.0 12 Zr02 thiclcness. nwn Titanium target, barrier thiclmeu dependence of temperatures Energy deposition for RVC/Ni target ~ 10000 ..... -.-.-.--rr-.-.~ .... ...,..-,~T'"T"....,....,~ 8 ~ 1000 '='-.E . _ -: ::-_=-=-~~ E .--_.- .r:-:l=-~ ~ " •.• .••.• ~f!:-~~,:~o~~~~~L-.. :> 100 L~.,....a..:·;:'·h""'----;7i"'-'· • .". .r' - 8 os em rad Z; .,.,.,- .-- - - :,5 em rad .~..... - - -0.Z5 em rad -tl 10 ~_~.~ ~ ~:~~8:l~ g:: ~ ~ ::-:-- ~8:~~ g:: ~ ~ 1~~~~~~~~~~~ o 5 10 15 ZO Axial distance, em ~ 10000 8 Energy deposition for RVClNi Annular beam 1-' i E 2i E ~ ~ ......... '!-::-t.~-, ... :~ -... ,.., ;; --. " =--=8:n g:: ~ /1 I r, - - -0.Z5 em rad - - ---0.35 em rad 1-,~ - . • - . 0.45 em rad - - 0.55 em rad - . • --0.65 em rad 5 10 15 ZO Axial distance, em RVC/Ni, O.4-mm CBCF, annular, 20 uA 1400 I 1200 1000 800 GOO ~:.: .. ~ -Z-o "-··· .r~ - -Z-5 - .. -2-10 f-.~ -----Z-15 .. . - . Z-zo 1-400 200 o 0 0.5 1.5 2 2.5 3 Radius, em RVClNI, temperature profiles RVClNi tolerances 200 ~ It 0500; i 30 ~ c 25 ~ ::I U E ZO .. .! - 15 c '" 1 ~~. te~rature - 11300-C ~ ong 1 ........ ~ ----;---..- ~ .......... -- ---.- r---,,--, :2 ~ 10 O.ZO 0.30 0040 0.50 GOOn 0.60 CBCF thiclcness. nvn RVClNi barrier thiclmeu current, temperature dependences UC4, O.S.-mm CBCF, central, 2 uA 2500 2000 ~---4----+--~--~ e 1500 " E 8. 1000 E ~ 500 3.0 em . UC4, O.S-mm CBCF, annular, 6.25 uA 2500 ~ I I . \' j --Z_O , - · Z-3 I-", t\ - .. · Z-6 ----· Z-9 1-r---.c..:,\ . . · ··Z-13 r ·~, -.i I 1 I I 2000 l-' e 1500 " E 8. 1000 E '" I-500 o o 0.5 1 1.5 2 2.5 3 Radius, em I .. ANNl,ILAR BEAM (Sweep radius can be Smaller) 1.6em ~I CENTRAL BEAM (presumably COUld be made larger) , .. O.56cm. ' (approximately a parabolic distribution) 55 Section II NUCLEAR'ASTROPHYSICS Convenor: J. D'Auria NUCLEAR ASTROPHYSICS AT WEEIS A SUMMARY John M. D' Auria 59 Research studies in nuclear astrophysics (NA) using radioactive beams were a major component in the proposal to fund ISAC at TRIUMF. The interest displayed at this workshop confirms that this continues to be the major part of the experimental program at ISAC. Eighteen talks in three session were devoted to this topic, many of which dealing with NA experiments proposed for ISAC. It is anticipated that approximately eight full experiments will be submitted to the TRIUMF Experimental Evaluations Committee (EEC) in June, 1997, most of which were discussed in these sessions. This summary will cover separately, highlights of the talks which were presented and comments arising out of discussions among prospective ISAC experimenters. More details about any of the presentations can be found either in the transparency section or by contacting the presenter directly. Summary of Presentations The first NA session was mainly focused on both theoretical and experimental aspects of the important 7Be(p,y)13 reaction which has bearing on the solar neutrino problem. Tim Shoppa discussed the present status of the theory and the situation with accepted experimental results . Measurements are still needed to assess well the value of the S17(O) for the reaction. K. Snover presented that status of the studies in progress to assess this value using a 7Be target but using a slightly different approach than has been utilized in previous studies, i.e., a small, metallic 7Be target. Basically the proton beam will be larger than the deposited 7Be target so that there would be different errors involved. L. Buchmann presented the plans for attempting a measurement using a 7Be beam at ISAC, with the beam being produced in an off-line mode using different production approaches at TRIUMF. Funding to build the gas target for this study has been received. It is believed that this study will have very different systematic errors but the precision anticipated and ultimately required for the 7Be(p,y)8B is of the order of 5% or better. In a brief unscheduled contribution D. Forkel-Wirth presented some recent results from the ISOLDE lab on a laser ion source for Be. Using a triple resonance approach they have succeeded to ionize Be with a 1 % efficiency but expect that this will be increased to at least 10% with further study and also with more optimal lasers. E. Rehm reviewed the recent studies at Argonne National Lab (ANL) using radioactive beams. Radiative proton d· d . b fl7F 18F S6...T· d S6C d . capture stu les were attempte usmg earns 0 , , 1'1/1 an 0, an creative production approaches. He discussed the problems working with such beams including low intensity, isobaric contamination, and beam normalization determination. High efficiency detectors are needed, coincident measurements, and elastic scattering to overcome such problems. The recent studies at Louvain-Ia-Neuve were summarized by P. Leleux. The 18F(p,a)ISO and the l~e(a,p)2INa reactions are or have been studied utilizing the LEDA (Louvain-Edinburgh Detection Array) in collaboration with the 60 Edinburgh group. A helium gas chamber was used also in the study of the l~e(a,p) reaction. A description of the recoil mass separator utilizing a Wien filter and a bending magnet was given. The second NA session was started by L. Buchmann who gave an overview of the usefulness of beta delayed particle emission studies for NA using examples taken from the recent program on the TISOL facility . Beta delayed proton and alpha emission studies analyzed in reverse, e.g., 16,1~ and 17Ne, can often be used to determine key nuclear parameters of importance to NA. This was followed by a series of presentations on specific letters of interest submitted to the TRIUMF EEC. J.D. King described his letter on the high yield, 13N(p,y)140 reaction, followed by N. Bateman who discussed specific problems related to the LOI for the 21Na(p,y)Mg22 reaction. In the latter presentation an attempt was made to raise realistic questions or experimental requirements . J. D ' Auria 22 23 23 24 . . presented some aspects of the Mg(p,y)AI , and the AI(p,y) Sl reactions on behalf of M. Wiescher (D. Notre Dame), who could not make the workshop. The very small resonance strength could be a problem in the first reaction. L. Buchmann described the LOI on the experimentally challenging 150 (a,y)19Ne reaction. He also mentioned the recoil mass separator system being designed at ISAC on which all of the above reactions would be studied. R. Boyd discussed the ~i(a,n)13 reaction which does not need the separator but will use neutron detectors from the RIKEN laboratory of Japan. All of the previous reactions are important for the hot CNO and the rp process while this latter reaction is of interest for assessing the role of inhomogeneous big bang theory for heavy element nucleosynthesis. R. Boyd also mentioned briefly studies to perform (d, p) reactions to simulate (n,Y) reactions with neutron rich isotope using 15C at MSU. The last session on NA was devoted primarily to the use of recoil mass separators in radiative capture studies. U. Greife described the attempts to measure the SIlO) for the important radiative capture on 7Be only for the first time using a beam of 7Be. The radioisotope was produced using the cyclotron at Karlsruhe, Germany and transported to the accelerator facility in Naples. A recoil separator was used to perform the study. Few results are yet available. The same group is also assembling a system to study the 12C(a,y)160 reaction; this would include a slightly improved separator. The next series of talks were devoted to the ISAC separator system presently under design, originally called the RPDF (Recoil Particle Detection Facility). J. D' Auria gave an overview of the plans while D. Hutcheon described in some detail some of the constraints present on the design of the electromagnetic section. G. Roy gave a description of the windowless gas target being designed and constructed (funded by NSERC), while J. Rogers discussed the gamma array being considered. The advantages of a new scintillator, LSO, were included in this talk. U. Giesen presented the various options available in the area of detecting the low energy, heavy ion reaction product recoils. A vigorous although time limited discussion on this major facility ensued and a number of useful points arose. P. Bricault in particular asked several questions about the possibility of having a separator with a booster accelerator stage to raise the energy of the recoils sufficiently to allow the atomic number, Z, of the recoil product to be measured. In addition he mentioned that an isochronous tune through the separator could have advantages . The role of the gamma detection system was also discussed. The NA Discussion Group 61 A group of about 25 scientists assembled to discuss in more detail some aspects of the NA program at ISAC. At the end of the meeting it was agreed that this could constitute the first meeting of the RPDF collaboration. The following included some of the points or comments made at this session, namely, 1. There was a need for a general purpose facility for NA and other experiments in the HEBT area. A facility in which experiments could set up mobile systems for a particular experiment. 2. A list of possible beams and their intensities along with a timetable for their development would be very useful. 3. The procedures for submission to the TRIUMF EEC require some clarification particularly for outside users who wish to be spokespersons. For example, how detailed must the proposal be in the area of safety or facility details when the RPDF would be used. 4. Will the EEC have access to technical information for example with respect to the operation of a thick target, ISOL device during their deliberations to assist them in determining priorities for experiments? 5. On the question of chopping the beam at some point to remove any beam particles in the off-beam buckets, a figure like 10-6 was mentioned regarding beam particle intensity though 10-4 is likely to be acceptable even for neutron time-of-flight experiments . 6. The ISAC pulse rate (89 ns) was fine although there was some need also for a rate of 2X this rate. 7. There is a great need for the use of stable heavy ion beams of particular A numbers to assist with setup, commission and calibrating the recoil separator. 8. It is important to have good diagnostics in the HEBT system. 9. What are the potential neutron backgrounds in the HEBT area from the main production target as these might affect the very sensitive detection systems to be used. 10. There should be a facility at ISAC which could be used for fusion particle reactions such as (p,a.) and (a.,p) reactions. 11. The RPDF facility was renamed the REMUS (REcoil Mass Universal Separator), however later the name, DRAGON (Detector for Recoils and Gammas Of Nuclear Reactions) was strongly supported. 62 ~.B Cl Constraints on 7Be(p,y)8B from Elastic Scattering T. Shoppa TRIUMF iI3 72±13j I7o±8 I°.42±o.o6 t2.55 ±O.25 K.~""lo ko.1!Je SAc~f· HOtf\es+~ke S't.tper- !< Gall e.x H2O SNO Ga Theory II 7Be 0 P-p. pep Experiment ~ W.i 8B • CNO So\o.r N e v.+ri (to Prob \e.ro (5) 7Be(f, -0) ~ B ? <613 SoloJ nelA.iri"d5 N uJ fo Kllow (i2 ")..0 ke V OG\f 0. @ 100 keY anJ gre~+er . J -f' '? f rfof ifl e~+rc;..fo G:t I D>1 • (' 100 ke V ? - "froM _ from '100 l<e if ~ - f (0 t7) I -1. PI e V ? l- be J..i fo+e/l-h~o..l {)1oJ {is ( t +~.r / '{-body] tn oJe0 m i c (0 S co f i<:. c. lAS o H- sht.1l effec.ts 140 120 r--. 100 .D >. 80 Q) '-' (f) 60 40 20 0 0.0 140 120 r--. 100 .D ;. ,' 80 Q) '-' (f) 60 . CooIomb DI.ooc: - Motob'r"~; et .1, I~'I'I "B"'1 ~'(3e + p lVid'ual Pl,o+O'1 -+~ +.-+--+-0.5 1.0 1.5 2.0 2.5 E (MeV) c.m. 1 I -- Kavanagh (69) , --+- Filippane (83) ---4-- Vaughn (70) -- Porker (66) ~ 40 20 a It , tf,,-,! .! ! • ! I _II I.. ~!!! " &-~ .. ..• u. ... I. • ••• ! .... t,.to." 0.0 140 0.5 1.0 1.5 Ec .m (MeV) - Coo<o ("-Y. 10) f I 0.11 ... & 2.0 120 3-CI~.tu VI'" f ... ,f:.., ~He·IHt "p r--. 100 ;.<I...tts: I. A.tisy .... tI';Z .. tio'l ;( . C..h~ ... ,," h.;ttJ 16. .D >.' 80 Q) '-' (f) 60 40 20 0 0.0 0.5 .("S"""'OI'I ",,-",u,e J$ 3. D; H ..... t ,,,,,If'''':7 ,I.J .. 1.0 1.5 Ee.tn. (MeV) 2.0 2.5 2.5 63 140 - Coolo (2-body) 120 r--. 100 .D ~., 80 '-' (f) 60 40 20 a 0.0 0.5 1.0 1.5 2.0 2.5 E (MeV) c.m. 1.10 o "'S + .-.. +.+ + ... ~ + .+ ~ 1.08 .::£ g 1.06 0 0 0 "" 0 0 II> 0 0 --' 0 . 0 0 0 °a !( 1.04 o 0 '" o 0 0 00 a a 0 0 . a o· I 0 0 o°R. 0 a ao .-.. a 0 > . . a 8 00 . ~ 1.02 .,0 q, • • ·0 o • ... 0 • ~ 1.00 ·0 • (f) 0.98 14 16 18 20 22 24 26 28 30 S(20 keV) eV b 140 - .. _-_ . ." l-b.Jy poIo,.f .. 1 .... .1«) £, , "", / Ei", c-rh,,"1! S 120 ,...... 100 .D > 80 Q) '-" U) 60 40 20 0 0.0 \ 0.5 ~ .. f, cI, f s, •. ~.r;':J ",.v-s 4oJJ ... 1 ~ r'f'.J.~u I'" reco"'." c. c . 18 80""'.1 • .,...+( (0.137'" tV) ,..>r"I,-c<~/,.I'f'~ 1.0 E C.m. 1.5 (MeV) 2.0 2.5 64 The Planned Seattle-TRIUMF 7Be(p;y)8B Experiment K. Snover University of Washington '?l b\~ 1- Be ( ~) n 2e Musururu-J-£1''' O.3-/.o/'lfv.t (~phC44. cp<. 0.3 MeV) E A6&w~ J.~. Cat(o,clj'~J I: Ji,ovWj -r Snjev; E. S"'CooV",,-) u,,:..uc-oj.1- W-.rk':'J.n..., .f,,-ftt.. A. t:J"J'*'" L. B"cA "''''''''", N 1Ja-h."..~ (+ ~ -nSOL/:r f l1C ~~.f) -rf<.(VHf: ~ ~ m.~;-",:f&c. - 'TR/\HP (H,u $,,,,,;,,,, ""4vUI'4rle...# ' r~ 1\ • .\--,t.\ I . I \ . \ I . . , .~ I "-/ ' .... -I - '-i . j S(E", .. ):: O""(c_) .E", .... e)(t [~ £"Gt/ £c.",1 E-& .. (h--<i,i2, )'Iz. I!!:.' = l"31u.ri:.v , ~ ,00 f-lO 10 70 10 - 10 III I 40 ~ - :10 ~ ... 10 '0 I 0.' ,.,. 1000 'zoo "'tLi. <f~ +c _) ':It .. +).1, ( ( ( -- .--r / 1\;$ 1'C.1uiift.S a.. \Jvii~ .... ~ .{1r",.. ~ ':0 ColI s '-'k" dof'l (e...JII(t. »~ x.-:J ~ $tA/U.f~) ~~, ~ oW I::flAV n - -n.'t'aJ,. ~ 0+ ~I$.c. ~S 65 66 ...,. -NUClEAR PHYS I CS lA90RA TORY UNIVERSITY Of WASHINGTON 10 20 JO _0 ~ I I I I I SeAl( (rUT) q - "-:....Q on. $,..". ... C--;7 P, Ii. f .f... llk("',~) ........ , __ -'-of f..Y-:rt .f1,.;",,,-. "ij.. (~+rOC ... ~Ek) f'too ,..C. "B .. (10''I-... m..S)] \1Mt.\l~U ~ :t-L .. 't/.i.lr,1\) ~€~ '\{~c. .. ~~ ~: Mo... _ ~ 1 .. _III~\.c~~ pi!r-':>- ~M .. ic.tez. (ot :o.p.,."") Be Target on Ta ...... ~~.'> ..... .... ....... . ~ Timc(sec) 1040 2500 2000 .D !! 1500 o!! <> "-g 1000 ., ." . ~ 500 0 1040 1060 ~r:s , Be. - --. ...., -"1,V"" re, 3 op"-, . "" ........ ~ ... 1000 ~ E. 1100 ~ .. (.p.~->- - "L G .. 1 ( ...... 30 Be Target on Nb Time (sec) 1140 1100 '1r~1 = "11 .. . '1/" 6" I<J 1140 IIS0 ~\,~-) S"tl~II\~ ~ \) llilit\. talS~\1~ ~ ---,,--<J,u ~ rll" La.J Q.cJ.;,-..r, ~~ - ~~ .k " 1 z) "'~ .. d.:.:fJ ~r¥ tv" - "I 67 68 The ISA C 7Be Beam Experiment L. Buchmann TRIUMF 7Be sources at TRIUMF There are four principal sources of iBe at TRI-UMF: • l)l' IH'lii{~ti(trl a ,i th\~ 1'H13 cydoi".J·o!1 ~ 1 Ci/2 ~..-r·f·k::-. • p;:ocJnct.ioll as by-product of bC<lllIlillc :lC O!J-~r(lrjoll~ ~ 3 Cj IhaJf y(~c.l.r • product.ion ill target' at beam line 2C ;::::: 1 Ci/2 days • prodllctioll at. beClmline lA ::::::; 0.7-1.4. Cijday T2-beamline lA target 7Be Ion Source IE' PiN? W~in . ~ ~ ." .. " .. J ~---i . : ~ " : .' . \; / ; : ~ " -. f-He . :"----PLASMA CHAMBER :(; PU~.~~ AriD EXTRft.CTICN S";,STEt,'; I - '.~ ~. .. : :' . " 1 ~·: -~· ~f . /1'-·1 . . SCHEMATiC DR,~,Wit~G OF THE iO~J SGURCE 69 7Be: Beryliulll Ion Current . 14 ,' + + (6e'+, N2, 5: i .12 1 . 10 ~ ~_,_~~~~~~-.l-~~ . . 14 -i -. I . 1#. i , if' 1°1 ~ .oc~ <Ii _ I ~ ,WL', 0 : + + ,(141 (N2' Si ) O? -i .oc+===~===:=;:===:t 20 3G 40 50 A T OIJ,'~ .. ASS 70 Windowless , Recirculating Gas Target V1':Y.)l1 p(78e,/,)88 General experimental considerations • Yield: in general : 1 event/(nb x 1018atoms/cm2 H2 x 1015 78e) specific: 100 nb, 1019 cm-2 target, 1 nA beam -1day, 30 % detection efficiency: 415 events~ VOd'l/ • Energy luss: 29 keY (lab) for a 1018cm-2 target 'z.-. J~t-1/ Go.. • beamspot: 5-18 mm for up to a 1019cm-2 target (straggling); can probably be tightened vantity m~&.ur~d tT Y P Q sum ~ e 4n ~ Beryl p(78e,/ )88 Overview of systematic errors oLhu q uantit.y IIno_l~dr~ of m~thod Iubknowlec:r;-e of D ( Bc -,)IB effec hve cncrlY cncr,y loIS fton.linearit ic. encrlY dependeDce of tT m&J;net pr o perties entfity calibration relonancc nuclear reaction. dctcction-implant&tion "B half. lif. efficiency beam.pot lize/polition d('Li,p)"Li 'apc pOI;tionin, TSc flu. flus ftuctuation added p&rticic counh 'Li/IS (out-clion. relative detector reSDon,c prcuurc I&ule lcmpn&lUrc ,au,c ,a. compoli tion mall 'pcclromctcr cncrlY lou relati on to thickDCU ,.om.1rlllu,lb ea.rrow re'ODanCCI relatjve cDcr,y calibration cla.lic Icauerin, ,.om."y II.n,lh re l .. tive cncr,y calibratioD d('Li ,p)"Li d ( 'Li,p)"Li W(fI) lLi 10 .... D/H corroclioa" bc&m'pot .I&i[polltion deteclion-implantalion c.neDt •• 'e,r .. tioa &Li(·H.,d)'B '.p~ po.itioDin, Dr B. B.)" «ft~ctiye «Der,y eDe r,y 10 .. .o.·liD~&ritie, nun d.pend ..... r • ma.rn~t oropert i~. enerrv ca.libra.t ion re.onance nudear rc«ti ••• Rulhuf./MolI tT «.om."y Rulhorf./J.' oll tT reom~try prulun .... ce temperature .... ce IU compo.itioa ..... .,.eoc:'~er I _. __ ,.-. .. _ ftva_ion. _flf {,I".,. b I~ ~t..I.~ 1.('·4/ Qt. .. ,! >~ ~I, .... ~ ~"'I" (III ~ r /, 7Be Experinlental Set-Up 71 sub-error t o t&l error We I" I" 1.2".3,,1 0 .4" I" 1" I" 1" 2 .0" o . ~". o.~" O.S" 1" 2" 2.3'" I" 2" 2.3" 2" 3" I" l .nr. combin~ 1.6" I" 2" 2.2" I" 1 .4" 1.3" 3 .1"·4.2" 2" 1" I" 1.2". 3,,1 1" 2" I" ~ 2" I" cu." •. $" , .. ,.. K ." 2.lt'" 72 ,(7.8e,81B),: Run tin1es and experimentat schedules Yield: 1 event/(nbx1018atoms/cm2 H2 x 1015 atoms 7Be) Charge source for each run with 5 Ci of 7Be = 1018 atoms. Planned: 10% to target: available 1017 atoms/run. We think that we can regulate the flux sufficiently to stretch that over a week: average current. On top of resonance ~1500 nb above resonance: 400-800 nb below: planned to go down to 17 nb (200 keY). p(7Be,8B),: Run times and experimental schedules Detection system: 20% efficiency for 55 B 10% for positron emission system 25% for Germanium system ::::::45% combined efficiency Scan over resonance at high resolution: 1018cm-2 target thickness: 10 runs to 3x1015 atoms :::::: 900/450/1125 -+ 240/120/300 events. High energy points (5x1018cm-2): 15 runs with 1 x 1015 atoms 400/200/500 -+ 700/350/875 events. Low energy points (5x1018cm-2): 5 runs to 10x1015 1000/500/1200 events at 100 nb, 170/85/204 at 17 nb Several runs with 5 Ci planned, including checks for systematic problems. 7Be Monte Carlo sinlulation r110 .. .J 0 statlstw:) ca:)l' , .. 8. ~ ~ 6 • ., -. . .. ~ .... 2. " bel ·montc.dar' 'lgamm.a .d .. 1' 'lgamm.&,daf 'tgammap.da f 'Igammad ,da f . 'tgamm •• pd.dal' :; random d&!.1 I. '. . ... .. . P,··"O 02 0 ." 0 .15 0 .' 1.2 LA 1.15 7Be Monte Carlo silllulatioll-distribution •:::,C/l .• J /  statlstIC:S eas<:' .. • E m , z ISO 100 SO j ; !: r .~ l/ // : I I ' • I .. I .. / ~ 21 -i I I \ \ i \ 30 SI·Vbl \. 'dAf. s' \'.>... .... 32 73 74 Experiments of Interest to Nuclear Astrophysics using 17F,t~ and 56Ni Beams from ATLAS E. Rehm Argonne National Laboratory ATLAS Beams for FY 1996 Kr-78 Ni-58 (19.35%) 80/0 of all beam time was for Exotic Beams in FY96 ATLAS Beams for FY 1995 ~·un.,"" (3.13%) t---Si-::18 (2.46%) &32 (1.34%) &36 (3.79%) CJ.37 (2.46%) (9.82".4) ~ .J='(P.,l') r, fJe "'F'(p,~ Icto 75 ExplbSC,·Ve. Nf.A..G£cos.:t1'a -#"~Sf..-S CIoIed Nuclear Shells 28 i 20 2 • :BeQ.Wl "'Procl..a.e."=on ,. 'J>e.iec:k:.n Tcdtn.~, ... ~ .. E" I<.~""c.a",,-L ~ ... (:b • '''F (p,~~(S'O • IZ F (PI r "Nc. • ,'7 Fe P/~) ·'to • ~fJ;'(ct,p) NN~ • ~ (Q(d., PJ'" CD • ~~.c "l~1U 76 ~Gl.W\$ Tt,\. fP~.-~. ;J." ~~ E/A £~. t~tJ t1d {"'-tV l=' \\Q~ 2- Q.U..J,.e'f'. ~ .. \0'" O.~ C~I"'\ (~.~~ S"'f.Ni. ,.( .d. ~- 'O:..lCW'. '3." to'" S- (clt~) nCo ,1 do. 2.- ~e'(. 2.~ IO~ s- (4,p) " i=" 'S-sec. ~ .f'L.z6r'- 3 It (oS" $"-B ~,"J ~ , .... I t'\~ ,H~(' II +"' ? ... ocl.\4dio\,\ Mc40tl (Gh - \ \0 ') H'~O 2. ".a,,~ . , ..-.. P'~ N~e S~,c.S ,,-~ , \01\ SQr.A1'C~ .. ~o ~-J +-~",~c,t StpQ.~"~~ s~ .(ot\ e: ~ O.~-o.i ~v~ I It 0 ~+ "FI.4+ (p,~ IS" /oJ Is-e PRODUCTION OF A 17F ( T 112 = 65 s ) BEAM and THE ASTROPHYSICAL 140 ( (l, P ) 17 F REACTION ATLAS SUPERCONDUCTING I""T---, I S7Q~V 170H -s,eJIh 41PP/s) LlNAC ~-.-_ as Me~ 17 04+ p.( 170 ,17F ) n -1 ellA (2'1012/8) I I J I . #' S+ ~IMW ' f .(3, 10S/s) @ :rsob.~'-c ~ Q:)~C:t\"~l\1 (nNe: - CliG:. ~ ~ .3" IO-S ) W\ .... <::oc.'Y\c.~~e mt.U\n.~",~.f. .~~ ~ ~ d.~~.fc:c::.~~o~ nN~ (cl,p)C"?N,: n.~(cl,p) ~'CO @ ~- nOMNl(iCA.-k .. " RN~ - ,",cG ~~~OC:!::1 J &-...~ sc:a.~ ~ ~-(do.~ p' ... Wc.lu ~~ ... ~ ~ .... ...... 77 78 ~::;::""~""' ... ' ......... / ,,~,"'''~ / ,,'" r \ , ' I \ \~ \ \ Si. ~o t~ k '''N ·$"O .. ex. "c.. C4(~~~ '·0 'v;: XTOF_G Sum 1152 Peak 16 Scalcl.og Run 64 E c..a. = 13.4- ~V • ________ ~~~02--t(~f~,~X\~'~~~~====~2~==~\=6e~<~C~0 ti~ (~I\"\ '''~ l' C~1. -,~ ~ \0 -A ... ~~':~c..~ {-~ ~- .M~c.~~t\ +MA (E !:. 30·(.) l='~'3-~~i: N-.ss AW\ .. t:r~r 79 80 o 101) 11()(ra,~} ~1=' 110"" ruo"' .. '<.c.. .. 100 Ea: 200 I~O: C0\,\ ~uo" .... c..~ _ ~ .. I,1='Cp" V) d.. ( S"l. Nt~ r) S-7 Nt: d. ( sa, Co J p) S'TCo d(~fiJ pjS"7h. Cs:l-~e~c.'c ~~~C~) ( be-. • ... tIL~ . 5C: - a.n<l.j ~ (""'_, ~~,t,' I:~'~: ,'~? ;:-KA . $"C~ " '" I tn~,uCc, c:!:>. ~ <U'«.~~'-1" ~ C ~'"~~~ ~~Qt~'J , ~(~l. cl- ~~t~'" ANL-p..22.1 Q9 120 140 160 E (chameIs) ~ 100~ o w <I 81 82 0.6 ANL·P·21.949a . - 3/2+ 7.062 Direct . : . . ... : .. ::::::::::: ;::~~~~ ~:~~~ . . __ ,,::::::::: ...... ... .. ~7/2~ 7.069 . . . .. .. ::::: .. ,.-- ...... .. .. .. . ,,3/2_ 6.846 ••.....• :.... . ..•.• •. .•. 1/2 6.944 ... :: .... .-...... ::: .:::: .: ::::::::::: ... ......... .. ..... . . ......... 7/2- 6.861 0.8 1.0 T9 • 1.4 2.0 83 l~ .... 100 ~ HUt\_~ ~ .... 10-1 .D ~ E 0 "Q .... ~ .. 10-2 "Q j E (MeV) '''F ::::b C~l\ ~~~.s\U(... <:'Q1»~t.. scc:.koll'\\. kto~ ( ~'o { -ct'" b.:>~ ~e ~'<. heo. .. ~! coqs 10.0 5 •. 0 1.0 0.5 84 0.'" ~. ,-lot ,- I, 3 .2,_ SJz.-12.5 10.0 7.5 5.0 2.5 0.0 1QO 210 220 E (IIrb.unl tsJ • I • o 2. «t C'? . S'C ~ e •. f) Nt ..... -Cfuet.t-.·l • • . ............ . -t .. ~/~ O.'l~ ,-(" I. U CONCEPT FOR AN ADVA\MCEJ> EXOTIC BEAM FACILITY BASED ON ATLAS PHYSICS DIVJSlON ARGONNE NATIONAL IABOIIATORT Feb......,. 199~ =,=,V bcoml I ~et ~ 10 iao -- ':J. t.l .... " =====11 =t I ?.-.ce.a. "'R .... .,. \ •••• "-.. U(n.f) NS u.. - '4tti -......... p. "~a .... hQr:{{..,....· Pb· -.-l."ov I"(olo~sl~f(",,-""((i~ . ~~ r. ~""'CL4l. J". ~l.c.\(",." T". '"&~~ :t=". 3~ ... dL. L. "JA.~':c.L 'P. 'J)eCiroek s.~ ::I. Ge"~~.J J. Gor'" J. G,.,Co G. ~&_" ~. ~1SS .::D. ~~.so", \.:». i-(c """-l ~ .JfI4OU1L"S. c. t. JtCl."::t J. Me K.d.GcL ( It> ~~ \I. ~CltlLL J. ~~w. (t.l.o(. \1.)1) J. ~o\c.n 'lao ~1clo CPo "2,.:{c" .A.~ (u.o4 \all) C \l . .c .... 3)) ~ . ~ ~~ .. ~.~. ~ (~M.'-.).u.) 3>. St\olC.1~"t'. k T.+: (.)Cl~ Ct<"f-lc..) ~. tJ~ (o.-I~~) A.~~ 85 86 Ongoing and Future Experiments in Nuclear Astrophysics in Louvain-Ia-Neuve P. Leleux Universite Catholique de Louvain Motivation • Explosive situations (novae, X-ray bursts, •.. ) • Nucleosynthesis : Hot-eNO cycles, rp process ... • Reactions involving radioactive nuclei (A < 30) (I)e Completed: 18F(p,a)150 [LLN-Edinburgh-Notre Dame-Leuven-Brussels] (IDe Ongoing: 18Ne(a,p)21Na [Edinburgh-LLN-Notre Dame] ® Future: New cyclotron 0.2 - 0.8 MeV/amu Recoil Mass· Separator A(P,r)B (A radioactive) (p.a) ~ ...-__ ";':"';""''''';'''-' ___ _-----1:------. 1 T ... £) + [SSO-'tLt0J kv 1) [ 2(.5' -5 3SJ .l..v THE P-.EAC. T ION E-.c.p.i El<p. ~ ~II 11 F (1t-) + r j)ETE(..T\ON i'F ~ 11.1. [ 10(,} [ "" '1"1.. ,.,U "'Nt. CH2 / I ~ . r JL I J~i T .... 1, . LOUVAIN- E.OII\I~«.G·"" '\)Enc..Tot. A ..... ., 9c.. a 11.- '2..1- • , 87 88 Q) c c o .r:. 6 () s '-Q) 0.. (f) ..... 4 C ::J o () _ 8 Q) C C o .r:. () s '-Q) 0.. (f) ..... 4 C :J o () J 2 o J 2 0 1/, If F(t,-l} 0 ell. ~ '11.. 1.' • JOO JSO 400 450 500 c .m. Energy (keV) L s .. ~ l. f> 400 500 C.m. Energy (keV) --Q) '0 e '7 '" .... e (,) '-' 1\ b V < Z reS) +5. lOS 10 4 10 3 10 2 10 -1 10 -2 10 \ \ , \ , , 0.3 l~} .5 0.4 0.5 0.6 0.7 T 9 (K) ___ , C. Ro • N .,P. Alit (~HJ) l' -0- : A. ca ....... ,,\-.1, P.l. c.'oJ (oj,,.' 20-12 _ : TI.;.. w..J.. 1.0 T (G1<.) 89 ASTROPH'fSICAL C.OtJSEG.UENC.ES 90 '" ~l tI 11 .t~ i. Th~ c."a.i'\l\ O(~'O) F(t'OJ Nqr+) FCr,oi) 0 is f .. il.rl-; \:hiS if (.Ot\lutt. .... r wa~ I;\.t. &brt.rv4~jo..... 0+ "', /-ro!'-_ "-4S' (as tv) j", H.... t.J"c.th. of ONt. M{ NDV-af.._ T1 l l ' i'F 2. I No. ~ro J'~c c.4 "T1>r oIlJt"~I"'). d.c~4 I 's "(tr, s~t( . ® ONG-OING- il ~ Nc.(ex',r) No. ~\-O~f\"'1 +.~l (ko-) + 'bJ-&J-otJ' (~) OE, E", E1. .r o· --tt.:sh,~ si l.:c.", t-a .. 4-f.U. FlUT MEAIUIl~ nENTl DONE l E .. 2o.S' tf~V ) c. .... @) R E C. Of L M A 55 SEPARATOR. M OTIVATIO N A ( P I ~ ) .B a: .... 'It.tSe k4 ..... c.~c.J A ~oQ.J;.... b(.o,."M ~ 35" o."MV-.$ ~ M.t.'I 10.."",,"" o.E/t=. - .... 1.-£4. - '0 _"' . """",.t ., C \-\2. TA~c;.ET tt) 8 Ru __ c.t. I( ~ ~""aJ.. - Lc..u ~i (C ~ ) Two ~t,,~s : I) To s.t..! tL -.I-..b~ ~~ ~~J:... ~ J) (-..l tL s~_ c.i. Jr. { A) L) To st.~~~..h b }---. A [~({......J. vJ.o~~, ] I"t\ Q"U.d.iolol. : ~~ : t.. -kt.r J) xil-__ • y 91 92 Decay Studies of Radioactive Isotopes in Nuclear Astrophysics L. Buchmann TRIUMF Decay Studies of Radioactive Isotopes in Nuclear Astrophysics First Kind: Measurements to explore nuclear properties of isotopes directly involved in astrophysical (explosive) scenarios. These are • the r-proceSJ • the rp-process • the p-proccss Typically measurements of masses, half lives, ,B-delayed particle decays (if existent) I . The r-proccss: classical: n, r < - > r. n equilibrium. requires knowledge of neutron separation energies. i.e .• mass measurement, for small separation energies. i.e .• at shell closures: half lives non-classicaVfrcczc out: all half lives and masses. ,B-delayed n-dccays. v cross sections to giant resonances 2. rp. p-process Similar mass and half life requirements Typically measurements are mass and half life determinations Second Kind: Measurements in which ,B-decays are used to study nuclear reactions. Examples are • the ,B-delayed ~ccay of I~ . • the ,B-delayed ~ecay of IBN • pa-emission in A>30 nuclei • the ,B-delayed particle decay of ~ifc • the ,B-delayed partiCle decay of I7Ne Typically measurements involve determination of decay channels. state energies. spectral forms. Some theory necessary to connect to the reaction. 10· -CI) .... 103 c: :J 0 U e Z 102 101 0 Red <Mont 100000 100 O. at The ,B-delayed a-decay of I6N R-matrix: fit to 16N spectrum ........ "-I '\. I I \ , , \ , \ , , ~ :p-wave \ , , \ , I 2 3 Ecm (MeV) The ,B-delayed a-decay of 16N Background-IBN IDOO 2000 3000 4000 93 son 94 -... ... t '-.oJ lL.. c '-.. i 300 } J; k : 1'/.,(, re.a;1 55lJC"" MCP 250 . '!, 200 '. 1 ' 150 100 50 WI/) • • • . C) • ..... 41. P • 2 3 4 The Mass A=9 Systen1 In the entropy and neutron rich bubble between the young neutron star and the stalled shock wave, the r-process is be-'lieved to take place. In this, nucleons condense first into a -particles with an excess of neutrons remaining. Further nuc-leosynthesis proceeds t.hen ,via 4He(an,,)98e(a,n)12C. The 4He(an:,)98e read-ion rate can only be investigated indir-ectly. At present: investigation of mirror nucleus 98: , c 13.8C I ........ \ 12. 11 11.81 ~ \Y£J 11.28 7.94 \lr,,!- I~ 6.7 5.0 'I , 112- Z,78 1IZ- 3.1 ra- ~ sn- Z34 112+ 1.&a5 llZ+ . 1.0 yz- 0 3/2-'a 9C decay 95 6097 Mr 4.8 -0.G92 Decay Studies of Radioactive Isotopes in N uclear Astrop~ysics Three body ,B-delayed particle breakup: R-matrix formulae: tv(E) w(.t:, b") (1) (2) f(Qj1-.t:) "L,Pc(E -/:;') c lL:l Al('Y>.l(E')/(El( - EW 0 XII - (St(E - E') - Bt + iPt(E - E') ElC'Y1(E')/(Elt - f:)W o 0 0 (3) weE, E') .... tll .. (E, E'} "1M .... "Ill,. o 'Y~ .... ("L, i OM,,)' " 1 fE+Q WeE) = E + Q 10 weE, E')dE' rM,,(E') = 2PI .. (E).(,. _ E'h~,,(E')(l + "I~I'(E') dSt .. (E~~ - E') (4) (5) (6) (7) (8) (9) 96 3000 2500 2000 ~ > <l> 61500 N w 1000 500 • 9C-8Be Ground State Cut " .. c: :I 8 18 1~~--~~~~--~--~~ e 2888 4888 6888 88BB 18888 1288814888 Proton Enel'1fY (lIeU) O~---.----.----.----.---~----+ o 500 1000 1500 2000 2500 3000 E 1 (keV) 7.217E+00 6.229E+00 5.240E +00 4 .251E+00 3.262E+00 2 .273E+00 1.285E+00 2.957E-01 -6.931E-01 ,..... > IV ~ ---C") I%. Decay Studies of Radioactive Isotopes in Nuclear Astrophysics Three particle decay through the 9.6 MeV state in 160 ~ Z500 :aooo llIOO 1000 :>00 0 0 F3 Vs Fl -- 123 1000 I!IOO 2000 Fl (keV) 1IlOO keY 97 98 14c 101 The 13N(p, y)140 Reaction J. King T=I University of Toronto 8'176 l3c+n a·GIS 8·062 2·313 I ~ + •• O~I 1":1 4 O~I I~O ~ . .c.::. .. -::~-: .. _ _ Kl554 DN+n 7·551 ~c tp t·······. 5-920 5·173 ···········:t d 1-0+ T=I 4·626 I~+p 10-3~~~~~~~~~~~~~~~~~~~ o 100 200 300 400 500 600 700 800 900 1000 Ep (keVI 37·0:tJ.1 373:tO.9 (w~ljkf@' t;.vert:tJe) RIf-])I4TIVE r (t!V) 9.3~ O·7:t o· & (shrf) (3Yst) P.7 %. '·3 7·l;t 3·B g·/:tO.6 ~ . ..,:t 0.'1 1~~7 /II/~TH Refef~nce N. P IIS¥2 (tft:tV .26 s P. R. C 31 (1geJ-) -/02.3 RR. C'l-i (Iflq~) ---:tor7 «ef~-r~J1ce PA'/S.u'tt 890'f(Fitf'S) fo p. R. (! '10 Oqif) 1847 . -:InT. Co.,,{', 70 leyo (11ft) P. L. B.')6Y O~II) ~S9 N. 'P. A~!2. (tt:;fj3) 6 6 P.R. £f! (Ifif!)2."c/tJ 't .. " .. /he. observed $ - i2a.c .. :to(' c..aY\ be WfL·tf en a s Where . P{E):: eneY'3Y- de.feYl. den.. 1-. resoncU/ce w/dift. 99 100 DC 7tJeoren CAl ~ 1," (,£I;'oYIs S (*0) -feV.6 E. (keV) (I) (.2) (~) 0 0.3'1'1- f). rlt 100 0.32'1 O.7i! ().612-200 o. a oS' o.6t'8 O.~7J 30t> O.~27 O·!90 o.S'~q '100 O.l70 0.(29 o. '18 s roo O.2~'1 0,1/"'8 0.'4'18 600 O.2.3CJ O,¥.2' 0.4-10 700 o.~~s O.!7'1" O.:a7'f ~oo o·al~ 0·8'12- o. 'atf I qf)O 0·,.00 0.301 o. ~ 12-l(JoO 0·188 0,'-7' 0,287 (~) F~""'I1,J~.~'" .1. Rio C'I() af") ~ - /aI'" ..... ~Z'''' f,rnt (p,IS?S) (3) II,·/A.rJ,'s Feb. 17) 19'1'1 rec eil t vet' $'IDIt 6T Hun stet' CDae a.1 ,~ I, , I , , I , , , I , , , I \ , , I , , , I , , , , , : . ,-j ,( a.ol~VI ....... '\ : " :,.... l .. .. ... ; J .' . .' ~ .......... ~ i.····· .......... i 'I ...... I a.oal i l r---__ $=0.9 1 ----------___ _ I - __ _ a.aaal . . ~ kT (keV) 0./ 0.'16 0./) /.3 0.2. /.7 O.~ if.'? ,&,.~ 2 /7.3 S' lfg'2 10 ?6.3 ~ ~ ~ u ~ u U tl U E"Orgy ,,,,VI P.R. C'f8'(lct<t3) 3088 Eo (ke V) :<0 :U, gZ 59 94 /'I.q :<71f 436 A~", ~'I..L Z ~M LJEoh. (hV) tf.8' 6·g g.& /~ 33 Sq 1~6 ~~If (,d( = (zr+() F;..1b (i":J;.-t-I) (~-t-I) T T ~ lite ,-JettT" bea tM -S '..J.. '.1 Ifl f ettSI "'-'1 G~b = $l'DPfl"" power ~~: rle 7?'('~81,'e "vA vel erts+h ! l 101 102 /j'e lei ,L/ssGlme r; ::: 3·0 e V rp = 37 Ke V ~ JAS farJef of 3~'l.IO'~ afD~ c"" \ J. f J'O 13~1 -I + ~ Uf!V.", () ,0 N. S "II ,c"et-78 : ~·tf Eo=/6e kflV ~ = 6g ktV '2. lir f'(:. 3·0t: O. 'f e V fp:: 37~1 kev SR ((68) = B.6(s) to,S kPv.b :3 3.7;t a. S- ~v. b PrOM tJ,e r~Ylge of SDC (£) tl..eorr va. I" e s a.nd for a raYlJe of ~pectroscof'c ,factors fr()~ S = o·lfr to S = O.9():t D.23 we -h'nd SDC (Ita) =- O.tf8t:a21 kv.b ; O.SIO.2. hv.~ -~,. V, 'n, ~ -f, nAt v«.lv.e of S(U.>8) = 6·S:t /.~ kev. 6 (t 1·0) _ ~ pe.K cross sec:t/OYI ot 330..,IAb for fAa ca./cu./a ted T'P.!onaMC~ (tAJt'+/a ener9 '1- de pen.delt."{-part/al w,'r:J +hs) Ex-e.ecfeJ 7},,'rJ Ta'3e1 lie II • E (J:tv) O'(E)yb) Y (Ar-') P.OO O.()07S" 0.3 300 0./7 ~ '100 2·2. 70 ~oo 104 3,9 X(O 3 52' 3~O /./'1-.'0 'f '00 28.3 Cf20 700 q.'3 ~gO g~O ~·i {qo '100 '1.3 100 1000 a·$' So 103 104 Measuring the 21Na(p, y)22Mg Reaction at ISAC N. Bateman 22 119 D DD ,-. ' 10 ... ,n)- .' 0.1' 0.4 JorM(i) -.. Zn(l.J~ .' 0.1 I h.U .... ' • TRIUMF 2JIIg . .. ~. I . U VI ' .K V-• • 1 . 11 . 22Mg D ,- , . It U., 1 . 1" " c . • < < • .' I . U .' •. U ,- . 22N e \.I~{ do 105 ~ nuJ t.c kno~? ~"v) z( 11l' )'\' wI -~ e ~T .pkT so, '-'Ic nuJ E~ , w~ . .. J.l/1ic.4 ""~ /;itt 1- kft .... ~ ,J'I) r;) rr [K ell rC''''~r ~~1"',111 ~uonCII\Ces S.(~ L JT L 1 EMkl ""r rqtc. (114 .. 1 c.cV) (1.r-1) 217(t2) 511+ 2· 400s)js 0(1) 6.11 2.'2 '2.00 340(5) SS'31 ~5(3-) $25... 1 5'.'1 113 '50 +"(15) 5"S o· 2 '.'2.+ 2.5 100 110 (lS) 'H1 4t ~1S..s '2 ' .ss 10 2.S0 10VS(15) 'SiS ? ? to 1<60 1 lV' (1') ,n3 :r 1 1 10 150 1413(.0) '''so ~- 1 f 10 110 tI'eQ',9(IIriA, «~I\""C'It p",. .... & itrr w;~ • ~ N • ~QI'h -cvo 106 ~ .... ,I f> r-iV .. #'yl.*<. -../ 1", /"" t ~",/H.V r'[l ..Kr I",... ;v ~oo}') /~ ... 'V 2.. tltV r 21"1 l" ~ ". (~/1}Lt'1~ roc- 1 J\t V res o II/AII et j" ""f '':" 6 E be..., = 50 hV (fn... lin4<;. ) '1 CPt'- .:1 f,- .. 2.3 kN E I.os -: -:j. ~.:v =;> .4$ 'ktl/ /r.s tr-~ - Go. (i .. prillQA) ,,1 fr - 5U1Si tiW'( to r~ H.V - If r2 1~V ...., ~clv~. GJib,..t.ifll( ? to OleqSlAre 107 th~ T5AC ruol lepctr.t.r) 1 ~ fUOF ~jtJ. "Z.Z.N< be-- Ilc.&~ (i/'l.tr I." be.... ""leot, or Iu .... J;oJ .. st'itr 10 J..J/ ... kWr./ pllA l. Tnus .. ,..( k"O,"", r(sor.""I(U j" tINe (r,I[UN.. 1a )u t.h..( ...... know ""I.J W(' r. do;", s: 1/1(..,..,.. k .. ,- "'lOn.o(r i~ uW. ("I); fur)] losr 'L~on - C.d; tr.t;.~s Se.J.~c.teJ 'C,,1)UN ... ResonQftQ!:s ~ {reV] w 1 ((lV) rate (s-S) ('2 ,..N 27j.1 (4) .OS3!.013 1t! 0.'3 S 14-.1 US) .f''! .1s" 1., 1 1.& 10..' (5) 'l4tO.' 24-.t , QhJ 1.3 N ( 1t'N , ,. , Rt.lolI-.ca 250., (1) 4.'2 (I~) 110-3 .0'13(31) '30i.1S (e) O.V4(IS) 1S (1) 51'2,1 (11 0,').) (loJ 7.'1 (II) '''K1-(~) 5,1 C,) 4-'2. (1) 108 The 22Mg(p, y)23 AI and 23 AI(p, y)24Si Reactions 1. D'Auria Sirrwn Fraser University '''' A. 6RCII.~ · } G.P. Q. ~tU<t:- 'l: u. c . \-:~ ~. 'STY.PlleliSol/ NI\;(~l'em;yn:thesi:s in Novae • . 22 an:d th~ produ:ctron of N a in equilibrium since Q~value is small ---;;a-T=l waiting point 22Na progenitor D stable isotope (=seed nucleus) .galactic "tray emitter ~. 1-. Z ;:)' 0' U' 30 20 10 500 The 22Mg(p,y)23AI and 23AI(p,.r)24Si Reactions Rationale .Cal.cul.a'!ons Cor ·e~pl.osive hlr!l.,~~",! .~uplillg in.D!\,!ae pr .... ict'high abundance oC u Na'I1..uripg "'~iDal. rUD.a.~ay • • As oCyct DO iodialioo oCuNa (1.275 MeV yrat receot Dovae. .ProductioD oClINa depCI\ds oo·d.cay oC u l\'1g ",lIicb'jD tum depcDds 00 the lIi\1g(p, y)u Al a.o.d U A!(p, yiUSi rcactioos. -If reactions rates arc high, pro.l1.."cl,ioo oC lINa is I.ow. -In addition, uncertainily il\troduced by uncertainily in U AI mass Experimental Considerations 1. lIMg(p, y)" AI. ( .. L ~ aile \ ,./ , . -Rate dominated by single rcsonaoce; EOD = 0.345 ± .04 Mev -Eoergy of rcsonaoce Deeds mpre pr~!Jo. -Predicted resonaoce s.u.~ very SIII!!'I. (001 =.25 l'eV) S~.aLt. tIaIc\.. -Estimated Yield is 0.014 cJb (ell" 10,0 s'; N -10" em") - - -2. "AI.(p, y)14Si -Rate dominated by single resonance;;/, ellc.> t \lc.) ~ - 0.160 ± .03 Hav -Enerqy of resonance needs more precision4 -Predicted resonance strength (001 .. 66.5 I'eV) . -Estimated Yield is 3.7 c/h (ell _ 10'0 s-'; (N = 10" CII.-') Comments -Difllcul.t to produce intense. beams ~ \ \'t. WI'" 'SC\\ Eo,,- .lL.t 0. ~ N .? f\ L\ ~.\ (\ ... ~e) £:\0 40 ' 1 <II. 't I 24M g', 'Li:HOIU': . Co,, LI . • H.' .1 Sc ~round slalo I 6 , I : ' 550. 600 CH:A'N'N'E L 650 5 .. ... 4 III ... Z ~ 3 P <) 2 9'O~~d state +tint u.cited .ialo : ,t :\ , {I . :: j\ I 1)1. ! 260 260 280 CHA,f'NEL I I 300 5r------r------~----~ I.O~ 22 23 r-- Mg(p.y) AI '" > b ..., o • z go-IO -15 -20 0 ... 1.0 M 1.0z .. ;; a: ~ 10' OJ ' 0 .. :: 10° o ~ ~ 10-1 ( pres) (WGTR) ( pres) (WoWo) l.o·Z '----:0:L:-.1--.J..,--::::I Temperolure T, 109 .,~ I~ J~ I~ I~ :J> » :5 :5 :g. )0 1<:> cY' <'fI q.-1/1 V\ .,-J II) (I s:: r. ... () n p () () 1,) -V 1} 7) (II -£ ~ " " ~ .. ~ .r ; ,.. " 0 f S- ri H 17 1.> ..L (.oJ ,j\ it) I< .... 1C 7' ~ .. Ci ~ ,. 0-, 0 ~ "I r 0 DC» r fit ., ell ill j I' ,. (I 1\ GI 0_ H lJ) 0 § g r cJ (,1 -I l11 !} CD ".,. -~ , '<. I '/l A /II r ". rJ //I counts ~ ~ 0_ counts o~ Oy o. 0 II> .. (7) II) ~ . ~ .... "SI;... 8 ~"Si,.7au.v ~ttSl • ••• MtV 2451 g.s. (213 cls) .... t7S1C1.1 1.879 MeV (37 cis) ~:~:~~.~:~ ~L- 24~1 "t dAf UaoV IAn ,..fe.\ ~ ~ o .,] ]:I ft\ ~ Z '1 ~ ,~ '10 '. I-~ E ~ I !?, a ,I!. 2. ~ , ii' ! ~ --------------State structure: .197 .Gl3 f-795 fD ~75 fWB The 150 ( o.;y)19Ne Reaction L. Buchmann l.D7& 712" 0!S1 3/2 ASO\ L.~ 35'6 J:jO+a TRIUMF (p:y) + ar (P .cx) (D',p},(ex,Y) 150(a.'Y)19Ne p-T phase diagram: 12 3 4 5 6 7 8 910 Ta . 19 '12' Ne £",.,.1 h .... _/JC~, t-I"'I,~y 111 112 Reaction cross sections rntc .. ted r •• a.ne~ .trenllth.· L r.,rp wy=W rtot y ..... W·/ £ £ ---Recoil Detection Target Thickness ! \_-Desirable thickness is 10-30 keV in the centre-of-mass system; the reason is that state energies are in the worst case known to this precision. Example 1: The 500 keV resonance of lSO(a:,"Y)19Ne. There stopping in a helium target (NCS) l018cm-2 is equivalent to 55 keV stopping in the lab or 12 keV in the centre-of-mass system. Example 2: 2oNe+p, 1 MeV resonance. There 1018em-2 in a hydrogen target is equivalent to 83.5 keV stopping in the lab., or 4.2 keV in em. Therefore targets exceeding densities of 1Q18em-:-2 are necessary; targets exceeding 5x1018cm-2 are desirable. C • ~ ::I !. c: .!! c; -. • · · E 0 Resonances in 150(a.,)19Ne and 15N(a.,)19F l:'O(a,'Y)lllNe l:'N(a,'Y)lllF Ean (MeV) E", (MeV) Ecm (MeV) E", (MeV) 0.019 4.033 0.364 4.378 0.504 4.032 0.536 4.550 (0.611) 4.139 (0.542) 4.556 (0.668) 4.196 0.634 4.648 0.850 4.378 0.669 4.683 1.020 4.548 1.076 4.604 1.093 5.107 Table 1: a-capture resonances for 150 and 15N [1] . References (llJ] F.V.J.bc .. IIS, M.S.Smith, P.D.Parker, R.E.Azuma, C.C_pOeI, J.D.King, and J .Vise, Nucl. Phys. A470 206 (l!967) Direct capture of a-particles into first excited state of 1eF at 15N 0.0001 lH5 le.(l7 l..oS 1 • .(19 le-l0 ,.11 ~+IIIpM. direct oapture -oroll 'secllon for full reduced width 1et_ohed 'state E1 'transition --~1~~~--~--~~--~--~~--~--~~ ·0.4 -0.5 '():6 ·0.7 . .018 .oS 1 1.1 4.2 • .s t.4 06(alpha)(M eV) 113 114 Detection of 1.8 MeV 19Ne and ~ 4MeV 'Y radiation Particle (kt.cctioll: faJ below I3rar;..s peak --t no re(l",:;ormble Z-ciifiCTilllillatioll. Tlw['cfol'(, dl()S( ~ll l.ilBe of flight. IIldllod and E jJl('(t.':illl'C'IlH'Ilt.. Required Background Supression: 10-16 . • Recoil unit: 10-12 • ,-coincidences: 10-4 • Remil detector: 10-2 Jr/v; -t~ ~~,.I- 1-4""~h t ~e !2 p OF s)'Jhl'>'l Summary and Conclusions 150( a" )l9Ne The lowest E=504 keY resonance is expected to produce about 1 event/h for a beam of 1011 S-I. Beamtime estimated to do the measurement are: 10 shifts for higher lying resonances, 30 shifts on 504 KeV resonance, 20 shifts, off resonance. Demands from the experiment: 1. High yield 150 beams; 2. Control of isobaric contaminations; 3. A detectton system with all-over separation of about 1016 between beam and recoil product; 4 . Likely: new ways in recoil product detection at low energies; 115 116 Measurement of the 8Li( a,n)l1B Cross Section R. Boyd Ohio State University L. Buchmann, 1. D'Auria, 1. D. King, 1. Tanihata Big Bang Nucleosynthesis in Crisis? N. Hata. R. J. Scherrer. G. Steigman. D. Thomas. and T. P. Walker Df'fHlTlmf!ni of Ph.v.{ic.f. Thf! Ohio SIUII! Univ<!rsil.v. Columhu.{. Ohio -13210 S. Bludman and P. Langackcr Df!pUrlml!nl of Physkf. Univl!rsily of Pl!nnsy/~·uniu. PhilmJdphi(l. Pf!nns)"/IIUl/iu 19104 (Received 16 May 1995; revised manuscript received 24 August 1(95) '"i He ':lH 0.26 0.25 )0 0.24 0.23 104 >:. 10" 10" I------------------~ 10" 'I FIG. 1. BBN predictions (solid lines) for Y,. ]2p. and )'7p with the theoretical uncertainties (l (7') estimated by the Monte Carlo method (dashed Jines). Also shown are the regions constrained by the observations at 68% and 95% C.L. (shaded regions and dotted lines. respectively). 101 INHOMOGENEOUS MODELS OF BIG BANG NUCSYN. SOME FIRST ORDER PHASE TRANSITION ~ LUMPY UNIVERSE AT TIME OF BBNS \ \ \\\"~\\\\\\\\\A \ ~ p-~;g:~\\\\\0H'-f \\ \~~~~ <z~\~ '\ ST. MOD. INHOMO. MOD. 2H 2x10-5 2x10-5 3He 4X10-5 4X10-5 4He .24 .24 7Li 2X10-1O 1X10-9 9Be - 10-18 10-18 -- 10-14 llB - 10-18 10-18 -- 10-14 HEAVIES 0 ?? 2 4 S o r:-I-.. c+ .,.1. ( '«7) 117 118 ... REACTION NETWORK Radiative Capture or {3-decay 2H Initiated Particle Transfer Other Particle Transfer Reactions COLLABORATORS IN THE ·U(a.nl"B REACTION STUDY Q!:!!9 State University X. Gu· R.N. Boyd M.M. Farrell M. Hencheck J.D. Kalen C.A. Mitchell J.J. Kolata K. Lamkin M. Belbos University 2! Michigan K. Ashktorab F.D. Becchett J. Brown D. Roberts RIKEN I. Tanihata K. Yoshida Nagasaki Institute of Applied Science K. Kimura Ball State University M.S. Islam --8I.L+ inverse. r~oc..r"",,, croSS sec..+ i "",; flS ex.c.i+ed ~+a.r~s co,,", c.onrrib ..... fc: <:;--__ J.._.(.,.L~ ---b .HV ., ...... / 11&1 .. ... II As ~t - -- ---Se.ver_1 n+ "q (1-'" II B pcr.f.o," .... ccf +0 rn e ... sc..<,.~ +J.c [r"j ~, e.~ . ( "l3eCo',pJ'Ja*-"'> "B'".n 6, ... 1 {(S(n,."J. s .... ,t: .. j Cl ...... &. .... .' .~ .. ' "Ia.e tAte SOc. ., MVSIC. .de-lAX ~ ,,: ... y v:~ =) 'L; .J.. ,.. f: f 1-1"" rO~ " 13 ,--",.,. .. :.-r t~ '1 1,\/00'- ~ Stt"~ I ....... ~ l.\ ~"'". 119 120 l<. e."" t-iV<" W ," 'c:. ~r) ..... .'S - H.,...o' ~. on..J.. ... I p(o..-.e. jJ.5 ' .f-;._ C ... I-I..J. P • .J rDf= S':, ...... 7-V.r4-;c. .. ' P. 1't +'t .... ( c.. - r. ~ 1 4 .. ) 'S oJ ",_I. I=. r- t:: ..... '- c ... +~ ,,.1. • .dEILX /4"'''I''~J •  f ~~ "" H ('/' ~ t! ,. ~ " e. c:. «,; ~ \ , (0(" ... (.<1-<'"", .;.", .. - Wt,.-I-f'<1'I't ....... ~; ... _J.; '5 : Pu· .... ",..1 "G: (.'--J - . 13 .... (.. 'WJvl (; .... ~ ...... ) "0: eO Co ~L:' -~ (j ., tven t.' : 91 ( 312001) Anq: $00. tot : 231 . C."d 2 :St-«- ~,..: ~, ..... +~ t (J(" ... .., 12. .. c..~[ v. ,.la ... f iJ:., ,~-I:_ "'-e"JC f)--O --cd) -O--O-~ AEIA~ , I ... , ,. .... s~ -q Nt. ( ~ t. .. , , t 13 ) (~ Ev.n~ f : 119' 49S3241 Anq : -190 . Tof: 7l7 . Candl' No C-"'-J Q I-h>r~ .:c-b~ +-.. r $."",_ \I"1"l:c..( (ll .. t"" ,.(.Ir .... ... :...... c.-'- .. ", J ~ (§) -. (i) -. (2) -- (i) -C-e -" /\f 0 .... _ ~ .. "" ~.c. r "".,,-!-,".t ~ II J3 "?, .?' cJ .;. <i?CA. 0. r" '7 '. (.j ~ .. Ie.. L 121oc.. !-:".--. c....,c._+ ,..1(. S~· ".1-1. l ~!.: I ' I B .J \ '"' } Excitation Function of 'U(cx,n)"B 800r---------------------------------------.. UU8IC Q.- Tn-I • uueac Q.- Tn- a 700 ._0-600 500 !400 b 300 200 Ean (MeV) 121 122 THE PROPOSED 8Li(ex,n)llB EXPERIMENT Neutron Wall -He Cell 8LiBeam --~) • • y-Ray Detector Faraday Cup Vary beam energy to span 0.4 to 3.0 MeV (c.m.) in 50 keV steps to measure excitation function. y-Ray detector checks integrated angular distribution. YIELD ESTIMATE Asswne: 8Li beam of lxl09 sec·1 He target thickness of l018 cm-2 Neutron wall: 20% efficient 1 m2 at 1 m Cross section to all final states of 100 mb/sr EVENT RATE = 1.5 sec-I. Need roughly 2000 events (in all final states) to resolve nuclear physics issues, get good cross section measurement: 'This means roughly 1/2 hour per point Three neutron detector settings at each of 54 energy points gives 80 hours. Use auxiliary experiment, 9Be(ex,n)12C, to measure neutron detector efficiencies. With overhead time (factor of two) + auxiliary experiment + initial setup, need roughly two weeks. POSSIBLE TARGETS Helium, 0.05 atmosphere, 3 em, - 4xlOII atoms/eml. At 2.8 MeV, dE/pdx = 4.1 MeV/mg/em2, 4xlOI8 atoms/cm2 gives 0.12 MeV. Gas Cell With Havar Windows: At 2.8 MeV 8Li, dE/pdx = 1.5 MeV/mg/cm2, 1/20 mil havar gives 1.9 MeV. xxxx Gas Cell With Stretched Polypropylene Windows: At 2.8 MeV ILi, dE/pdx = 4.5 MeV/mg/cm2, 100 Jlg/cm2 polypropylene gives 0.45 MeV. Can get somewhat thinner foils and this is the peak in dE/pdx; this isn't too bad. Gas Jet Target, thickness = lxlOI8 atoms/em2, Energy loss is 0.030 MeV! But this leaves a lot of iron near the scattering region - LOTS of secondary scattered neutrons. TIMING REQUIREMENTS Detectors are 5 em thick. Assume 1 meter flight path Assume 2 MeV neutrons Assume 1 ns timing Right time = 51 ± 1 ns, AE = 4% due to the detectors, or If target is 3 cm long, that's an additional 60%, or AErorAL = 130 keV (depends slightly on angle). States at: 0.0 MeV 2.13 MeV 4.45 MeV 5.02 MeV 6.74 MeV 6.79 MeV 7.29 7.98 8.56 ---7.13, n + liB particle decays 123 124 Nuclear Astrophysics: Experiments with a Recoil Mass Separator U. Greife INJECTION MAGNET S SL FCl S· FC2 l-IQJ'D f:~1 --SL 3MV 'ITr-3 TANDEM Ruhruniversitiit Bochum SPUTrER ION SOURCE POST sTRIPPER FOIL SL S FC3 MQJ'D RECOILSEPARATOR (ijlt~ dc.a."""f:~) I SWITCHING FC4 S SL MQPT S SL FCG 125 126 d=252 d=HO d=2·1~ C B D' C' 1=80, 11=10 Pz 1=80, 11=6 PI PI 1=90, 11=8 Pz 1=80, '=10 P, TY360 TV360 TV:l60 TV360 BARATRON DBB D25B IS150 15250 D25B DBlI D65B D65B SIDE VIEW 70~~,~~~~~rr~~'-~~~~~ 60 50 Q; c: c: ~40 (.) "-230 c: :::> 0 (.)20 10 0 1.0 0.9 -"'" ~0.8 b "-CD 0.7 ....... b 0.6 0.5 E •• ,cLi) = 2.66 'l,!eV l'o(D~+~) = 0.40 Torr 7Li -Dl (d recoil) d(,Li.p )"Li (p ejectile) \ 7Li_~ eli projectile) 0.5 1 1.0 1.5 2.0 2.5 • present o previous E [MeV) 3.0 0.4.0r..S ......... .&......JI.--L-.2LO ......... .&......JI.--L_.,;J..S ......... ..I..-JI.--L-:.50 ....... -I.. ......... "'-:'.6=-S ............... -1...-=80. Eem [MeV] 127 6 ~---.---,--.---r--,---rl -.-, - ,r--r'-"a-r-~t I • , • • 5 ~ J z '). z 2 3.00 1.2 ~ ~~(~ 2; , i -1.0 ~ '0 OJ ~ 0.8 0 E '- . a .s 0.6 zJ ')0.4 .. Z 0.2 -200 - . p(,Li.J')"Oe p.O·I.) = 5.0 Torr . 3.05 3.10 3.15 EIoIoCLi) [MeV]. , , , I , , , , i . , I. i i I I ' ~ 4 .92 Torr -IJ-r-rri-t! z...... - 282 = ... - 344 A -100 0 100 200 300 z'{mm] J~.c. 128 \J \l) >-\l) > ~ .2 \l) CY 10-J degraded toil \ 10-7 ~~~~~~~~~~~-LJR~~ __ ~~~~LJ~~ 0 .0 -0 \l) 10-' )=: \l) > ....-o Q) CY ~ ~ I=-I:-0.5 Magnetic I I 0.4 units] )f )OS I I I 7% ... 5 FWHM H '2eG" t2C5+ 12c·· °N7. t:. p/p = II I' 0.6 0 .8 1.0 . veloc ity v [re la tive units] I;)it~ - 1: RIa-I 1.5% I 1.2 1 ~ 00: ...., "21500 V .0 E ::l c: Q) ~ '000 o ..c: u '-' .... o U Q) 500 Q) o I w <l ...... L .. .D . § 1500 c OJ c c o ! 1000 L o o ~ ,,500 o I w <I 11 ... 'Li p 1% U "0 ,. 11 12 14N lOoS 12(; ... ''8 'oS • "Be o~~~~~~~-.I..~~~-L.~~~~~ o 1000 2000 3000 4000 E -Oetector [channel number] b,,-~ : { ... <./.ot" 3. j", (;.>0&1 , .. <.~" .... _:ai""<! ~c.c.." ~cI ",0 Q.ou -:0'15 " '.!::! , "0 C '-o S to .A . , .. (~.~.O) _-----' ION • ~. B£AIj p.(HJ • 5.0 _ ~.19 mbat . ..! n i . {} z-:' ws 2000 WS 2000 '10.5 z . . 0.0 -400 -200 0 200 Z [mm] TEsr r1 "./.(. 0 LEAKY UC BEAMS LEAKY PROTONS /' 400 .:., ..... ,.y.~.;~ ~ .... , .... : ',' o 0 ................. -'S'-0 .... 0.L..J......L-I,-00 .... 0.L..J......L-I,-SO .... 0.L...L....L-I2-0 .... 00.L..J.. ......... 2'-S.L..OO ....... -"-3'-0J..0 ..... 0 ..L-I-3L-J500 JI'i,.(. (\! )/. E-Detector [channel number] /P~ -l~~ ~ £, ·;10·1.l. It. o.H'!o.Ol)o~ Al.e (p (t1 AltJ' JIa4. 'r.- • o.lt!. 0.0 't,.b vc.:I- . 129 130 ,..-, 3.0 III ...., c 2.5 :J MeV PZZZ?IZZZ?d (6p/p). - 1.1 X Q) .~ 2.0 ...., .2 Q) 1.5 .... '--' 0 1.0 ....J W >- 0.5 I z ::J 0.0 3050 3100 3150 SWITCHING MAGNET 8 [GJ ,..-, 3.0 III P ('2C;y ) uN c 2.5 :J Elob = 11.0 MeV eZZZZZZZZZZi1 (bp/pl, - LI x Q) .~ 2.0 ...., .2 Q) 1.5 .... '--' 0 ....J 1.0 ~ >- 0.5 I z ::J 0.0 720 730 740 WIEN FILTER 8 [GJ A) Production oPBc 7Li(p.n)7Uc ('~ s "'''' .. f ') " " (&lib) )IJl U1 I. I!p(MeV) <"Ul6)-Q--l.64MeV Eu.r 1.87 MeV wc will usc n.!l!:1£Y proton bCllm ofUIC KFK Karlsruhc cyclotron. which CUll produce II bcmu o~fucusscO 011 a"targct spot will~\I11l dimuctcr. " 4 - 5 days - 10 Gil" ( 1010 U" ) activily ueJllh layer - 1 11111\ 40 em [] Ihis aclivalism scltl!J is "Iso uscO as Ihe calhode of Ihc Kingslon Seienlilie spullcr source. tl '"~ ~(-;:t.--:!d t7 lollll production: ~ '" C.htc.'c:. ~ ~~ ~t.~ , 4096 ~ 3072 :s6O :!0+8 1$36 . 1024 :;12 1 SU Eru -,;:~~ w.: ~ ~8\. ~.I. ck~ et.-Lt ~~(o. ~·t·~'(.~ 0 • 3D" SD~CL ~r c:~(,r ::\; I~ 04. (f.- d· ~~ tf4 ) -"" fTCJA.c&..-~ .f'(-t- (f°!.~ ok\fr~) -. '" f~d;~ ~ fgs~ "-,.... 2 A~ 7u3t. 7neH.1607t OBJECf STRIPPER AND OTHER IONS surs roll. ANALYSING IIAGNET (90°) SElECTION SUTS 2..- 3% ..fL% 4-~o~ If:-' b~ ~ .5"0% A-6.)-o~ SPlIITER ION SOURCE (lUleW.~ me AND GAS DEl'Et1OR (4£-& TELESCOP&j f{ ( l&. , 1 ) g g H (]) ~ C r-i .' . . . \ '. (]) C C 4096 3S8i 3072 2'060 2048 ...... ~~M.~~ .. ~~ .. ' 8B RECOILS 131 1536 m ..c: "LEAKY" 'Be BEAMS 7Be DIRECT BEAM () -r:z::l <: 102. ~ 204a 2S6O 3072 3:s&4 4096 (channel number) 1024 51: 1 .. '. 1_.1 • ' • . I~~~~ .:·~~' . -. ., ;t: ..•. . . ,.. .. Ercs ' (channel number) 132 800 ,..--, (.'''! .J) 600 --;;. . 400 -<J ..:;~.: > ..' ... :: .... :(..:.:;~ ....  " .. "' . ....,,, ...... e* •••• ' : ~';." • • .. .. .. : . :~"leaky" iBe-Ereignisse 200 ' 0 :: ~~i~h~:{.:~~~~. :., .:;::':. :'" o ! I I r ," I I , , I I o 200 400 600 800 1000 Le...\': ~o loft} ~B./#- ~ ... Jw {o~s E [Channels] -- ~ . ~~ ~~ optt-~AI>4.! J'l kc'-.)$;. : J~tIO"r- 'V 2JJ q"r If 0<. L o ..... .::t:. o LL J If) • • • 1 Kavanagh, 1960 Parker, 1966 Kavanagh. 1969 Vaughn. 1970 FiJipP9ne, 1983 \\ vorloufiges Ergebnis ! NABONA-Experiment II .. ll4'IIfI I j f ! r I I I ~ It 1'i ~ ~ i 'i 1!~ f :t: f ti ~Ii I i r ~ a ~~~~~~~-L~~~~~ __ ~~L-~~~-L~ 0.0 0.5 1.0 1.5 2.0 Eem [MeV] r~c ("-, t)lbO - A CHALL.r:/V"'E F{)R EXPER/HGNT ANb mE-oR. Y .3 ol. -+ IJ.C 1 /:l.e (ot, t') "0 J RATIO IS kEY '1=oR, N"'CL~O.sYNTHl:.sIS G .·.· N .. ST~ UCTURE I GVOU<TtOAJ Of: ~~R~ r=XPL.OSIC:N -H=cHANlst(,s MASS O~ COM PACT RSMNANTS >' .;: E,c C"~V) " ~... .. . ..  ~ -7': : ... JO. 35"' ~~ 'I. ,.,.S- ,2" -'L.SS~ J" 11'" .. :1 pb .. .••. 1> $CE.) -J.O.o'fS -:.0 .. 1.1#5 I I - -0--- ~--':f.. II T ~ • ,-li'-ffl'f ~ :::; I E.i )E~ 0 ~ ~ o· 'too G.ENSRAL 'PRQ8LEM: TWo S{,A,,8THRESH{)L:D SiAtES. . .2>OHINArE. $/(EcJ ! GJcpeR. PF\.013LE.M: ,o1.C (ol, ~) '''0 ..... G-t" ~ pb_. I'I.b ,t '3c: '''',I\)'tao . ..... Irn.:: It\b ... b " I1C• 'He/' r-j ·'5 ; .245 E, (keV, t-""'.lI.:---,r----~2S ~~~~;;;;;~~ ~ 7117 t ' 60'9 o· !foo 133 134 l1E TIT-3 Naples l>E l>E l>E 4He(12C,y)160 '~~" 160 :" .-::': :' ;';-~~."'''''' '' ' ' ''' "Leaky" Beam Decayof 3.2MeV rle!;onance to 6.9MeV level 1000 ... ' 00 400 160 Background subtraction using an H 2 target (OH'" 20%oHe) 0) HE Wlen liner 011 (He-gas) 200 -00 E 1000 b) HE Wlen nler on (He-gas) ... '"" 200 ' ; , .. . ~'"",",, .... . . 200 400 800 1000 E 1000 c) HE Wien nler on (H2 .gas) 800 L.'£o .... : ... t;>rQ~1 ~ (, ...... ol.c. ..... ...... f-400 - ')L;~ - f)k.ha" 4~.{ ) 200 '. 00 200 400 J)TL ~TL :!2 v ~ v .~ -0 v ~ " q; 10' 10-' 10-1 ~ 10-' v > :;::; .2 v ~ 0.2 0.4 0.6 0.8 1.0 1.2 velocity v [relative units) 0.5 1.0 1.5 2.0 2.5 Magnetic Field B [relative units] RJ",lO-' ... R=R,R2R, .. 10-1O °C2+ o 5 10m ... 1 ______ I'--__ -JI 135 136 . RECOIL SEPARATOR JET T1IICET 91\' C UQor ..liP c := J.'7. II&'< f1LTIll D ~E-E mz:scorE ~f;;; Sl.rc~ IIEHI~ f1LTDU 'P' UQor,/i!Jj ' ~ ~ IISIS~ I.:J 811 8 t- I I D 14000 _ C B ' D' ~~, .!.o-'- -= -20-:" =- _ o,~ ~ _. ___ =~ _~ETOZ~LE._. ~ to.,- ~ _'0-' i.. 10-1 -..... - - It\ - ------- . -- ( ',. '1 RECEJ\1R - - -0 I ~ LI H ~ 4 z N 6 ~ , J: ~ 10 8 16 12 14 l.S/l S AtU. 8116 Ii. 137 138 DJ .lJI,L.l ________ 1 .A.IIL--· __ ·____ I ror p·+EC decuy 011 0':'1 ICC luL>lc 2]:'21 2 ..... • fI' 2 ...... U:J1:.. I' 131 .... " _1151 +"Iolg+p-nl Fl. 24.), Encr&11nds or "AI; for more dcl.i~ ICC table 24.23. ~. TABI.E 24 .23 Energy le\'els or 24AI E. [keY) J" TI / 1 I '; , [kcY) E. [keY) J"; T 0 4 ' ~ 2.0SJ 4 S 2311040,1 477050 d 425 .R 1 0 I ' h lJl.J 1.~ illS 2 RIIO .10 ,I 5535 15 .I.e (4-6)-] 5145 h (1-3)' i J 0(,0 411 .1 5957" r 0"; 2k 1110 IJ "x (1- 3)' i J J50 511 .1 (, II 10 40 ,I IIJO <) "x (I-J)' i -' 710 511 .1 7070511 .1 1292 7 " ( .'_ 5) • i J 920 3IJ .1 II 25070.1 157HIO" (5- 7)' i 4 -,4U 411 .1 16510" 4530 40.1 " rlum £,(1 -> 0) (l11l79). h rrom (I'. II) (Mo7tr). ,. rrol1l (T. I) (Tr77b) .• 1 rrol\1 (T. I) (Ma66i). C From L(p. n) (OrR2). I rwm dc energy Ilr delayed prolons ellt:iling 2.1Mg(0) (Le80r). gAs dClivc" frI'Ill Ihe lIIirrllr t:haraclcr wilh Ihe J" = 4' 24 Na ground slale. hAs dcrived rrom Ihe all()wcd dlar:lt:lcr (Ir Ihc fl' + E(' Iransition to Ihe J" = 0' 11.46 McY 24 Mg level (see lahle 24 .21) . ; f'r<llll 1. (1'. I) (l'e77). 'Frolll I.(p . n) (OrIl2) : Ihe I.~p. n)-) rllr a level at £.~ 1626 25 keV (OrR2) IIIl1st he Crflll1l'(IIIS (Ihe I()wcst TT ~ - levcl in 2 Na is al I :' , - ).)7 MeY). k ["rmn the supcr·allowcd dlar:ll'lcr llf Ihe 24SiUl ' + EC) transilion 10 this Icvcl. ~~1Jo ~c..t.:~~ ~"'~.IW ,J.d. IJ .... J.. I\yl ~ S-~ (AtiliS ) SlA -~l' Table 2 ( " CWl7 .L...l, ",. "t ') Resonance paramcters for 2.lMg( p;y) 24 AI No. E. (MeV) E.(MeV) J1r I" (12 I' "y(eV) rr(eV)1 (tly(cV) "1" 2.328 0,458 J' 2 0.1 0.047 0.489 0.0268 &42" 2.521 0.651 4+ 2 n.m 0.16 I.RI5 0.1287 ")" 2.787 0.917 J+ 2 0.1 0.013 104.2 0.0114 1&4" 2.876 1.006 2" 0 0.1 >0.026 10040.0 0.0163 2 0.1 >0.026 189.9 0.0163 ",5" J.002 1.132 II 0 0.1 >o.o:n 18100 0.0124 . . 2 0.1 >o.o:n 394 0.0124 Wie~cher et al." 051 I" 2 0.1 0.047 1.0 0.041 0.69 II- 2 0.02 0.16 3.2 0.170 0.91 not includcd \.01 " .2 0. \ 0.0\3 110.0 0.012 • I Calculaled with R = 4.41 fill. "Ref. (8]. 140 .\.I! 2 ~ (,)0 S. I\"/~II/"" "1.lN""',,,r "".1".11;;, II .I.~.~ f/'I'IJ} J2I-J.16 10 ' " . 6 10 V « Z ~ 10 2 Q. 2l "' I a: c 0 ·u .2 "' 10 II) a: 10 .. 0.1 = -2.3,1 g he. V ,. 2..~ A4c~V ( . -. -23Mg(p,),)24A1 0.3 0.5 0.7 . o.e Tg (Temperature) . I ER, :: l.f~-I 4(. (/ #1. Jc., to.tpl--( lItJ.c.t..t~~l!;.'4fr< (~U-~ ) Of -I"- . &pu, -I..c ) A 2" t..~ toll fA.~ .~ cJL, ~G" ~ct f,.u. ,......., I... Q) .D § 1500 c Q) c c o ~ 1000 '--' I... O · .... u Q) Q) 500 o I w <l A ~t ("'1)4.r -> 11 9 8.4 6 7 5 6 4 7Li 7 12 13 160 10 11 12 14N 10.5 12C 8 9 9.6 "8 7.S 7 ' 8 9Se o ~~~~~~~~~~~~~~~~~~ o 1000 2000 3000 4000 E -Detector [channel number] a.f.tO:w..f.r u( ~ I.I.A.D 1-4.0 £; a; c s.' (; u;.... A-'-dol" M.t U> r.-The TRIUMF Recoil Product Detection Facility J. D'Auria Simon Fraser University NUCLEAR ASTROPHYSICS AT ISAC The Recoil Products Detection Facility (RPDF) . Overview John 0' Auria The Electromagnetic Separator Dave Hutcheon The Gamma Array Joel Rogers The Gas Target GemyRoy The Recoil Particle Detector Uli Giesen FACt l.tT}' --NUCLEAR REACTIONS OF INTEREST ExP~osi va ;'Nuc~eosyn thesi.s RadiativQ Capture Reactions 13N(p,y)140 ..J • . Hot CNO Cycle . 150(a,y)17F ..J. ' Hot CNO Cycle/Breakout 17F(p,y)18Ne Hot CNO Cycle . 18F(p,y)1INe Hot CNO Cycle 19Ne(p,y)20Na _ Hot CNO Cycle/Out 2ONa(p,y)21Mg Hot NeNa Cycle 21Na(p,y)22Mg ..JeHot NeNa Cycle 22Mg(p,y)23A1 ..J. 22Na Production · 23Mg(p,y)24AI • rp process 23 A1(p,y)24Si ..J 22Na Production ' 25A1(p,y)26Si Hot MgAl Cycle 26mAl(p,y)27Si Hot MgAI Cycle 7Be(p,y)8B ..J. Solar Neutrino Problem ..J '.- Proposals or LOI to EEC ' data exists data exists data exists data exists data exists 141 142 Yield calculations for selected resonances of some radi~tive capture reactions A beam current of IB=lO IO ions/sec and an areal density of pA=1018 cm-2 are assumed throughout Fot 7Be(p;y)8B' direct capture (D.C.) yields are calculated from the cross section. (J. at the energy of interest as simply In pA (J. reaction 13N(p;yi40 ISO(u;y)19Ne 17F(p,r)18Ne 18F(p.r)19Ne 19Ne(p,rioNa 2oNa(p.r)2IMg 21 Na(p.r)22Mg 23Mg(p.r)24AI 25 Al(p.riGsi 26Il1AI(p.r)27Si 7Be(p.r)8B 22Mg(P.r)23 AI 23 Al(p.'Y)24Si ' Ion Q Ex EtA ER OYY ' dEtdx half-life (MeV) (MeV) (MeV/n) (keV) (meV) MeV (min.) mg-cm-2 9.97 4.627 5.173 0.566 526 24W 27.8 2.04 3.5294 4.033 ' 0.160 504 0 .02b 12 1.075 3.921 , 4 .561 0.678 640 14.6c 39 109.8 6.4112 6.742 0.349 331 ~74(f 39.7 " " 6.862 0.476 451 1630c 37 0.29 2.195 2.646 0.471 451 glf 41.2 .45s 3.216 3.508 0.307 294 24<1 49;5 0.375 5.497 5.71 0.223 213 2h 49 0.19 1.87 2.38 0.532 510 41i 51.7 0.12 5.518 5.97 0.470 452 58j 53.4 0.11 7.692 7.893 0.209 218 10k 22.7 53.28 d 0.138 D .C. 0.229 200 3.86 s 0.126 0.46 0.361 345 0.00025 54 0.47s 3.301 0.166 159 0.0665 53.2 GENERAL CHARACTERISTICS • Inverse ~inematics/Radioactive : projectiles', • Masses A < , 30;(Ene~9ies~O~15~1.0 MeV/u ' '. Positron Emitters'; , ~ ,~ 10~&~/sec • Reaction Gamma' Rcw,,:Energies' 2 :~ :8 :Mev • Generally Resonance.;Reactions, ' • Low Reaction Yields .0 Reaction ;Product RecoiLCone' :I0 ~-15 mrad • 'Beam ;Longitudinal emitt :'(98,%)4S;1t 'kev,ns • Transverse emittancel i ~3~m mmmrad P" -eEAfo\ ~,?oT 5'~~ 5' WI_ ' ~ S - -Yield (sec-I) 30.9 0.1 h·1 0.137 13.9 24.08 0.29 4.47 0.054 ' 0.479 0.8 0.7 10.9 h- I 0.014h-1 ,8.6 h-I The 150(0., 'Y) 19Nc ~caction An Experimental Challenge Aim: Measurement of S(E) Factor E (Beam) = 0.15 - 0.5 MeV/u t ., .. Expected Yield 1 event Ih 35 eventslh 750 eventslh Resonance Energy (keV) 504 (C. = 9.9 l1eV) 8S0 "- Mao .t-..... 1071 1'/(1. ''''ls-Experimental Approach: Inverse Kinematics Detection of Heavy Recoil Product Challenges: Production of Required Radioactive Beam Intensity Minimize isobaric (NI$) contamination in beam Build an appropriate gas target Develop an efficient. mass separator with high background reduction factor ......... ... ~s RPDF == Recoil Product Detection Facility ~ ,.~t~ 1 EMS 1--+.1 Dell f"\sd.. . i I ~ ~ . ~ ElectroMagnetic Separator: Recoil Product gas larget surrounded by the ganvna array separate reCXlD product from beam Detector: E. tor, Z(?). A Fig. 1 A.schematic block diagram of the RPDF • Windowless gas target ('"'~ t\c..) • Electromagnetic separator • Recoil ion detector • Gamma ray detector ( '?) • Diagnostics, vacuum, controls, safety/shielding, data acquisition -143 144 BAC~GROU.ND ISAC Funded June 1995 RPDF Starter Funds (NSERC) (20\() Aug. 1995 RPDF Working Group Established NSERC Design ~unds (45K) FY 96 Key Facility Specifications Established NSERC Design Funds (103K) Radioactive Ion Beam gamma -- .~ l1li4=+-- gas target array 'MDl charge state Jelection slit (q = 8) ~ecoil product selection slit axial scale (m) I I t 012 (transverse SCiIIe X8) FY97 Recoil Product Detection Facility 1RIUMF :. ISAC Some specs (for a "AI(p,y)"Si tune of high mass dispersion) total length 18.2 m Acceptance • ang.: ("'·20 IJJriz. & +/·25 vert) . • velocity ",. 1.5 % Mass • dspersial: 1 cm'% after 1st SIage, 2.5cm'% at • resolution: - 200 after 1st stage, - 500 atler 2nd stage Rectangular Magnet(MD1) • R = 1 m, JOdegree · B=.0.31T Wien F~ter (WF) ·lenglh 0.8 m • eIeclrod8 gap 10 an • E = 28 kVIan, B= 0.3 T 8ecbic Sector(ED) '. R = 2.5 m, 35 degree • electrcdo gap 12 an • E = 11.3 kV/an Sector Magnet(MD2) • R = 0.813 m, SO degree ·9=0.38T . \ SA.C 145 .. ~ ( 'PRc.l\oIYi'~ A.f'RI L \otot., \C\.q~/'1 ------e r,",y-S\C:~ ~~A~;::"I..S _50 I, ~~~""tl'" ' E <Sl\A I f' M EI"f.I G~{:\l4T ~SE:~c. VRO.JEC' Gi< f\ 1'\T'Eo CO~'S\"Ia.Ci\C\·) AS"'E~%LE. , CC)"lCY\Y'1\r,.SIClN 'R?b~ "?el~ Po.,.... \ ~ a]<p~R\M€",,-t-S ("?) ~\ ~Q.. (?" ~J ~~M @ 146 • • • T""'~ ~Efo\I.\S CoL.I..i\?>o«'~\ON T~p R.E.Azuma Toronto ~ . oo~d P.Bricault TRIUMF . C . ~oq.f~ L. Buchmann TRIUMF . U "·~R.e\-f<.. J. D' Auria, Coor. SFU H-'?' T~~VI;.TTE.~ R.Helmer TRiUMF A. Hussein . U.Nor.thern B.C. ? la~v..)(. D. Hutcheon UAlbertaffRiUMF T. S "'O~f\ K. P. Jackson TRIUMF ~ r::. ';:)"T~E. \~e.~ J.D. King Toronto R. Korteling SFU A· S"O"TI!~ A.Olin · UVicffRiUMF ~ . .' t<~\"'"", J. Rogers UBCffRiUMF G.Roy UAlberta · E.M. Vogt TRiUMFIUBC S. Yen TRIUMF • N.Bateman TRIUMFfforonto/SFU Alberta Research Ass. Research Ass. Research Ass. • U. Giessen • D. Hunter SFU (p. Lipnik Louvain Consultant) COMMENTS/QUESTIONS WHAT ARE ALTERNATE. APPROACHES · TO UsING A GAMMA . ARRAY TO PROVIDE A TIMING AND COINCIDENCE CLEAN-UP SIGNAL? IS ANYONE AWARE OF A HEAVY ION DETECTION SYSTEM USEFUL TO PROVIDE Z IDENTIFICATION FOR IONS WITH ENERGIES LESS THAN 0.5 MeV/u ? IN THE SELECTION OF THE DEVICE TO SEPARATE PARTICLES OF THE SAME MCiMENTuM BUT DIFFERENT MASS, ARE THERE ANY SHOW STOPPERS IN THE COMPARISON OF A WIEN FILTER WITH AN ELECTROSTATIC DEVICE ? IS IT REASONABLE TO EXPECT A BACKGROUND SUPPRESSION FACTOR OF BETTER THAN 10.12 ? Electromagnetic Separation in the TRIUMF Recoil Product Detection Facility D. Hutcheon TRIUMF Electro-magnetic Separator Designed for radiative capture in inverse kinematics Requirements: • good transmission of recoil ions • beam suppression (1010 or 'higher) • co-operates with - windowless gas target - recoil ion detector - gamma detection array Ion optics Don Hunter t Peter Lipnik, Helmut Weick ( + J.Dooiubos, H.Wollnik, P.Brieault, R.Baartman, G.Stinson) Capture reaction kinematics • momentum of recoil ion .. momentum of beam • gamma emission dwlges rKOiI angle ( .. 8-15 mrad) • • • recotl energy (±2-3%) ® >p • velocity & energy of recoil, beam differ by AM/M e.g. 21 % for 'SO(a,.., 4% for 25Al(p,y) Rtcoil s • narrow resonances 147 148 4 '"'3 ~ t-......., >. .... :§2 0> ·c ' .... u (1) W 1 a a 'I50(a.7) ER=O.50 MeV ~, it. , + q=5 ...... ~ •. / .'-< .' , " " , 50 100 Mag. ridigity (MV / c) Beam • q=2 + Recoil 1 ~ f::4 Target 1st stage '1 2nd stage- I Detector First stage Target Charge selection Cl~ ) Mass selection (& 0" £7.B) • select one charge state • keep beam off electrodes Gas T.-get "versus" Separator/Gamma Array • gas t.wget needs long. small·bore tubes for best pressure reduction between pumping CL .-' ~ • to avoid high rates in gamma array. should have large apertures. get beam well away from target • background suppression in separator: .void hitting surfaces st glBncing MJg/es ~ ~==~~r-Ir~r X v' • first quads should come soon after the target to keep recoil envelope small in the separator but first quads should be in a good vacuum section to reduce problems from charge exchange -150 20 I ......... -0 0 0 L E 15 r-"-' (l) 0'1 C 010 (l) r-c 0 U -+J u 5 ::l :--0 0 L n.. 0 -.l 0 10 .,..~ .. t. t I • 0'. ; .. • • ,0 • • • • • I 20 M/~M 'So ( }n It,r fie 149 I • --G) --.l 30 40 150 'W.l=. FW. : t/- O.l~ lLU Z-l/AX: 18.05.lllU X-loX = +/- O.l~lLU Z4I.I.X = 18.05.l UU Electrostatic vs Wien Filter • can adjust W.F. dispersion - to match reaction angle, M/.:lM - if limited by E-field • W.F. harder to build - dectrodes inside magnet gap - fringe-field mismatch - Ch.Sel. focus moves Recoil emittance at t.he detector CoriBidedune for 1:10(a,,.) (mass <lisp.: 1.88 cm/%), assuming ±2.5 mm beam-spot and kinematic broadening only. From 1st order and 2nd order aberrations, spreads at final focus would be • t.o.f.: ±1.07% (±41 ns) • x: ±8. mm • a: ±57. mrad • y: ±8. mm • b: ±14. mrad • a. detector with Start foil 250 mm upstream and Stop foil 250 mm downstream of focus would have to be bigger than ±20 mm x ±13 mm 1\01 (J {l'ClSO T)Ai Z = 1.i11[!1Il llU IIIl[ If em 1f'Ji: mIS HI! Zd;~)25 X= t/-IJJlJ.-D2 IlU T= t/-Y1Jl-D2 IlU ,t SS s l;+s SIAIlSltII.WIL\DIS x : l/ -2Y1t.-1» UU A = 1/-tIGD[·Ql RIO '* : Orulilli 11!llt II: Im-D2 111m Y = t/-2SJI..·Qj lW B : t/-3 1tIl~ RMI IUIIIR If SIN!IID PJ.IUIlIS: ml IUID If Im1!D PWLE5 89M (m 1) . IUIIIR (faxm PM1llIS: B988 (99.9 X) :., 0 I , ... ... -5 151 152 ~Ol or (XYIl'SO rIAl Z = 7.674[+00 llU mu: or aos 1NPUl: RIIS !OO2lj(p;c126Si I I I I I I T I I 2.~ At X Q.t 1I\a s s s 1;+1 I I I II. L I I 1 S ( ~IE: 04/24/97 l1 :il : l~ /11 r,rr·fo S; ~(f11NOOW X= t/-5.rJJI...1J2 llU y= +/-5.rJJI...1J2 llU IXFIIlOOH or 1I( tmW. ffiI5I. SPACE X = t/-2!m...1J3 llU A = t/-I:nJ...1J2 PJD ~ = l.846E..1J2 IIW. I): = 4.000£-02 111m Y = t/-2JJJ...1J3 llU B = t/-1.5OO£..1J2 PJD HUVIIR or Sl.IRl£D P.lRrrus: ml NLWR or MG ~:"~lms. 7Ul Hum or com P.lRlruS: 103 (7.8 %1 (7.8 %1 -5'~ -3 -2 -I 0 1 2 3 4 5 Co'" ,.-------------~ -5 Simulation of background ('UFOs') • Assume scattering in section from target to Charge slits sends a beam particle through the slits • allow spreads in angie/position/energy - ±8 mm, ±40 mrad horiz. - ±31 mm, ±40 mrad vert. - ±10% energy .. do any reach final focus? • if so, what angle/position/energy did they have at Ch. slit? ! UI UI I A'~:IO ')'.; L = I.;,·, ~ ; ;r l U', T:a or QOS UiyUI: RWS fCf, lSoxP;G)2c:i UF O's SI1[ or Yf.:{!Xll: X= +/-1.000[-OI11U y= +/-1.00'Jt-Ol llU D(fII:r.!a~ Cf III uml/.J. ~l SPACt x = +/-8.000£-03 LLU A = + /"'/' .~]E-02 R,\j) ~ = 3Z-4~ -02 .1007. IlK = IO:·Hl .1007. Y = +/-Ji[Hi llU B = +/-tOOOHi RI.:J NU~!~R or SIIRI[D Pt.'J{1[S 299CJC IMI![~ Qf ARA'tW fM.bUlS 2~~ ( Q 1 7.j ~I',m Of (OUNIED PIR[L[S. 2}S (0.1 7.) ~(O Q I~ (~ (0 CAl(, -.,-----,---.----. --==;;::=---~ o -1 - ( 0<:...." , I I I T I I T gz[(JIlNOO~ OCflNOKlN Of II{ 1NI1llJ. PfiIS~ Sf;:: x = +/-8.(IJH3 llU Allrl'e ,t 0= +/-4.tJ1H 2 llU ... L I t°..L. d= +/-I.IXX)[-o1 llU A = +/~.OOH2 FJJl U r; 0 ~ _. S~ • \ ,T" . lUlII 1" , 011 = J846[ -02 ,100% OK = 1.coo£-1Il ,1004 Y = +/-J1CIH2 llU B = +/~.r::J.. -112 RI.!l .SIlm tt~lD;S IUIiiR If S1k:mD PAR1Il!S: mXXl NtER Of l£\oID ~'!lrus: 239 (0.1 X) III!ffi or cc:;.1ID P/JUO.I\' 2J9 (0.1 Xl + (oy. +-IT - .. I"-- u1~ _1''------......J-/ (J -/" 153 154 'Y-Detection at the TRIUMF Recoil Particle Detection Facility J. Rogers TRIUMF CAL TEe H'S 280 E~S. '( CoINClbC:NCC: "0 F\aW'e 3. L 511>&1 .. ~E opeclnlm for ''0 recolLl At UIe 2+ resODallCe. b. 6FrE speclnlm for ''0 recoil. III colDclcle"". Willi .., rayw for ~ ~ 1.5 W.V. b. Tit E IVE t=:.D FoR. 155 CoRRECtION *" RE c.() / L S RIDS 0/'1 A CDNlINCA.u.!1 t>'F J)FGtf<ADE"D L e::AKY 9 E'AJr1. • * Rt;c'ofL... ~EAK IS ~~At>ENE"D BV 5~tP"r AND '51 L\GCJN DETEc:roR BO t2ccr )~) /3 IV C:tt..tS (\O-tO) ONLY 0; t: 60 t: " .r:: u "-!) 12Cc 4+ c: 40 ::J 0 U 12Cc3+ 20 '-" 0 0 500 1000 1500 2000 Channel 2500 Fig. 5. Typical spectrum from the Si(SB) detector placed at the end of the system. sho\loing the 13 NS+ recoils and the residual 12C beam particles (see text) which are still transmitted through the system. ~uc1car Instruments and Methods in Physics Research A306 (1991) 233-239 ~orth-Holland R.'f" Co(L ... S "f A McASu..~E"/I;\"ENi f) F GA-A{MA «IT" A1VG.I-E 6~lNes lcQ~MA"f1C Sl+tFT, tdftcf{ c,4N BE -piE~e S~A<TC:D. A recoil separator for use in radioactive ion beam experiments * M.S. Smith. C. Rolfs 1 and c.A. Barnes W.K. Kellogg Radiation iAboraIory, California InstitllU of Technology, Pasadena CA 91125. USA 156 AN £;(151' /NG IJcVICE w/flcH PlE"I'rSUI{E5 3707'!i A,E'CL - S 3 'Z.-q H80 -PI40 pcCAL- r&>R ' 81r Srec-~~ETE<l1~g4) BISMUTH GERMANATE I'ia. 3.2 General cut _ay illustration of the 811 SPECTROMETER ahoving the BGO core or apherical ahell, viewing porta and detaih of one element in the auppre .. ed array. Each element of the core is viewed with a 2" photOlDultiplier tube; for clarity, only two are ahown. Viewing porta are aituated at the apex of three hexagona, and theae apex regionl are cut flat in order to bring the array dementi cloler. Theae cuta appear as triangles in the fig"ure. The Outer radiua of the core ia 18.6 em -.eaaured to the flat ~..tl region at a viewing port. The ahell ia approximately 7 em thick. ~~~~ if 13~N-'\ SP/I.-I- (-l-'T". -rifE" . ,i4'(u£:, WI'-J- 'Be: ~ (0.170) ~ 1= 1P·" . 61O:A-1"\. f~"'C L-E'> / S t;;c. ,)( "¥ ~~ mU'7f" _THf2j(T;; F~~ C-~Nf /V .20""-/lrNN/JI{LA"noN Y:' .. rEA $fiic..cf.fD * EAc.H- sa-o $~6.M7?NT ~AN t)NLY H14,vpJ....E. a.1M PE'IL S f!:CDND) So wE NE!l:.b ;J....oo B6.o SE?6I'-tEi1T.S· It ~7f 5ff3<;.TtU>f'.'fE-~ ON'-Y Hit? 7~. rr J S TJ.J lEf{.T:= PcIZ r;z: f ~ f,~ LI{ T co <;; 41 v.). -t- ~NSI{)E?A PASTe-it 5c./tVT/LL..rf77J~S Tfi.A-N Buo .l /( *'Def'lNt: BC'AM> (I..€':fECrloN F"Aaroj2,. AS ~lo oF"" e.SIlMt.V VlI_E"I,.(.l'" RAN.t4:>1"\ ~ Dlv//)CD 'By I}JC{W;:Nr ~E:AM ~A1C: F'6."EI-\,:! = RY'a. ... o.<Mts /1<...,_.., ~ No;..e.t Rt'Ae.i: 't~'£,MS R\>-..., ~s / R bea.m == N'rJ«t RJ'l.et 'LK•EMS ~c;. ?.E.>M/ta whev'e.~ NbJ.Lt. :: #-of GAJ.{M PCTEcroRS = - I/. - : 44-t). ~$"M, s : RllJ.&t ;::. P/i..EVP PA-~ IN 8<:.io PETE~.::: ~o/s if 'C;t'E"MS =- (;.QINC)P£NCE Pt~DL..V{NG. ,IM"E (~R~e:cre~ FOP. 't AN'L.E ~ ~u,fl.EP TO 0.5 ra.J.,~ = a.~'l\S Foil ';o(o<.)?5)"'lNe. GJcFEf<J"-"ocNT ~MS::> RE:rO::TlON FAO'tl'>R of E"II-{> fJ('E/!.A='r75l> Af..oNf: -'T -n 61::: Dr;;r&~M(fVE:P 1"1\1$ L.EVE L IS REQwItED Fnlt 1.50 ld...,o)"Pe _ _ -( J... Bllc~N I . 14 MA.'I ~(P) 157 158 334 THE IVGw SCI/llTIL.LA-701.. L$'D JS AV4rLAf>LE" Advantages and Limitations of LSO Scintillator in Nuclear Physics Experiments T. Ludziejcwskj, K. MOSZ)'II$ka. M. Moszyflski and D. Wolski So/Ion 11U11ltll~ for Nue/,ar SlltIdiu. PL OJ-400 SWir,k-Orwod:. Poland W. KJamn and L.O. No,lin RoyoI Ins,,,,,, • • / TreMolOfl'. Drptr-.u 0/ P"",Ia. Fns<Dli S-104 OJ Slodholm. Swr",. E. Deviuin and V. 'Kozlov t..bnJrv P"",1ed Insl/M •• 117914 _ ..... R""i<1 Table III Comparison of the LSO with other scintillators. Paruncocn Nalrnl Cslm) (BOO 'I BaF GSO YAP:Ce YAG:Ce 11_ of ph< IphoIM.V) 9000" 12000" 7000" ~ 2300" 1600" ;&.0" 2700" 1200" 11_ of •• hpoin 10000" )9000" 61301' 6)lO'" 6000" 1$000" t-"'McV 12300" 35900" 5070" 5160'" t,lMI 130 900 ("300") 0.6 0" 31-' II" 610 341" ';45" lOT' t.INI 600 45 61 247 1\ ... 1 415 S60 410 210 430 )10 550 320 o loIem" 3.61 4.51 1.13 4.11 6.7 DS 4.55 nh 0.45 0.5 0.,.1 WF' I%I 6 S.S" 11 9" 10" ~I~~ 11. 1" Tune molUlion" E>I MeV IPSI 3SO'" 1050" 1S~3"'· 1110" E>IOO t.V Ps 100" 1300" CsF tLSO 1 fMJ'I ~ 11$00 us" ~ I~ 47 390 410 4.64 1.4 0.11 II" 10 111' 160 )12" 410 a) see ref. (\6). b) see ref. (281. measured with the R1306 phOl0multiplier worlting in the phOlodiode mode and with the HamamalSu S179()'()2 photodiode respectively, c)see ref. [291. d) see ref. (30]. e) see ref. (7). f) see ref [2]. g)estimated using data on the light yield quoled in ref. (\ 7] and the quanlUm efficiency chnclcristic of the S3S90-03 phOlodiodc (I$].h) estimated using data on the light yield quoted in ref. (28] and the quantum efficiency c/wactcristic ofthc S3~90-03 photodiode (I~). i) for "'Cs source. J) measured with the photodiode. see ref. (311. k) see ref. (321. I) (or Olle countu. measured with "Co source, m) see ref. (331. n) this worlt. A PRACTICAL LSO MMY foR RPD If R£4ul.A~ P4I..YHOM(cIL8E, a::rAm;;~) etc) A~ T»o fO)<.PW:W$' \IE, Zf I."IM 1I .... s.). )f- C LDSl! -ML""et> <a~.~ I' ~L.A C.AL -~ H) IS "'."f! e'C()I\b,01I<:AL.: 1...eNl,. 5~oN C$#s ~sq;o" • • • <f -=/tS" ~::: ~;"WS/4-~ 'td -;. 1:->t.J,-'t 1.5e. .... TlhCK (e.~!J%) /I- L$O""tt\1CKIIeSS =- '.S" ~ Mo SU"~n!) ey .>W~ . MoM\) ~ \olCII(I(S~. 1i-~~<$C L.So L~Jx.t:: .llt.-tI.~/~c.", "Tb • '-1Ll.. Tlf<; ~w ~ p~ ~r = +) •• ~ ~ cl\PSeN TD srlrH TAM&>r L.E#4TII ( I~) PL.u$ IIrS M,UO( m«~ I'rl 14" """ A-FI'"op.P. •• U .~ ______ ~ __ ~ __ L+ o -CA.'''''} 159 IEEE IRIVoIS. NS - 4J+ (IN PI{. Ff"S») A Position Sensitive Detector for 1-10 MeV Gamma Rays Joel G. Rogers*, Christian Moisan*, Ami Altman*, Yao Xiao Guang*, and Edward Kamykowskit, *TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. Cana.da. V6T 2A3 tNorthrop Grumman Advanced Technology and Development Center, 1111 Stewart Avenue, Bethpage, NY 11714-3582 Abstract A position sensitive detector for 9 MeV gamma rays has been developed as part of a contraband detection system for airports. The system, comprised of 88 detectors, will image contraband, such as explosives or drugs, in a ge-ometry similar to medical x-ray computed tomography. A point source of gamma rays shines through an unknown object. Transmission projections of the areal density of detected gamma rays are reconstructed into a 3D image, which shows the presence of concealed contraband inside the object. The image quality depends critically on the spatial resolution of the gamma ray detector. The new de-tector is a modified version of detectors developed by CTI for medical PET imaging with 0.511 MeV gamma rays. A prototype detector was characterized by exposing it to 9 MeV gamma rays from a 252Cf + Ni source. Projection images of a simple phantom object show that the detector is capable of faithful imaging at 9 MeV. V. CONCLUSIONS A 5x5x5 em, 144-erystal, BGO detector, fabricated by CTI for our application to contraband detection, was tested with 6DCo and 9 MeV gamma rays. No degradation in position reaolution was detected between gamma ener-gies of 1.25 MeV and 9 MeV, the region where the domi-nant detection mechanism changes from Compton ae&tter-ing to pair-production. The only visible difference between the phantom images, Gown in Fig. 5, between 1.25 MeV and 9 MeV are an overall 10IIII in contrast, which is qualitatively aplained by the greater penetration of the 9 MeV gamma rays through the 51 mm thickness of the Pb brick used as a phantom. The energy resolution of the detector is degraded from that measured previously for thinner block detectors[7]. This degradation is to be expected from the variation in light collection along the length of long{50 mm), narrow( 4 mm) cryatals comprising the BGO block. The coupling of the corner crystals to their nearest PMT Deeds to be improved. This can be accomplished by minor redesign of the geometry details between BGO block and PMT., which is planned for future detector developments. At both energies, the detector produced good projection images of a simple phantom conaiating of a circular hole in a Pb brick. Compared to a 30 mm thick block detector tested earlier (3], the new 50 mm thick block has bulk efficiency improved by a factor of [1-exp(-50/34)]/[1-exp(-30/34)] = 1.31. On the other hand, the new detector has poorer energy res-olution than the earlier block and is more expensive to manufacture due to the longer cuts required to eegment it into individual crystals. One must ask if the extra effi-ciency is worth trading for the reduced energy reaolution and higher cost. This is still an open question which re-mains to be answered following upcoming wt8 with a full contraband system prototype[I]. Figure I shows a athematic drawing of the detector, which was manufactured by CTI, Knoxville, TN. It is sim-ilar to one developed by the same company for PET[3] but the dimensions of the block, before sawing it into crys-tals, was 50 x 50 x 50 mm, which is substantially thicker than the 2~30 mm used in PET. The extra thickness was E E · 0 If) 4 '" 50mm N C ~ C z X FRONT FA CE SOmm I I " 0 V- 144 BGO CRYSTALS '-CA :THODE CE FA PMT's Fig. 1. A achema.tic block diagram of the GRA detector. IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 14. NO. I. MARCH 1995 A Method for Correcting the Depth-of-Interaction Blurring in PET Cameras Joel G. Rogers Abstracl-A method is presented for correcting PET images for the blurring caused by variations in the depth-of-interaction in position-sensitive gamma ray detectors. The method uses an empirically determined, tabulated relationship between depth-of-interaction and most probable pulse-height to estimate the unknown depth from the measured pulse-height for each detected gamma ray. In the case of one fine-cut 50 x 50 x 30 mm BGO block detector, the method is shown to improve the detector resolution by 25%, averaged over the 50 x 50 mm face, measured in the geometry corresponding to detection at the edge of the field-of-view. Strengths and weaknesses of the method are discussed and its potential usefulness for improving the images of future PET cameras is assessed. Fig. 2 is a schematic drawing of the beam impinging on one horizontal row, 16 crystals of the 256-crystal block detector. A typical gamma ray is shown interacting in the small crystal number "10," which would be the one identified by the decoding system. The identified crystal numbers for other gamma rays entering the block along the same line will vary randomly among the crystals intersected by the line, namely crystal numbers 7, 8, 9, 10, and II. Only by measuring the depth-of-interaction, Z, can the crystal number be corrected (by !::.X = Z x tan 25°) to what it would have been if the gamma had interacted at the front face of the block. In order to correct the crystal number, the depth Z must be measured in units of the crystal's spacing, 3.125 mm. Because each crystal has a different position relative to the PMT's, and therefore different light collection efficiency, a look-up-table was required to relate the measured photopeak ADC number to depth-of-interaction in millimeters. This look-up-table was a list of "most probable depths" as a 2-D function of crystal number and summed ADC pulse-height. It was formed Back Face (PWT'S) " ~amma Beam / I,; Direclion Fig. 2. Section drawing of inclined-beam and block detector geometry showing the mechanism of depth-of-interaction cOrrtttion. A single horizontal row of crystals and a section of the venicaJ fan beam arc shown. flood source. a new calibration procedure was developed using 4.44 MeV gamma rays [9). II. THE NEW METHOD ApPLIED TO A 256-CRYSTAL BLOCK DETECTOR Fig. I shows 511 ke V pulse-height spectra, obtained by summing analog-to-digital convener (ADC) channels from all four photomultiplier tubes (PMT':) attached to the back of the 256-crystal block. The acquisition electronics, described previously [7), utilized a low-level discriminator to trigger the ADC's in coincidence with a conjugate gamma ray detected in a similar reference detector. Fig. l(a) and (b) shows normal flood spectra from two of the 256 crystals selected as typical. The photopeaks show a bump or shoulder (depending on the crystal's position in the block) on the high energy side which is not present in the pulse-height spectra from the standard 64-crystal blocks [7). To see if this new feature is a depth-of-interaction effect, the same block was exposed to a side-incident fan beam (formed as described below) collimated to interact at one panicular depth, i.e., over a small range of depths within the thickness of the fan on the order of I mm, in the block. Fig. I(c) and (d) was acquired with gamma rays collimated to interact near, i.e., 4 mm from , the front face of the block. Fig. I (e) and (f) was acquired with gammas collimated to interact deep in the block, far, i.e., 23 mm, from the front face of the block. Many other depths were also tested to confirm the general trend shown in Fig. I (c)-{f): at each depth. the photopeak is approximately Gaussian but the maximum channel of the Gaussian shifts ... ·ith depth in a predictable .... ay. The funher away from the front face the point of initial gamma interaction. the larger is the most probable pulse-height channel of the photopeak. This one-to-one relationship between photopeak position and depth-of-interaction can be used to estimate the unknown depth-of-interaction in the normal PET geometry. In Fig. I, the width of the photopeak would, in general, be a combination of the statistical energy resolution of BGO + PMT's, which is related to variations in photo-electron number, combined with a range of random shifts, which are the pulse-height variations (discussed above) due to different depths-of-interactions within the -I mm width of the fan-beam. The average width of the beam was measured as it crossed a 36 mm-wide BGO block placed in an identical position to the 50 mm-wide 256-crystal block used in Fig. I. The measured width, 2 mm FWHM and 3 mm FWTM, is small enough to make the depth-of-interaction contribution negligible in Fig. I and in the calibration data described below. RESEARCH OBJECTIVES FOR LSO DEVELOPMENT 1. Fix LSO array design, including finger diameter, glass thickness, and PMT size/type. 2. Measure x -y spatial resolution performance . 3 . Measure energy resolution performance . 4. Measure timing performance. 5 . Measure depth (depth-of-interaction) resolution performance. 6. Repeat 2.-~ \ above as a function of .511 MeV sub-threshold background counting rate. Determine background rate handling capability. 7. Repeat 6. with BGO. Joel Rogers TRIUMF 161 25 April, 1997 162 The Windowless Gas Target for ISA C G.Roy University of Alberta A gas target system for reaction studies in nuclear astrophysics -why a gas target? ->target thickness/uniformity problcms - >can't build targets with short-lived nuclei -Solution: use inverse kinematics: -beam of radioactive nuclei (ISAC) on a H2 or He gas target -windowless beeause of low energies required Some reactions of interest: Reaction Reactant tl/2 Process p(Be;y)BB 53.3 days solar neutrino problem a(UO,y)l~e 122 s pe7F,y) IBNe 645 p(IIF,g)l~e 110m pe9Ne,y)2~a 175 peINa,y)22Mg 22.55 etc, ete TARGET CONSIDERATIONS -pressure schematic PI S P1 C Hot CNO, breakout HotCNO Hot CNO, breakout Hot CNO, breakout Hot NeNa, rp ." t"!1 -so we want a small conductance C and a large pumping speed S to "contain" the gas target -Note that the molecules of interest (H2, He) have the highest molecular speeds, so mechanical pumps must be derated 10000 " ., _ .. __ ... \"-.: lWIOth 1000 , .. " -100 "- '--- --10 o G.2 J;.,...(CIII)U o.a Gas flow: AJD=Knudsen # where A =mcan free path of molecules, D=diameter of tube IfAID<O.OI, viscous flow, intennolecular collisions dominate over wall-molecular collisions If AID> I, molecular flow, vice-versa If 0.1< AlD<I, transitional region Conductanc,: of orifices: viscous flow: C = Area·Pv..,...yyll2 so C = 49.6 d(cm)2 Us for H2 C = 47.3 d(cm)2 Us for He C= 12.9 d(cm)2 Us forNz Molecular flow: C = 34.3 d(cmi Us for Hz C = 24 d(cmi Us for He C=9.1 d(cmiUsforN2 For tubes: viscous flow: almost same as for orifice -molecular flow: C ..... = Kc ·Corifoce where Kc = Clausing correction factor (tabulated) Transitional region: see figure w. DEL BIANCO AND E. BORIDY I . Mechonicol blower pump \ orifite2 10 Hg manometer eve dilfusiorl pumP Bolzers diffusion Pl"'P Fig. 12. Overall view of. four-stage windowless gas largel. I--- VISCOUS ---ll-- TRANSITION FLDW ---of--- MOLECULAR FLOw---l I FLOW I ORIFICE :~---------------E I  L/OoO CONTINUOUS L/O 010 1 TUBES --~------------L/Oo~ 10-o.a OJ LO 10 )./D Cold COlht QOuge 2 163 164 Target design: Central regiQn; 8 mm diam. tube with P = 1.5 TQrr (= IOu atQms/em2 fQr a vQlume 10 cm IQng) AID = 4xl 0') -> viseQus flQW -> C = 49.6d2=31.71/s Exit Region: RegiQn I Pump: WSU2001 Rootcs BIQwer,S = 580 lIs _>P I = 0.164 TQrr (NQte that in visCQUS flQw, length Qf tube docs nQt affect C) RegiQn 2: AID = 0.08 ->transitiQnal -->C = 1.5 Cmoiocul., Pump: WSU 2001 Tube starts @7.6 em, 10 cm IQng, enlarging at 20 mr <n. = 0 9 cm ,n = 13 cm C = 7.5 Us ->P2 = 2. lxIO·) TQrr "Yin • t youl • , Region 3: AID = 2 -> molecular flow Pump: TurbQmolecular pump V700HT Tube starts @21 cm, 14 cm IQng Ipin = 1.44 cm, IPou. = 2 em, C = 13.3 lIs ->p)= 5.5xI0·s Torr RegiQn 4: MQlecular flQw, turbQ pump V700HT Tube starts @40 cm, 30 em long, Ip", = 2.2cm, <l>OUl = 3.4cm, C = 281/s->P.=3xIO.{; TQrr LEYBOLD Contact your nearest Leybold Vacuum Products, Inc. sales and servq Qffice for telephone orders, technical information and service aSSistance ' • Mas~d~Ja:;~.s. ~ .~ VACUUM PRODUCTS INC. ........::.: '.\~ WS1511 WS2511 WS5011 WSl 00ll WS2oo~ PwI1""'*- Characlerbollco WSU151 WSU2S1 WSU501 WSU100l wsu200I":11 OiopIacament .......................................... CFM .108 179 357 707 1"9~ BacIdng PImp Speed ........................ ..... CfM 21 33 53 132 264 .~ Flange Connections. Standard ............. ANSI 3-1nch 3-Inch 3-inch .-Inch 6-rc:n "-;:q Range Connections. QptjonaI ........... ... ISC).K 63 63 63 100 ISO ~I RoIatIcn Speed (NominaI) ......... .. ..... ........ ,pm 3600 3600 3600 3600 3&Xl __ (60 Hz) .................................. hp l.s 1.5 3.0 5 .• 10.0 _1 011 Alling 10< Pump. approxima'eIy .~ Vertical oea-y ....................................... q1 0.75 0.75 1.10 2.10 • .20 .. HorizontaIoea-y ................................... qI 0.55 0.55 0.75 1.30 2.10 _ SIaning Pressure' at .,. BacIdng PImp Speed .. ,.::: .............. TorrlCfM 35/28 23/.r. 28/113 201 In 16 /~ t.4e>drTun ome.entlat PrllSSU"e ... . -\ ContnJous ()peration' ............ ................ Torr 98 60 60 60 38 t.4e>drTun Oitlefentlat Pres •• n ~! _Ope<atlon' ............................ Tor' 150 90 90 90 57 Weight ':;,;: WS ............................................................ .Ib 206 216 :J04 526 la.6 .:~ WSU ............................ .............................. Ib 216 227 315 537 1061 'rf./VN; WS only. wsu __ .. onr_"' ..... ___ .. __ . Performance Curves RUVAC WAlWS with Dual-stage Forepumps ;1" - r;:i ::e 1111 Il. 10' 0 RUVACIBec:IIIng Pump SpoecI i 1) WNWS2DOI / 2S4 CfII Q. fIl 2) WNWS10Gl '132 CfII co 10' '" a. '/ IIiN V IIII 2) WNWS501 '13 CfII E ::> 4)WNWS251 ,:13 CfII A- '4 III I) WA/WS151 '21 CfII 10 5 Forlyplal ............ -....._IO _7.1 ... WAUlWSUJIIIIIIIIInII- I IiH ... 11111 1111 II lin II IIIU I I III II! 10" 10" 10' II WlU lllIU 10' 10' I Conductance ys L 7 ---- - ------ - ---~-- -- ------ - --- ---- --- --------------2 ------ '------ --- ---- _ _ _ 1--_ ____ -_____ _ , 1 ---______ _ ~-j------ ----- -----i Turbo-V700HT itrogen pumping speed vs inlet prcssurc --.. ~-;i::!,1 ! ! :P;; ;11':: ii!lli! , 'Hii! ;l:!:I! iii:!!! i iiiiil iiiill! i l l:!:: i qN ' ;I!!': ·-'r:' ~ ! n!ti, I ~ :Iii, !1;lIil 1- ;;,:'!I : Hi:l i iit!. : ,Ii!': . ~ iU! !' .,.-E i_ • I. " " ',.; ' . ,,' i!i:!i' ili!; !l ... ... Features I " " :: !.": : ;;: ::~ !iltl;' lillill ... • MacroToo SIages • Exl:ellenl1IlIiabiIiIy . .... ,!.: .'" : i,;H ", j: . dl '( ililill i iilji: ; il:iii i; :;li • ~ ~8SSioc1 ratio lor IV1I gases • Standard gas IUlI8 port • Operation willi dry diaphragm ~ • InsIaIaticn iI any orienIaIion .~~ 'Very~sIza • CeramIc beatings • MaiIIenanc:e-II V:" .:;\ Iil i; iiil;' lilli; :I:!jii 'Iillli t ,J;I!: i :!lW ' I ' · ' ;: '!:: ,. ":-1 ' ::1,1" .!I:i:; !~ , , i ' :: ! I~ " , , ::;! ! : i ; ' ~ P: ' 'I!: ': ,i l:", 10 l{cm) 12 14 16 18 20 utllnc Drawing Inches Imml ... ~ Iroool il~ ~~J.- -~~T"'~ 1 .. If ' ru'l ompression ratio vs foreline pressure Common Applications • SerliconOOctor process tec:hnaIogy • IndusIriaI appIicaIions • HV and UHV I8ChnoIogy • MBE To order. CIOA 1-8Q0.882.7426 165 166 ~~ -----30 25 • 20 • ~ ~ ~ 15 () 10 5 o o 2 4 6 8 40 35 30 25 ~ e 20 .. == U 15 10 5 o o 5 10 Conductance vs L • 10 L(cm) • 12 Conductance vs L • • • • • 15 20 L(cm) • 14 •• '" 25 I. serieS11 • • • 16 18 20 • • • • • • l.series11 30 35 Entrance: Region I, as previous Region 2: tube starts @lOcm, 0.8cm <jl x 10cm long, Pump: WSU 151 transitional flow, C=5 l/s ->P2 = 1.6x1O,2 Torr Region 3: tube starts @ 30cm, 0.8cm <p x IOcm long Turbo pump V700HT IJD = 0.4 --> molecular flow -->C=2, P3 = 6.4xl 0,5 Torr Region 4: tube starts @50cm, 0.8cm <jl x 10cm long Turbo pump V700HT C = 2 lis, P4 < 10'6 Torr DESIGN CRlTEruA; - must be able to place y-detectors close to target volume with as large a solid angle as possible -reaction products will be contained within ± jo mr : exit of target should provide this -preliminary design: D D D DD [ ] c::====-=-= I .ST n n n nn I l r-----., . \lS151 'vIS200l \lS2001 V700HT V700HT V700HT V700HT 16MT 164MT 2£-3T V700HT (IE-6T 6E-5T 7E-5T 5E-6T (IE-6T 0.5 Meters , 167 168 'i4b1c'1~ Desail'timl'ofpump.!ng-~i#'iiih';~:~~:r~i :&20 mr&d Cxit beam ~ ~ At the exit side tubes are C>CIIU1icaL PWD~ speedS 'are for hydrogen. ' Region Aperture 1)opeofllow amdud.&noe pump pressure thmat,bput tube len. target 1.5 T 0 CleDtral O.San visoous 31.71/, WSU 2000 sao 1/, 164mT 9S TIf .. exit 2 O.8x1.2.x1Oan transit 91/, WSU 2000 sao 1/5 2.5x10-3 T 1.5 TI( .. , exit 3 1.5x2.1xl5cm molecu. 141/, V700HT 510 lIs 6.9xl0-' T - I I exit 4 2.5x3.lx30cro molecu. 351/s V700HT 510 l/s 4.7xl0~ T -exitS o4.1x4.9x40cr0 molecu. 100 lIs V700HT 510 1/5 <lx10~T - ; c:utr. 2 O.8x10 em transit 51/5 Wsl51 50 l/s 16.4 mT 0.8 Tats c:utr.3 O.8x10 em molecu. 21/5 V700HT 510 lIs 6.4xl0-'T -entr. 4 O.8x10 em molecu. 21/5 V700HT 510 1/5 <lxlo-6T . !. ~ Fig. 3: Schematic layout or tbe proposed gas target system. (a) 8$ow4n Gas Target (BlGT) gas inlet beam~ ~~Pl~ LJ ~ L.J PZ (b) 81ow-Qut Gas Target (BOGT) pow.(.., : ",90 KIA,} j~~ (,o~s",.~ho-.l: \ P.l.t1\iP~tY"/l. dc."ls , ' Z:-r' ",,' rf-T....,....'T'-...,r""""...,.....,..-.... beam o 5 ca Fig. 6. The IM&Cl gas pressure measured by using (p.p) SUlIcrin;: aI 11_ .. 90" as illastnlcd in the boIlom figure. The blow.in ~,,~ W'gc:l is superior to !he bIow~1I one in !he gas confinemenl , Recoil Particle Detection And Identification U. Giesen TRIUMF reaction Q Ex (MeV) (MeV) 9.97 4.627 5.173 2.04 3.5294 ·4.033 1.075 3.921 4.561 109.8 6.4112 6.742 6.862 .).. eNe(p,Y~a 0.29 2.195 2.646 6 ~a(p.YiIMg .45 s 3.216 3.50S 7 2INa(p,y)llMg 0.375 5.497 5.71 8 23Mg(p,y)24Al 0.19 . 1.87 2.3S 9 ~A1(P,y)16Si 0.12 5.518 5.97 10 :li6mA1(p,y)27Si 0.11 7.692 7.893 11 'Be(N)'B 53.28 d 0.138 D.C. 0.58S -.-0.678 0.349 0.<476 ~.471 0.307 0.223 0.532 0.470 0.051 0.229 526 2440' -so4 -O.02~ 640 14.6" 331 S740d 451 1630' 451 -' - S21 r 294 240' 213 2· 510 41 i 452 5Si 49 10k 200 ~ ~/#-/.z. r ~f"~ ~s: c 10 dEldx Yield ~ (seC"I) _cm"2 . 27.8 30.9 . J2_~ 39 0.137 39.7 13.9 37 24.08 41~i-o.29_ 49.5 49 51.7 53.4 22.7 4.47 0.054 0.479 0.8 0.67 10.9 h"1 /-() -p 10 F"II- S. Typical IpCICUWII rlOlll die 5(SI) dotect.or pIoad at die mel of die IYIUftL sIIowiaa !be UN'· ..oJa MIl die raiduaI "c baIII panicles (lOt 1eX1) wbicII_1IiII uuslllilled IIIrouI/I die I7I'GIL aJ $y"'q C~,.~ ~~~e#~ J) 4 E - E ~ ~H/Za h~k, c%tZN'f ~eY '-I h' -~-s~p Alr~ay 169 170 CATHODE GRID - - --,. ,. At tllOUHDING (0.1111") \ ~--i SIGNAl..-- OUTPUT , \ ". , .M- E-td$ , \ \ T SI~"It,;.J ~ 1111111111'111 1111111111111111' 1111 'IELD SHAPING RINGS ',USC" tRIO AHODE GAS OUTLET 7&0 b) .. 0 ,. J'f/t'tlk I/. 'I A!?I' /1,.(; .. 0 .eo 400 aao --&eo eo °0. I. •• :t. •• •• •• 7. DRIFT TIME VA.a) fiI. 11. ~.Pw-e-shIpe specm from abe Bna CaM DetccIor, far (a) S Cl-plftick jiaaps fram a22ITA IOanZ ,1Dd(b) 6 cIiJrcn:m Z poaps rcsulIiD& !ram fIIIioD 0(%7 AJ+5INi (abe lowest pula !aPt ja fmm SINi). CATHODE VOLTAGE (-I BP 192 . a: w CD ~ Z -' w Z Z oCt :t: u p .,!>O tort n - PtntQne 'C- lOOn. d. ~ ! '" I r I 30 E/MeV R. RPm ~ /p /. f. 2111 " 1. Inu ,.. llciabl .. "*"D distributions of lIOpO/)l1 Am .-puticla and "0. 12C ioas eWliC&i.ly &auered 'rom "'Au (cellulose absorber used). ~ KOI" n ill / ""u Pftl< J~ ~( a~ I ,~,;c ~ o·r 1 ,. . ~f"~CI"" ~ ~ .'lI . I 1 f • ! ~ . ~ , . j! ~s11 J . -~:Al 'J ,,~ ~ f 0:......-___ 0 10 20 , .... V 7ij .3 Il, t;t;? ~/a-t'/. I' .' r • I t c~ c. ( i ':' J' [ o · i 14" ; • ~ ,-'010" ft· pt"":O'" :;J1~::,I. i J I 1 J I .' . ..' ~s.~ ._~ . "Mg . . r,No _" '~~ --':0 . .: -:-~~Al 1 --"7 .;,.. - lie i 1b 2'0 jO EIMeV ... 10. Iraa& peak ~&bl ~ IIIftJY di5lributioD of "Si" _ ct..ticalI)' acaucftd r..- I&rJ<I (Au). badUD& (c) aDd ..... ~(AI.M&. NLO) rOt ~-lOO AI (.)aDd y- 220 lIS (b)I«DIIIoac aboort>cr UKCI). 171 172 1500 1000 500 Ii I, 1.5 BARATROfl "0 Figure 3. L SlD&le. $ E speetrum lor ISO reeoU. at the 2+ resooanee. b. $E ~clrum lor ISO recoUa In eolDeldenee wtth 7 r&1Ilor Er ~ 1.$ II.V. h<7" (/NA~ir,f) /6&'Ys Cb_jlaer ~ IX&' ...(~ ~tt' S'l'i~.j b. f~cI F~'r!7 aNa' r!1-~7 I"eJo k#;Je P(f)S,/?DIt. T~SCl tk. ;:-; ~/e ~E E' e- t",," $'., ·/faIttJlI¢ ..... " "'~ , f)./~ Z.i'e /..1 0.1'1 0 .¥-'7.-. 'f,I{: 0.10 /.?b /. 1'7 t).13 0. 0'1 ./IF : 'Y(: OJ," f.P"- 2..2.1 t .7f 3.~(;" z~ : ~. /fJ l.sr .V~ ,.~ r Z/fJ \.. 2- iiltuf,H '/cy~"" . '2. ~Ir~ hH;~/ ~ ft~ ~ I·,f 1,"-,i.1 / 1 /4-Vr· {/-=V -O??_e-2 -,elH/'"?;a ~;~ "f &At' ~«p ?4,C",;",,;,«,t,,~ 6~ 'U~rv .. ~_;t;a/ .6t~ £),heNrs aT" "'I" £ f6-.P •• HJ I T;J.-!l4$U'",/.,,/, 7£££-" ... /-1 173 174 ~-,r, Ere'll', R,.r';6ilt: ~A. V 2l(foi:«l'r .E"I:#J'/' Re,~e 1- Z ~7e&...4;£cQk.hc .kn~ .().S" N-/.S""K% , ~ 7&o-ilZ"i; #"lto/Sl'S ~/ .?t-._" ~~ ~IUy.".er" -i=> Ats4 hwer -A';",T., ! /"i"- E ~"~-'U6 :J1!71/:XalT~n C'A"dh7he". : - &;/0/ ! ~o ,IU- .s~1? RntlY: "Z...; lkl?e6/",eltt .. ,.<'{c~) I~tr ''rJ(''rr) '% ~ tS>J- 1_ A'it E th;) 'L -*' .. ClUt'/d It r (&.r) /'"4/ (tn' -P ~"I' Pt?-~ • d.,Ie ! -p S.,t ."f-iuir? t"_nf.II&~tlX of- n-,r/;ir,j' ! 6p.5i~(05) ~I ~$,"f,.It-?) ~i"i;j;) ".batt' lfJt:-IIC ,1.01 8~tP 1 .... --t:.·F -----+ ~ ~ ~e --. .. ~% "~~F ~~its II.IJ:.F ~.'--. ~,~--------,--------~ . ,-------.......... -------1 : I - If) '.>" ,itr~.I .. e • til .. J :1 ·- ·--...L.------· Section III . . NUCLEAR PHYSICS Convenor: K.P . Jackson . NUCLEAR PHYSICS SUMMARY LETTERS OF INTENT Peter Jackson -~\._ple." ~~,lc. ~ ... p~e eb"'''jUr-o...+\C~,", - ~\.U-\ \a...- c...," ... ~ ~ G:.ff ,"OUco\. o.\: Cb.~ ~~ol,e - 2..p ...... ,ble. (C>C:,;:t.A"b~"" ,'- \\.~. c..t--<:.a.... - ' ~~~ \",--k.-c.~~ -so ~ A ~ q 0 - c..~ ~k be.O~ (\o\,UD(",- ~lb~ ",,-') " • ( ?) . - ,~~ l.... ~ ,CZM.Q.r-c..\. Fa.~~a.ol. (0,", 'SOuXD. 2b ') f:. ole.~ os;' ~ - t!:>olol ~o.K t=Q..t--K...-> - we..o..~ '( k .. V' (. e...u .... c.? ) O-~ ~.~ , .... L. 'E - bewo.~ ( ~~%c::t ~~ yr-ec:Lec:e.~c~( tle~dl~ou~ - v....: .. 1--L...+ Qe.u..Q..Q .. ~ (C2. ... e""~o...(( () .{:"ro__ u~e • ~ 0..\\ 0...- \'~\ or;: 8 t\ II (.. 'Sub ~"a.r ~q.\.o~ C,.. L.c.. ) - l-~a.",,-~ ... 1/ Q.A....d e.v.. bo~ t!.L. (\0\,.0.(. ke."'- \ - GI"Cr tc..p w ,4{ . LT 7 L-'J: 7 Nc.v4-n,,,,, ~~e.L. )J~c..\~~ eaA \~Ac. C:r.\~~ .... o,,) - '-0'" e.c. ~ -\. ~ Q.. \t 1 ~ l '- f> \c.., "-'0 b .. lc ~u.. Q\ ~ '" - 'L ~."''''flo(c (t>~,~,",s. , .... \.~. C. o..~ - o...-::'-;'''IM.e. 6 ~e. (\.7.'2._4) l08~-' II ~ (Q-.. l to<) s-' , -_. " . , " , " .. - c;... O\~ \'C:-~\.IS' "'""tt:- \ ""'c.."\-\c:,, \. f"'lH"'~1oo(. ~ ~'<.c(? ( t..le""", .. ,-~+.rc-~(."" ~ ~o~f{ - c;.-b1~ ~'- ~) - cl,..~~ r ~rDt;;O..\ -b bz. ol(~c.lJ9;.e::J 0..\ -ri!\uk.r ., . ~ \...... tM:-.,. ~ ~ lvccJc.$ 177 178 LI B - ~e\A.c..er-vo .. tl '( '5l"'-f le. v-o b,le. e..OI...Ct~ L..£ ..:. t> t> ~ ~t"S Cl.~·H~~ J.o dev(Z.\o\, Clt-eO.,. ~ - -r4- ~'o ({ ,~ = G.~ '-~) p~,c..* lO~ ~-\ - bC2..\..u o..--..e. ~\d..vo...\ o...e.~u \~ (- cl ~ w-.o "'-~ -h-c.. ~o ~ 0 ~ f' ~\~ \Ei" . .., u""'i'Q.t-eJo lc. .\-e. +t.c.-4 "(j cJ... ~... -l.ll,. e "'" Q..""'O~ k~",",,,,,- lC;o~ l~ c1. ,.\."~\ ~v \ ~ ) u\~\........a.~ll \l\.cz,cz.o(, ~~ (~\>l?') a..~ , would.. l\lu. 0"" ~ 0+ (s-n 1,?) E ,U.. ~\ Ar ('r"'~ ~Q..t-~'c:.{c.s ) - E c R... c...,~ ~e" t-c.ei.) '(, Ie. to{ ? ( f' AO- ") I '-T - ~.c;.;.\\t>te.. u~ ;. ..... e\~ t,... C l ~ E ~s (~~I bte. C.o"",~"" t()~a..~o~ ~ .. e.lec..-t. t'Oc.t.l~?) - V CU-~C:H.,-s. C.O """ s;'''i> \J ,..o..~tO""'"'7 Cot..l.~~ \c..~o(., - Vf.(.. o~ ~~o bo.lt \, ..... e.c....t-l\r Rc~ ... ws \ (t>RAGON~ ~ be.e.v. (l.(S)""c:.IP...e..~ - .J..cz.~,lc;. D'S;- ~ .-:.~ I b (c:. cz. ..... ?"" e r ~ 'I"'<l""" \I\. c.c.ol~ we ... t.G.. . - \:)cz..c q, E"EC - bro~ f.~o f'C..~ - ~ "" b ~el u ca. ....... { cJ....eve (0 r CAo...e..o-{...s " ,_. h .1 .\ - \'-~ .... \~ ""'-0 ......c. ~ 1+~6lo...~~ - \Uo.....lL. ~ ~cp ~~~~ C..4UT-'tL~\ - ot&.....-..~ ~r .~~ ~~ ele.~ . (F Co '0. c-,o.(. ? \ _ ....... -.. ? ") t ... tfT -~~~ llo .. \ , ..... e.h .. dec;. r .-eU\c;.,o(.., ... - \\,..,.~ .. C>'- os:;' r~' \z:.(e l..v'e>c2. o£;' ;--r-..t.<'e~ ~co. ~ l \"'" ~ ~ { Q..~ ~c... '( ( :r. Lee.") - (;o...\~~~ (0.,.,.....01.. o+t....e ... ~) li:'-pk";)~~01... \I\e.~o\ ~cr- ~+lIJ eo r t-Oc, c--c...v..... t.t....l-k. ~c9 u.....4Z.. r-e..ad..~ ',- o..c.Weueot , skc ... ~ -k..-w.. %",aJc; - o..k- r ~~~"""+" \1\.0 ~l ~ ~ F c::.c:..ua.","~\.-~ W l~ ? '1.0(0 -+ \1,A..cz.. ~C- 0-\\ e~ 11\(.0 ct, '? ""~ c:... - C.O ........ ~~', \ Sc- ~ b E c:l~c.'? ~ l"c... ... -'=. (c...~~ fe.t-v-..o...~€.",-~ ~le......4 ... ~ ... c. ~~/b\.>* F-,-' .r-c>(?CC: ko.h Lc..,'j£.. <::..,..pc. ...... ~, Cb ~"'~L1 ({e.q .., l\)-C2.-v-. e... __ ~. o ~l'v.....;:1..=. o .:;"'~ ~"'rPcS~-* ~~"c...fr,-e- .... ~ l( U<;. ~C-<:.t-~IM l:~~ 1/ <2~r~ ~ (~~, ~ ~ i2. '\ CD \)~-.4 \cp ~,v r r-= Cs ~ {e..J~ ... \.,--~ c..olvO-~ ef;' o~ ??E.c::..lC-( 1.te;;J ~ OIP (t>n.A~ok>\ ~ L - e~ R EH.u<;",," (~\ ~c \ [L:EuA. --J l-T~\ C (l(. LL,~~ ') (5 4-4+~ (L.u ,+L. a..c.lc.t t>c...~ ":$I..p p~ r--+ ') MA-V ~ ~~ .... l\..-ltE:..~ -t-r<: --... ()o v~col, e.. -~ Q.. n ? ~ ) 6 L\ 179 180 Nuclear Orientation and Nuclear Structure K. Krane Oregon State University ~$t,'&M~ W~ l~~t in a.. ~ ... 1e,zf~re.. nu.c1Rar orl~'l>r1 ~ct lilt; ~ ISAL? ~ (CML ~ -~)! S'ts~ ole.WntlTllll~iM M s r Ins q,tcJ... M-0Jrte..*s ct- Itl.(.cl/lp.r J ~ s1.J.u ~ 150,",t.t'>. \ J _\ - "" ~ --::: /, , --I - ,.. - -\ ~.; - - --,~ - -- -_TWOlr.f &II IDftUTIK B..unu _"WIUI" ..nv.fIUIIW. ~I'IUIIUT •• -=-BBC3 ~C? 08-Tlllf'DATUItt,........,.... TIIII'UATUM DLn'.UJI -o 181 I.U r--~--Y--.----r-=--::--::::--::::~=:.:r===:::r:::==::::::!:===t SIoHnNi 0.8 .. , 0.4 0.2 o Ahf = 13.11 11K T (.K) Fi«_re 2. Iasset: tJla.e r.adi.atioa. patterm (or a typical t;amma-ray angular distribu-Uor1 are --. ia & poi.ac ~am relath'e to the quantisation axis; corresponding t.empetatures in IIIK .-e indicated. The main curve shows the g&IIUIl.&-ray anisotropy at , = O· as a fUlloCtioa o( temperature (after Marsha.k 1983). Spin assignment (often parity by indirect arguments) Magnetic dipole moment odd-Z or odd-N: leading indicator of single-particle· state (spherical or detl<Dmtecd~ odd-Z and odd-N: coopiiing of proton and neutron states Electric quadrupole momemt directly indicates IUllOlear Sltape stable defOl1lDe<d ,~~b'late, prolate), super? transit~ ~al 100 182 I f{P Ir (~ N.D.) N~RIv~) 3 t'L. - 1: Cr.+L) (:1;=H ') C 2.~+ 3) = +O.~~ Qo k K~r -=) (i6: -S,Oh ) $,U",,~ /{:-q { {.r...H~'~ J., .., ~~r) Q: -D.3e ~ (~"'v) -O.3S'"Cio (1:.::1) ) -=3> ~-= + 7-~ ~ ~ .?: 1..o-2..()lw &- ~, I ) ~ A I K..JJ + 8 f t.:{ > )L: A"'p (~) -I-B/t(t;ll+y,.o<K~!fl(.::I> \.... "V' ~\.. ~~ Z,2.0,PN zl.~ Table 1 183 Ka~nctlc Komonta of Io lso~opes t. X" " (l!Qlt.l1l .1~QL1!rml u(othcr) 104 (5)+ +4 .435(22) ]05 !+ 4.78(41) +5.675(5) ~06 7+ 4.87(15) 4.921(13) +4 . 916(7) 107 t+ 5.58(53) +5 . 585(8) 108 7+ 4.53(10) +4 . 561(3) 109 t+ +5.538(11) +5.538(4) 110 7+ 4.64(35) 4.719(13) +4 . 713(8) III t+ +5.41(10) 5.499(7) +5 . 503(7) 112 1+ +2.S2(3) 113 !+ +5.5289(2) 114 1+ 2.817 (11) 114111 5+ 4.658(7) +4 . 653(5) 115 ~ +5 . 540S(2) 116 1+ 2.7876(6) 117 !+ +5 . 519(4) 118 5+ +4 . 231(9) IIIl ·11+ +tS.~(I·) ItO (r+) f'f.lf~(~) '1, '1,.- "'S.Al en n~ s+ +'1'''' (r) In "~~ .. ~ .,., ("1 1Il'f I~ + .,.0"1 ("I ttl$"" ~~ +".n&. ,., hI. (~"f)- + , .• " {If} U1 (~,,1' J +~.~u.l8) Table 2 [r Quadrupole moments t. ~ !iHl!Qt~l SW!lUl!I:IBl 'Q(2t:bsa::l Qo 184 5 (4) +2.0(3) +8.6(13) (5) +3 . 5(5) 185 i- t -2 .00) -1.9(5) +7 . 0(6) 186 5 (0) -2.4(2) -2.19(14) +7.5(4) (1) +8.4(4) 187 Lt . i- ±J . l(3) ±S.l(S) IS8 1 1 +0 . 543(lS) +5.4(2) , , +0. '4(") ""··m 189 T r +1.08(21) +5 . 4 ) 190 4 4 +2.80(17) +5.5(3) 191 , ~ +0.1116(9) +4.1(1) T 192 4 4 +2.36(11) +2.26(8) +4 . 5(1) 193 , , +0.751(9) +3 . 8(1) T r 194 1 +0 . 339(12) +3 .4 (1) 184 ~qlnff".c.. ~ k~,... bu.1t-, ~~.fl~ .fr.-. U-l~ ~. ( ~ R /tb[)/J ) • • } I~:.i~ """I:,-. f~~ (...t.l-A: tns.'-"r ~ L~ " AI~~~: M.et.~t.(,~ W(f)l') \If . T. '::::i;> 13 k. <. T) WL~IT):; ~ + b (1-;' r- + c ( ~ ) 1 + ,., wt~l) :1 ~~;~)- --- -. ~)'-8 "I-'''oTj. (tIlJ.t,t~ of. .~~~) c ~ I ~ I ! ! I J ! .. , -3(2 - --112 - -,/, ~ (l Vu. to H<.J~ (.,t td~ ltd--- - - ofu.u, pc~) - - -'!~ NUCl.Uo1 MCNETIe IlESONAIICE 011 OIlIENTED NUeUI (HIIR/ON) • 0 0 I ! .I • ! 1 -0 I I J I I - t - t +112~ _ - -AX - 3 ~v t + 312 _ -..... T T - O. l K T- O.OlK T - O.OOl K T - O.OOl K ';Ih rf AE= ~ B \)::1 Icq'~-2:-J L .. );. (CIJ , .. H4-e- - I f{ H-r-~ fll.c.d' '\ , Y 185 186 Z ::J o V Nlsh.i~ dA.l. fl.;.t RAJ G3b,~'l('f7) 12'1-------80' 2 kG fM·:'O.S~ ~ e6 88 50 92 !II. 'f FREQUENCY \M1z) Y,," ~7.s(z.1 ~,~ J'- = 0, 't2 7 l BJ !',.; :. JO.o f i i ".0 t. \...Pw\ d:-i. P.'{S I!tJJ . Cf) I IL,dltf'J _.~~~~-L--L.--'---'- ' ... . Itl . ' lU . ' IU . • au ..... ..... . . I " . ' ... ;--' .. ....-., .... 1 ...... . JJ" = 144, 97 ~ lh ~c..d-~~II ~ e+k--k El-i = .... JI\'\ G + rr",l.- t:n:r+/)] s~6f~=--= L P ==-()) .- I • Vl ""-... - • \ , .. J =-a , " .. , ~ -r+ o~ r+ 01\ .t ~, t+ IJ'to.. al- Vl.-..... 3/-v +'/l.,. -1/ ..... - J{l, f~O P pO ...... .... ....... t V)f I v~ 1~ I ~ 1)L- :;.. YD J,}} :::- v. + {. Yq f-h". ~er e-f 4. (. A..eJ.. fJ,."t. ~Sb2 ,lvn(ffJ) 0 .01 ~--.--.--~ (----,.--.----. 0 .01 0 .00 -41.01 -0.02 A ~ ~r 0 .00 1r":"ISS=A-U-C-'O I V -0.01 -0 .02 62 64 86 ~-:'?8-e...L.o--..J ·Flr-equency (MHz) )}o ~ 71. ('.lC I) }.( He .J.I~ = -Itt.) t/ (:.) I-t. 1/ c: q jJ--; O. ('1 17 (6) /-1~ C\> = O.rPl (ti) b 187 188 131 'W',&260.0'(lJMHz v, t 2S9.26[lJ 104Hz B. " .06(IJkG 6=0· 1925 2S8 262 FIG. 4. NNa..()N rao.uot IfIi'CClta of '''A.F< ~ a( 8-!T (lOp) oM '_'KT .... _) .. _ .....- --'" fodd B.- 1.116(1-) kG. n.: ooIid ........ .......- ck ....... 0( ..... . squ.as '- -...nin, rour Q.ussi,u I!i.:s ~ ~t. I,. .... ~t lincwidchs but frc:c ... p6il-x:,.......acn. The: -=c: -.nddu arc O.47(2) and O.lo4()J MH.t." ~Ydy. ~-Wc.\.i-.~ 1'lhl.."\kf! R(..l,,~~ ~llb. ~ 1 rt"'~ ... ~ ~e-J..J ~ rtt-.,~'f<. · • ~~ csf 2 + s~b I~) wluiL ,,, -tun'l d.J¥WJ eM q"lwl--~ CP.-rrieJ. ~ ~ ~. -=9 kT~~ 1 ~ )A) Q ki~ ~~ L(' -, -lD (I1S) I.Cs· 516 t,y -J> .L..'-lQ'-'-<O----'"-~IO-""~S);:-'-:. If!(Llllicx) U{,(C£..l .(;,r .f-Uj rt.(,,,.J. .ellst .. l>k IInf/cll'J~ nv..c1.ti. .. rd4.X" -l. ~ ltt-flic-(cJttl\ W('IU ~rL'-b.~ -(;;A"-< -t.. sIr S~,,-l.b&·~ ~~att-"""- .(;,---w,.J...c:I:f~ ~ - ~ i'"fUrl b, fi..a.--US1J.AJ4 Nt s I~l( Q. -/4e"ut.~ vf!. W@) -:::::a .;frllll-/; =0) ~ f{Iff,-f:) ()su....U1 ~ 't- kM-r- 1'{/IJ/-c--v) VItI( ~ fo ·~"LblN.. elJ>1(,..d:i.H\ lime'-~ cJI..t-lt'11l ILUc~ otli~-filh. [TR DL;JD) wle') CMM'-res~) .. -_. -. . . . . ....... COlIclu.s iOvtS • '1.0 ,)AI Q ~111(. '''''J/-ftt i.J.. ri"'f{~-p~i({c. ~l~ ~ 1lUc:Cbu- ~h~ • Nu..c:~ Ori~-h.,..... jl~ frecl.~ v~es .cr '3\ /AI 6! • ~kJ it1.~t.·"", M (OW(fle~ k.cL'1 sc~em.e.s M r1~~ • &r!illt~~ <Ue. <1~~ tcttC.K a....R.. U."'-1tAb(1~ ("-~ ~ 4Z.-t [O~) ~ AfflVfri4.~ 40 c;.)f\3i'Jer aMi', Otl.- LiM J1M.c. k or;- f!m--.-I-t--. ~ci""" ~ :r:-SAc... A ISo! ttlA.c.£.u.r strw.c.~ Sy~ ~sts (f, -r ) ~s4..cbU(f~) ~£Ai2 ~++er 189 190 Multielement Charged Particle Detectors for Research with Radioactive Beams A. Shotter University of Edinburgh General experimental configuration for reactions: Beo..m For particle detection -----> Good A~) 6t, 6$16rf;> cle~.rcct Mv.ttipLici!y -€uet10- . For tray detection -----> (J.ood ~£) tff~ M (AClipfe.ity For R.I.B . experiments Problems: I) Low beam intensities }~ II) High backgrounds Multielement detectors can help overcome these problems Pro.d/co.L sotl.J..bo,,~ .:r) Low / ... ft"<"(j / 6u dd. L<tr~.s 10 ?,-..o.6te"", t: : .:z) Bo..cVf'Olld J ~ cJ.,O~(' detector /I"~It,,,C'.I CllI-l'/..I6'. 6) ~ff"'~"t. o'tftdorJ c.) (Y)tJl'Itt/~ Su.trrea 1~r-----------------------, t = 6711'" DSSSD !. ] 10' 1~~------~--------------~ 600 800 1000 Energy (ke V) 1JSSS'}) {tI,,,bIt !. ~tld .!'lieM :.b-'f !!enaz~ 191 192 'Proble".,t ..-...lil/.. Dr!'.!']); a.) tAD(Jq Sl,a.r~ b) IH~dJ' loft 0( ~~!rl>nif:s. holt! chG[Jt d"v;d~1' bt! I...J~ """l ('/. 1'.2 ~, ~J. - (elf) 120 ~---.---I-..,.--~ °OL_-~,0--7.eO~-~'20 S~ (MIV) Low ell~r9.:t.. ~cl" ("'30~"" ro.1Je) st-ra.'Je.. VWlet:!( .ree ret «/Mf fI.16;).(1987)3~J i) 5"0 sf:rip ~ 50 rtrio? o'ell!t:;/;,r- = 100 tJ.,Il./)/j8~.f II 10 9 8 7 6 JetJe"ol. debeetDN C (aJ.cJe..ll) 300 -- ,00 c.Aa./I~ Eo.cJ.. eh(VI/j-<l[ Ire-a.M? > shO-flr.oO/"t'lp + t//c, ..0- v { ore Micr-oelecl"CY>/Cr . 1.1 Unst~ble nuclei ~ Stable nuclei 6 7 8 9 . Neutron Number t : (p, r) '" :P' LJ : (p.a) n : (a.p) . / : (a. r) 10 Need to AnDw: RI (p,l:f) J RI. (flo<). RI (o()p)) RI (o(,~) Decay: of 20 Na 10.27 1.63 0.00 MONITOR ~;I" STRJI>/ ___ DETECTORS -----a r1~3.~89::..-._...!2:....+_ 448ms 20Na 193 194 ~ 8.0 c cu .c () .... Q) 0. (J) 4.0 C ::J o o Note 7)SSS:J) 48 x I,.. 8 d:.I"Lps c0 /hlfl ...... 34 r b) rtlulti elef'le",t O.Or-~UW~~~~~~~~~~~~~~~~~~~ Q) 25 c @ 20 .c () <D 15 a. 2 10 c ::J 8 5 2°Na t3+ -delayed a. decays 2.15MeV 4.43MeV 1 (C02)n target O~~~~--~Ww~ __ ---u~~ud~~~~~ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Decay particle energy (MeV) ) -1\ £ N ""lc' J8Nc(c(,p) • Nothing known ahout reaction • Beam intensity - 10" pps. • Gas target is needed ' .. 30M~Y;:#" :' .! If] Ne. / ~ ' " N~ . W,no'tiw _ , • Large solid angle ,Ij • Hightactivity in detcctors a) need thin l::. E b) spread activity using strips * Tracks panicles to dctemlinc E, -'!f: En e"J!::f Sec." £C'"" = 3 - /.(, MeV .,. E:t.fel'; rrle"t needs rn4.lti..rCri.?~ (/60 c/lo.M>eCR) "JI:c 0f-ef'tJ of' o/ll~,.. .r .. ,..,aw O(,f reo..ct;'~)/I':;. 7' f SO~ ~2. (16 "If, ) 195 196 y ~ ~O) -0 - -r-l/ -9 M ev '" 30 "0 SO 60 70 80 9 0 • r-13 /I tV + 8 r eo..ct.i>" ; 13/\, "13 £:t.ter'l"'lel?co.L f"'oble~: Limited beo."" -- l.atJ~ d,dECCo ... t!~k"""-f' 8o.c.~J'()<.Jna-" -t- Sfjl"'>e"t; d4E:etCo;..r 10' 10'" 1~+uB ~ . 29.sMcV 0' ! ~ 1 J > • I 10' f 10' IIi t 10 15 20 E,(McV) !ill k~1/ E't jo..~olo"t. ,q/lof;;~ for .... ~fOr"",, Ji 0;' '¥, -4n aN . 25 30 « 23 ~ 20 ;: 15 10 fO 15 20 25 30 Cc c:=;Jc <Oa!)' {lol:', 11C ene'"jj 13 1/ N-+(] IS N I~" uc·.uc_ .... Jo.uC·r • , . · · · · · [eDA I Q ~ ..<5 -10' Partido MUIllplKI11 ,. > .. . i :;: - ; :: : • ++++++ -it ++++++++4:+ 197 0( Il. C 198 LE 1) A Compact Disc (CD) Proposed detector specification 3.5 0 Double-sided silicon strip detector (DSSSD) 4 quadrants Total Area 50cm 2 (-93% active) 16 annular pi- strips I quadrant @ 2mm pitch 24 sector n+ strips I quadrant @ 3.50 piteh Total of 160 discrete detector elements Wafer Thickness 60 - 1000 ~ (transmission mounting) Inter-strip distance 35 - 1 00 ~ Dead Layer - 0.3 - 0.8 ~ pre..-alY1 p Mo...;" Q.MP + d. '\ S' c,r;r--. il'\Q.to".. . } fV\ i c~o ~(e ctf'<:) (\ '\ c SVrt::e.r---,--..J- cost, r;:;! oP Nir'\r . GlO _ ' ,pee:. a..a ~ocq' 199 200 --.... -~ .... e.g. . , .... . . .,. / I . ... "'" _ VLS:r.. ,-------I ~~ I I I I I I I I I l---··---------·--II·~~I ·IM-;;u;:-"'I . ~ "'10 .,...". . I Ii ii i I ( ) iI II ! ,-------1 H S ij !I ! I -- II -.rJ2- JIJIO I I I I II - .- Ii T il "::f.:f I II J'---.~'----=---~ .- ""'6!: ",..-------------- i---i I .----- .-----.-----. I I ii I I . I II I Ii W I I --~ I '-______ 1 i >tr--i] I I 1- 22 _ . II __ I >-+3j '«iiliiiii L ____ l L_~ __ ! _____ L _____ .; Principle of single analogue channel Summary Multielement detectors DSSSD ~ 7 R.I.B.Z::: Large arrays potential to reduce Good6E,At,~ • A 8 backgrounds Disadvantage channels large number of electronic Present situation : Hybrid microelectronics VLSI ? Future • .Efficiencies of 37 Cl and 40 Ar Neutrino Detectors Determined via Measurements of f3-delayed Protons from Radioactive Beams A. Garcia University of Notre Dame Etficiemcy _ V detectors from iso-ara,og beta decays Exampe: We used tsospin Sl8!rnev.y to deduce the v+ 40Ar mabix elements from the On -4M'Sc + e+ + v matrix elements . • + -. • isospin Mirror 201 202 ~ .,. Cosmtc And Rare Underground Signals Will Consist 4DIf a Giant ( :::5000 Ton) "lime Projec1Jion Chambef' with Liquid A:J19Ofll Presently a EiOO Ton JX'ototype is being installed at Gran Sasso ICARUS can detect Sefllsitiw to alii v's Sensitive on1V to 'Ie's Efficiency of 37CI v detector and f3 decay of 37Ca (v,e) 3~r Isospin Mirror The proton intensities are translated to matrix elements using the superallowed transition (T;3h! Z I 31CA > 2 ::: 3 Levels .-e ~ dose (~35 keY) so there could be lsospin Mixing ~ Uncertainty in Nonnalization Recently at OSI (Trioda'etal. PLB 1995) : S; Detector 37Ca beam = 10 MeV/A ..... -Measured absolute branch. Using a (calculated) GT contribution to theSuper-allowed transition they concluded that the 3 units of Fermi strength were split between the two lev-ds, i.e. both ~ transitions were almost pure FERMI. Statement depends on the assumed B(GT) for *be transitioa ~ Need a model':'independent measurement of Isospin mixing. 203 204 CQn fAere be isosF' in (rh"inCi' 6e fween f he "lAS.' and ;Is MiCijh bor ? / n' / Q.;e'ilion. .# 0 : AN. fh.R .7 ' S (If hofh sfahs e1 v(). ? 180 0.15 .. ' .t 0.0 -0.15 ·1.0 • • "'fa"-'-0 '~ --lLl 1 --y--, Tt. 1{1 I 3.22 3.2li 3.25 3.22 3.2li 3.28 3.22 3.27 ELA8 (MeV) £{feet Of f; - S(}Mm;n~ i l'+:36A,. Ml!41t=O "- ..31K ~ : i . ~('~ Ml/47t=O.1 0.0 -20.0 0.0 10.0 20.0 AF= {kg\!\ Ml,. ~I'< ",tu~t1" CJtlsc.1tel.',,, j ()fJ,I oflAL'jY"1 PO..Jtrl fOf' "Ar (f ,,,) 'It~ ci'It"~l\ltJ J.( [ .. r So't.d) • J),,+ Kalos.Jcl.lI1 iS .. t oJ. fa ~ foh / .. sJ..P.d S1~ d~dor ~-.-. ~ J5 -; ~ ~ (/) ..... c ::s 8 2.5 0.0 -2.5 • • •• •• • • • .I ~·.~ .• "!l"-;':~r."" · ,.,., .. .. "'::;.: .'.:.t. ::. ~ . -y--. • • • .re. • • .•• " . . - . .. . : . • 2 X /Vz1.19 1000 100 J1t=3/2+ 10 1 2QO().0 3000.0 3100.0 Ep(MeV) 3200.0 3300.0 , . . : Our dat~ shOW$ the transitiqn to ~h~ Ex=5Q1S; k~V is almo~t pu~ely Fermi i . . , : I . :. I 500 ' 400 300 200 100 500~""''''''''''''''-· 400 300 200 100 Fermi ! 1 2 : X=?9 . ! o~ .............. -· 3026.0 3050.0: :3075.0 . Ep(MeV) : ; i 1 , B(GT;501 6)/B(F;5Q1 S) < O.~ (~6e~ C.L) : . I i: ~ , I' 3190.0: I ; I ! i I i i . \ I I I I I I I I : , ! 205 ! I : ··1 i : I 1 \ .:\ 1 I I I I i I I i ! I I 206 We notJ (,An 'Jet in a mode 1-indepen den t waJ the Isospin- NOl1 - Conservin fj ma Tr; x eleme n f: 1501l9>:: 0( 17=3/2 ') + fo I T= 1/2) /501 ~ > = -[3 I T=3h) 4- 0( I T= 'h) < T.: % I fI, NC IT: '12 > = 0( ~ . ~E. from 6SJ dah.... 5(5018)/8(50J.f9) = o.03~Z !O.OO/6 I3{GT j 50'~) B( r= j 501g) -0.00 = 0.00"'0.25 frott'l ISo I dE. d~ fv.. thiS w(Yk I ) +0.23 Re. V <T:3/2 I /-l'Ne T= '12. ~ 5.93_0 .65 en Ly two ot;' er meo.Su rement s eXist in s,) -snell wifh <" 40 t trror hars /,1 17 Table • bospiD-miJ:in& matrix elcmeuts (kcV) and ntios or Fermi 10 tile Gamaw-Tc1Ier tramitioa amplitudes, c:aJc:ulated by the iDtcnctio.a lets EI. RI. and R2. Tbc apcrimcntal ftIues are takcu from the iIospin-forbidden beta dc:a)'I of the Jiycn initial stites I(Yc:sa+CB) I )' x 100 • Ref. (S3l b It.d. [39l • Ref. [54]. d Ilcf. [4Ol-e Ref. (5Sl. Set IDitial stlte El 16.7 Rl 20.1 R2 14.1 &po 20(10)-14.1 4.5 15 •• l.~:" 15.9 5.2 12.5 49(S)C El 2.60 -0.7S -129 R1 3.13 -0.24 -.2 R2 2.21 -0.81 -101 Exp. 3.o(1.S)· -0.9(17)" 11.5 8404 21.1 27.3 6.5 43.2 27.6 43.6 11.8 71.6 23.5 31.4 5.4<22>" 106(40) d . 3.6~~" 20.6(16) c --2.7. -9.91 -1.5S - S.C17 -2.83 -9.11 -2.1(7) b -1.3S -1.76 -1.50 " .. +u b ~-'.1 -We obsefye impoftant discrepancies with the:! best shef~ caIcuIationsln .the-l3..decay _of . _ _ _ 37. I, ~ ~--I; --- ---, :._- _ .. . --_ ._-_._. , - - - --40 ..1' .• . 1.3.512' .. _ _ _ _ .:~_ .. .. . _ , Z.O ---t: - 2.0 o . ·-- z - .. - . .c.o. .... --~~----_1 ~ 0.0 I-~....-!~~--...",..--l ./".vz· 1.5 11.0 015 : .. . M .. - ' 1-- - .. . . - -,t."5/2' ---- "r Cf) 1.5 - -u: -' 1.0 , UJ " -. - -f _ - :j -0.5 _1-- UJ I __ ~::;:::==:!:-_...!..__~ __ . t;- .. _o.0 r-~ 1.5 .f. 312· - -- - --- -.-. ___ __ 0 .. _. _ ... _____ _ ._ . , ~ 1.0 0,5 . . .. - .. - . -0 . . 0.5 .- .----- ... ~ :......,.;..~~==:-;:;. -:::-;;:- '-:::1' ~-o.o ~_-.:.:i~!:====':~-I ~~ I---' -- 'llS- i -.1-' - ~---1.5 ./'.112' - . ""110' - --.-____ 0 1.0 _ -015_ ,_ . ___ ._ .. _ -' ....,-:::. :: ~-:; . ..:: -J _O.5 -----e:. ~=-.;.c. 010 ' 0.0 L..-__ -= ______ -"-~...Jj ... -0' --:c .... _ .---.. ____ __ -.10 .__ ° 2 4 • I : ~O -- ---------;;----_.j-- .. _ .. - - - - -~ -., % (MeV) '--'-_ E In K (MItV) . -- ---_._----.-.... -.-------~=:~=~=~~~-- -. ~ !: '.--' .. - ·----A£ . .&own -FRL 69~ 1034.0 992]: although observed integrated - ... .. _ stpelllgth .. is~. ~~ ~~r than W-theory: it agrees with cr~~~~_r: -- - - We ·Mft decomposed the observed 8(Gl) into Its 3 .different _ .. . ---"-spirI c:haI.1els and shown that actually W:theory rnakesbetter -.. ·_ -pea tions i: --' - . _ . . J . '" -···--~ver~_W-theory still underpredicts B(GT) by ---- about SOOk 1 ----- ·--=-- -.. --.. -- __ 1: I I ! ~ also observe important di6CA!paAaieSwM:h tJD,A) pM'obes of 8(GT) P Cl '-QI:l ~ 2.0 :~ 110 eta.. 0,0 t:='~~;L..----'----'_-.J 0.0 2~e 4..0 6.0 8..0 10.0 Ex (MeV) A secCDMI ezpec illle11t W86~med (MlJCF, Ohio, Seattle) witt\ higher resolution. IlaA anatyisis is still ....... Jlf09ress. 1000 100 P("obably /Rapaport et al. missed IB(Gr~=O.5 at ex: 5 MeV by -oversubtracting Fenni ·contribution 210 "':0 16!0 18:0 "0:0 E.J~e'V,) 207 208 We produced 4OTi at GANIL iSng a 82.'6IMeV/u 50Cr,beam on a 272 f1li1g/cm Ni target Ni target ------.... ~ I Cr beam 40Tibeem Ittalf-lIfe· of,40rni 1501IlIl} JUll s. SOOIllll I 500jun detectors SOOIl'tl 5 Ge detectors to look at is 'We'nBgisteredlthe'i • .,' tation time (Tl).oo the event 1ime(T2). JAIspeolrumICW1I2-l171 ~ show the Half-life. Problems: 11)'We Mw .... than 1 type of radioactivity. 2) TIO · mllPti.~ counting we let the radioactivity CGlMe .. ill times. In order tp" select eYeAts trom 40Ti we take events In E5 * after a..vr:i.iol'l was iMp4arWed * before another ialfII was implanted TIQ,minimize evelllts tr>om ions implanted before 40Ti we Jleject * events that· happened in 1he sequence: Heavy lon- time MTi ewnt ifoHeavy Ion was eiCher41Ti or 37ea and time < 10xHalf-life(+teaoty ion) Under these·c~ one expects a ()Ulser -cons~nt fr~l!ency­to look like: 1IIr::I'ItmqJ(-Rt) where R is the rate of .ncomlg 100S. Z m ..2 D-T1 Probability of having .... event at Time t = Probability of not having It up Iotlmet x ProbIIIbiIty of having It bebueen t ... t+At & up(-Rt) )( R At 40n Ha ..... ire: ewnts loUowing40Ti· ..qected if foIlowing 41Ti or37Ca; Ep5 > 1 MeV. 10Cl.0 1DOOIO'-----.----~---___._-_ __, 400.0 ~ 10010 41Ti HaH-life: events following 41ri; rejected if foUowing4Or. or37ea; Ep5 > 1 MeV. c: OJ .s: 3 c: " o (;) 1DJO , ~L,." ---"""l00"".--:-O-.-.U:lLIIl200~.O _010 TIme (4ms1'c1l) Measuring energy kiss YS.. Time-of-Flight we identify the incoming ions _r----------~ --• • L-_~ ___ '~~'~'==" ~--__ ~ • SI lID I!Il ToF tfI "de! to ensure that theW n ions do not undergo reactions before the are stopped in E5 we also kd_E4vs. E5 209 210 All events in Ep5 after a4Or. Implantation: the large tails are due to ~ summing 1~r-----~------~------~-------' ~ c . .r. o "'ii C :> o () "ii c c • .r. ~ C 1000...0 100 l 1CI U 2000.0 3000.0 4000.0 1000.1 ~~.0------------~1~~~.~0----~~~~~ Channels Checking MIle predictons for 8(Gn+8(F) 10.0 8.0 6;0 4.0 2.0 ID~ 0 Data: phis work Theory: \ Ormand et al. Data: Detraz et al. " 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Ex('Sc) We don't have enough statistics to get the B(GT) at higher excitation energies TABLE IV. -n,.. ~ WaDdles. .... ..t:" theory [4} prmoua work [13} ':"floeV) -.1.<'1) ~(RV) B.R.(%) e.(keV) B.R.(%) .. 0.2 1:2&4 ± Il 2S..J ± 1.1 2171 28.9 7289 ± 120 4.0 ± 2.0 b m5±13 ~AI ±l.Q 22'1 ta.2 %700 ± 120 2O.0± 4.0 366S ± 14 U:l::U XZ2 U 3110 ± 120 3.0 ± 1.0 lm±14 1.1:1::U QI;8± IS 1.1:1::U GIS o.s ~±14 a..-G ± 1.. :S:Z.S 4300 ± 120 -I6.0± 4.0 .o1±17 l .4 ± ·e.2 «>21 13.7 ~ ..... ifac.wt;.. ..,;Q" .. ! .... ill; b-' _ bot.b u.citAtioa -P- aDd ia&a>oitim. mAlIIILE V'l. ~ er- s.cuc- b- "B ,,'. OIl ClAr. E.(kcVj('°Sc) E",(itclV")(""S::) r(4OJ<:) B(F)+B(GT) ~10-43cm2) SNU' 2!84 ,± 13 :>J!OO ± 1 1+ 0..&77 ± 0.104 :U 1.5 276S± HI .2V89·± 4 l+b 1.431 ±0.171 1.& 2.1 .U&,±lJ4 .iI7.38 ± ~ 1+ Q.2OO ± om 1 0.2 0.1 ~±:.4 7RYl±6 1+ O. l!l:l:: Q..Ol2 0.2 0.1 «268:1:: IS JIICI ± 5 (1,2)+ 0.2:jji :1::1..045 0.3 0.2 4361±14 a.4:1::3 0+ 3.404 ± 0..4112 1.5 1.05 4601 ± 11 Oil :1::$ (1,2)+ 0.213 ± 0JM6 0.1 0.1 'lbUl @ @ .~ ~., .. ~.,. ~ Su.dard Saar Wr>dd (laj wiUaoal .....uiao -=illations aDd 1') ~ ba¥e Mea:SU'ed the JHjelayed protons from 37Ca and 4Gri, -.d deduced B(GT)'s. 2)IWith Ibese B(GT)'s we have calculated the v absorption cross-section for charged currents for the 37CI and ~r detectors. 3)'Our I'eSUtts from 37Ca show important disagreement with bo~ shell model and (p,n) reaction x-section. 4)' More statistics are needed in4Dri to compare with shell-model aAd (p,n) probes of B(GT). Pr-ospects at ISEC 1 )llsospilrl Mixing in .usc to check calculations. 2), Giant GT resonance from 40Jj to compare with.shel model calculations and (p,n) reaction x-sectiOtlllS. 211 212 D~termination of Relative Sign of ParentlDaughter Hyperfine Interactions in Successive Decays via NMR-ON S.Ohya Niigata University NMR -0 N (Nuclear Magnetic Resonance on Oriented Nuclei) Sign of Hyp. Int.~ ~BHF Ji'lj-Bt.-L-T Population '" e ,~~.z Case 1. Life of intermediate state« Relaxation time Sign of ~BHF }.J.<O M)O J Case 2. Life of intermediate state» Relaxation time Anisotropy of y-ray Same NMR-ON spectrum Same I , ... I \ \ , \ I , NMJ<-Ot" !....-------) raJ T, .... ;tQ IJ"'WV~ ", $l~ , \_. Case 3. Life of intermediate state /\... Relaxation time en C ::s o u >.. ro l-< c:-...---. V> o 3.16 3.14 3.65 o 3.60 en 'i:: ::s o u 3.55 ~ ..... c:-316 320 324 328 frequency (MHz) Bo=0.2T 3.50 48 50 52 54 56 S QI.r- ,1."-. frequency (MHz) . '.L'.n('H1IIL\ definition ~ J.l.(89Zr) < 0 89Zr Fe l-< z Q) +9/2:. T 1(2. = 78.4 h r:: fB: r~m ~ -9/2 Bhf • 'P+/EC decay f.1.(89ym) > 0 -9/2 ~ I ~ 89ymFe +9/2 :: T1(2. = 16.1 s • I relaxation "';'9/2 :. , (reorientation) ~ lir +9/2 213 214 ---'0 '-' S 0 0 ~ >. 0.. 0 0.5 !::l 0 '" .~ 0.01 0,6 c .S: ~ 0.4 ::l 0.. o 0.. 0,2 " 89 89 m Zr - Y Fe system Tlf2 = 16.1 S Ck = 0.44 Ks (I) Vo = 332.6 MHz TL = 10mK .".' 0,6 (II) 0,4 ,// SP\lI\O'l\-in~u~or\ .......... o,o '~ ,.~:-=-=-==-o 20 40 [sec] ~ -'" .... . . . , .. 0,0 1.:0 ::=::~""'""o.j20~----:l:4O-..J [sec] ,_1AtItf. ~ 0.6 C .S: ~ ].. 0.4 o 0.. 0.2 (III) ~=-=---0,0 •• ~~;:~~~ o 20 40 [sec] (I) (II) ~·i.w(MioM ." .. " .... 0.6 /"".,/ (IV) :::~~~~~. o W 40 (III) (IV) B2 0.5988 0.9782 0.7666 0.7666 B4 0.3780 0.5355 0.4474 0.4474 89 89 m Zr - Y Fe system spm lDV~! ,/ Pa.~.t\t . depolarized I '""'-""~/ ,,-,-, . ,. ,. ,. 0. 1 ,. I , , .'. , 10 [sec] 100 1910S 9/2- Tl = 15.4d 1910sFe Bo=0.2T 178 · 180 182 1. Q~'. ,\.... fre ( . ,.,.cnl"Olll' quency MHz) definition >. ( 1910 Z e.o J1 s) > 0 I . ~ -9/2: 1910S F i spm C1.) . e . • if ~ T1!2=15.4d Bo -Bhf +9/2===------~ P- decay -11/2 : J1(191Irffi) > 0 . ~ 191:rrmFe _ T1{2 = 4.9 s -+11/2 -11/2 : . -I t relaxation (reorientation) 184 +11/2 ----------215 216 2.0 1.0 0.8 0.6 191 191 m · AS - If Fe sytem TII2 = 4.9 S C k = 0.054 Ks (I) Vo= 1174 MHz TL = lOmK 1.0 // /--(II) ~I 0.6 ~pi '1\ \h~'44~v.t'Jiot\ 0.4 U.2 •• .•.•.. 0.0 ::: .. >.:.::--... ; ........ . LS 2.1 0.0 0.5 1.0 1.5 2.0 [sec] [sec] LO r------,----:=~_-., I.O .....-----=~_--. 0.8 0.6 (III) : -·~:t ~~:~J 0.' :: ~~~:;::.:.:;:: ... ::: .................. . 1.\ 2.0 0.0 [sec] 1.0 (I) (II) (III) (IV) B2 1.169 1.308 1.237 1.237 B4 0.390 0.443 0.414 0.414 1910S _ 191Irm Fe system .... . -. -'- .-.-.,.,. spin non inversion ,.,.,.,.,.,., / P ... "t .' ..... ~ depolanzed \" ,.,._._._._. ' . ' .. Ltt ) ' ''' _._._._._._._. ~'rl~·O" \, )\ ///-//._-_ ...... _. / .,/ spin inversion \.... .,/ ........... 1.0 L_'--......... .....J. ........ ...l---'---'-................... ~---'---'-......... :;:::~I~o = ................. -~IOO · 0.01 0.1 I Ck(K·s) Decay scheme E2 141 keY 8+ 6+::::::;C:=;::====3448 E1 1129 keY 5---------,.-- 2319 T1I2 = 0.81 s E5 2319 keY 0+ ---_ ....... _- o 90 40Zr50 Summary 8+ TlI2 = 14.6 h QEC = 6111 keY 1. We have demonstrated the practicality of mea-suring parent resonances via daughter gamma decay in determining the magnetic moment of 8!lZr~ !l°Zr'"'and mas':" 2. We have shown that in small Ck region the anisotropy of daughter gamma rays is increased in the spin inversion case whilst is is decreased in the spin non-inversion case. 3. This method is sensitive to the relative sign of parent/daughter hyperfine interactions. It is applied to determine the relative sign of magnetic moment in successive decays via On-line NMR-ON. 217 218 Nuclear Physics Experiments at Louvain-Ia-Neuve W. Galster Universite Catholique de Louvain RB facility II the EARLY YEARS III STATE of the ART experiments Layout of LLN RB facility: (i) production 30 MeV p-beam (ii) ionization ECR ion source (iii) acceleration K=110 RB 0.6 - 10 MeV/A H=2.3.6 K=44 RB 02 - 0.8 MeV/A H=6.8 ••. .. (later - 2 MeV/A possible) Focus of facility is on Nuclear Astrophysics. but also strong Nuclear Physics program. RB intensities 105 - 109 pps. II The EARLY YEARS First RB are available., simple detection techniques and data acquisition. A) 13N + 12C 13C + 12C 13N + '3C 13C + 12C position sensitive SI detectors. isobaric A=13 beams 16 < Et < 30 MeV measured: angular distributions of elastic scattering and elastic transfer. »» OM analysis suggests a parity dependence of Nucleus-Nucleus interaction. Phys Rev C52(1995).n5-783 »» parity dependence appears to be of long-range nature like 1 pion exchange between valence nucleons. Phys Rev C54(1996).24n-2484 B) 16.180 + 92Mo 50 < E, < 60 MeV gamma (Ge) and X-ray (SiLi) detection measured: fusion cross sections for (A.Z) evaporation residues. extrapolation to 14.1SO Induced reactions. Investigation of merit RB versus stable beam (higher formation cross section vs. higher beam intensity) through statistical model analysis (CASCADE). »» conclusion: you win some, you lose some . . NucJ Phys A560(1993),714-732 III STATE of the ART experiments (the LEDA years) C) Role of isospin and reaction mechanisms in RB induced reactions. (i) GDR gamma-rays T = 0.1 emitted at E· CN = 40 - 50 MeV. BaF2 in singles and coincidence with charged particles.(l~DA -t- L.A HP) 13N+ 9Se -> 22Na(T=0.1) 19Ne+ 9Se -> 28Si(T=O.1) 13C + 11S -> 24Na (T=O.1) 19F + 9Se -> 28AI (T=O.1) 13N + 11S _> 24Mg(T=O.1) 14N + 10S -> 24Mg(T=0) 12C + 12C _> 24Mg(T=O) 19Ne + 13C -> 32S (T=O.1) »» high energy gamma yield of T=1 component appears to be suppressed (andlor shifted to lower energies) for 13N +96e and 13N +116 but agrees well with T-CASCADE (+MC-simulation) for the other systems. (publications in preparation) (ii) TRANSFER to molecular DOORWAY states 13N + 11B -> 12Cgs + 12C[15.11.T=11 -> 12C(4.44) + 12C(15.11,T=1) alpha decay from 15.11 state is isospin forbidden. 15.11 MeV gamma-ray is used as a trigger to tag transfer to this state in 12C; also observed. high multiplicity alpha events (Ma > 3) from T=O level decays of 12C. »» transfer in 13N + 116 is predominantly to 12C + 12C channels. (publications in preparation) (iii) n.p-TRANSFER competition between loosely bound valence nucleons 13N + 9Se _> 14N + 8Be, a = 8.9 MeV -> 12C + 10S • a = 4.6 MeV E, =45 MeV p-transfer Is enhanced over n-transfer (analysiS in progress). D) 2p emission from excited states 13N + 1H -> 140[7.77] -> 2p +12C LEDA type Si-strip detectors »» No di-proton emission observed. 2p decay is predominantly sequential with lip = 125 +- 20 eV. limit for 2He emission IiHe < 6 eV Phys Lett 6373(1996).35-39 E) 6He scattering and 2n transfer (i) 6He + 4He elastic 2n transfer. E, = 40 MeV (June 97 30 MeV) LEDA+LAMP 6He, 4He observed in kinematical coinc. »» elastic 2n transfer has been observed. analysis in progress (ii) 6He + 7Li search for 5H via p-transfer to 5H + 8Be 6He + 6Li charge exchange 6He + 1 H. 6He + 2H. 6He + 9Be. 6He + 12C. 6He + 19F. 6He + 27 AI. 6He + 197 Au. 6He + 208Pb all systems have been studied very recently and await analysis, F) Nuclear spectroscopy with RS 19Ne + 40Ca. 19F + 40Ca E,=70 MeV TESSA+LEDA I search for gamma-rays deexciting YRAST states in neutron deficient nuclei A = 55 (aligned high spin states). Nucl lost Math A371 (1996).449-459 219 220 10 ~ 1 b 10-1 to-2 E-'-~~......L-........... -, o 60 120 180 9c.m.ldeg) 10 ~1 -b 10-1 10-2 to-2 0t...........&..o.I60-'-.oIII.,.JJ20-'-'~,80 9 c.m. ldeg) FIG. 2. Potential-model fits (Eqs. (1) and (3)-(7») of the 13C+12C data of Ref. [9] (7.8, 8.84, 10.7, 11.72, and 12.72 MeV - stars) and of the present experiment (7.8, 9.6, and 14.2 MeV - dots). The dashed and solid lines correspond to the deep and sbnow· potentials defined in Table I, respec-tivelv. g b 7.8MeY 10-2 9.6MeY 10-2 O~~~60~~~1=20~~~180 9 c.m,ldeg) FIG. 3. Ratios of 13N+1·C elastic cross sections to Ruther-ford cross sections, measured at 1.8, 9.6, and 14.2 MeV in the c.m. frame. Comparison with potential-model fits of the 13N+12C data, calculated with the parity potential ofEq. (8) taking account of the charge of the transferred nucleon. The dashed and solid lines correspond to the deep and shallow potentials defined in Table I, respectively. 8.15 MeV 0.1 0.Q1 f--o~+-"~+---"~+---"~t-4I~f-o-"""'-+ 10~~~~~~~~~~~~ II: t) 13 10 MeV 0.1 0.01 f--o~+-,~+-,~-+-'IIII-o--I-' 10~~~~~~~--+---+-~7 0.1 0.01 -!--<---'---i-'-"'-+ ........ -1-......jjji4-ll~ ........ -'-+ o 30 60 90 120 150 180 ac.m. (deg) FlG. 2. Ratios of 13N + 13C elastic cross sections to Rutherford cross sections, measured ~ , 8.15, 10, and 14.75 MeV in the c.m. frame. Comparison with potential-model fits of the 13N + J3C data. ca1cular,ed with the potentiel (1) including the parity potential de-221 222 16 0 + 92 Mo 200 E-S9.9McV 1.50 I :1 100 1001 51> o "-I -=::.l-L..L:o"-! !E-S1-S -75 ' 150 1 t> 2S I o i-I ...-I..J.-L...L=xJ...l E-SI.2McV Fi{t. 7. Comparison between the experimental (vertical lines; tables 1 and 2) and calculated (histograms: section 5) charge (Z) distributions in the 16.110 interactions at the various laboratory bombarding energies. rn indicates the compound nucleus mass. 16 0 + 92 Mo 18 0 + 92Mo 300 r_------~~r------r~200r-------~ E_6CMe ~ 150 200 200 tOO 100 50 10 100 104 lOB 100 104 lOB 0 '--_...lL.JW...IJ.....J 0 100 104 101 A NucL 'PYII.(<: A560 FiS- 8. Same as fiS- Hor the mass (A) distributions. . -- . (93)1 1(5-132 10'..-------------, ~Jf\ .1- , t \\,4. z;"·~tJ\Ile.->!I$.I~:~~ 111 1.:.1$'.1 40 e'~ ~ . J \ 1",,,,,,,, ,, ,",Ltl, ,J,U ,I • 5 10 15 1II 15 JI 15 .. E(MeV) ,),-residues coincidence 6·'!{.e ... ~· m,d16 .,~+IIB E(MeV) IIL-. .... ) 200 r----::-----------~ I 180 160 '40 120 100 .. . ... . .~ . .. . JO 35 40 . ENERGYMeV 223 224 ~+ llB RESIDUES SPECTRUM 70000 .1\ ~=4.5MeV 60000 ft~ .0 002 ~ . -c :0 CJ o MONTECASCA = • 0 • ·U 50000 • i • EXP. ·0 \ • ~ . 40000 • ~ " • • 5 • 30000 tJ • 0 • • , ; 20000 .R :0\ ~ • 0 Ot 0 10000 a: 00. • 0 0 40 50 60 Energy (MeV) 10' 40 35 30 25 ~ 20 ;.:: 15 10 5 0 0 liN + "B E... 29.$ MeV 20 Particle specuum at 20'. sued on l~.l MeV -r-ray peo.k I " 25 30 5 10 15 20 25 30 lie ejectile energy (MeV) I : 13tJ +11$ _ 12~s + 12c. ~[IS'. l] 'IJ~1~"->:: \ :rr: : 2,1" [4:'1-'1-] -+ [I~ (] 7 5000 c ' ~ l .. 4SOO !~ C :l -.;' ,j, 0 -:~ () 4000 !:1 M,=4 J. l500 12C 1"~ lOOO 2.500 :zooo 1500 1000 soo o 0 10 JO ~ 50 60 70 E".MeV 225 LEDA SO 226 Two proton emission induced via a resonance reaction -.------------------------~ O' 0 ., Vi:' '-37 I3N +p 6.57 4.63 o· 140 .0 .... 0 T .. ~___. ... ......... Fir. I. I..cvel scheme lor "0. proIOD dourblu And lWO pn>COII dou,hler. The d..ncd Iioc shows the sequcoti:1l cmissM>o of two protons lhrou~h a siDlk ~~c sate and the solid line Cmi. .. ~ioll of. qu.:asi-bouDd 2Hc clus&ct . Fi,. 4. A com~ of tile two _ opctlio, .. ,Ie dol> ...nIl MOIlle Urio simuWioos ........ , scqucoti:1l cmissioo (cbshcd Iioc) And 'lie cmiWoo (solid hisIop2lll). ... .. Q.l .. , ·.~~.~.'~O~2~O~~~ .. t.~ot~~~O .• ~~O.~'~OA~~O~ .• --J,U Proton ;:nergy 1 (MoV) 10 R B entt"9/t.s EjA jpl.vaik -lA _!.JlJJ.Ve N(~) RB J!XpS ~ NA ~ P NP 89'-/~ bHe lie I3N IgF liNe 19Ne 35"Ar - -... - .. ~.--~- ~--:--~ . -~---Coulomb Excitation in Inverse Kinematics with Radioactive Nuclear Beams R. Casten Yale University rV4.~ . ,",'~"'l., "-,,~: "".,~ • c.a.~4.~ ,f\., ~L __ "'\~"" ,"~~i"c",1' • Sl,.. .. "'t""'4' ~ ,tl\'~'~ -M",\\-, -~:."'~" 1f .. 'OS _ ~~(~ ~~\tv 'M ,s :r ~ ~ - """4.~:~~ ~"'"" "'f,l~ ~6t t~ .. , tJ""\ .. ",, S~ ...... of_ ~ "'c\'ll~~ \.4,,) ~~\~ t~~ ,,~ 140 ~- 'If IV ~; IM...dC.'. (\0-t .. ) ~~a.o ('~m;') I • • • 227 228 82 tlZr '0 51 IlISn 50 .1 -IL· _______ --' .' - - hl1/2 . . , '. . . . , 70 s · · .' . == d'f/2: • : ~"". • :.0" 0 0 •• • - st41/2 • 0 _ / • • • • • 2 - h JO • • • d u,.. 0:'" 0 • - gO/2 __ f>/2' :00 g7/2 . 50 -- g8/2' normal . c~o/Y<~ ~ b.:0s -k ~h~r . '1 'S~ )'y),~Q,\ !~"'Q"~~'..). ;~.s: .... \~ (w-s ~s\-\o) .-.. 1\1 .0 III Q) '-' .-.. + 0 t + N N ~ '-' ~ \Jcs N 800 84 600 86 AEX~88 200 .... ~ ~:~ ? .. ~~§~ ~ ~ ~ ~ ~ . ~ ~ 88 ro Z o 9(&"0 \.)c:....\~ Ov>-\ rY\A..~) '- 'fV\.(.m.'b,~ 0.6 0.4 0.2 0.0 0 0.) Zol-=50. Nol-62 b) no Zal-5O c) Nol-70 f ! I II + + * * * *~ IC a IC)( IC IC A .... 130 l(: IC l( IC l( IC l( l( 100 200 0 200 400 0 100 NpNn ")r 1\h. \;1y~ cJ...._)~ ~ C.\~5~ 'ShU.~ """\ i y..,1 :: -{~:!' ~ ............ - . .....!-.~. :3 <. >'lo\ ~ - )'\1_-+ .... bo...:f c;.S),,; .d.\ c,)\.. 150----~~--r----r----T---~--__. -• e -III Q) '-' 100 . ' ' . '. (b) Xe A Sa • Ce • Nd 0 Sm x Gd 0 200 IH :::-. . ~~. ~} ST.:I == --. "~ --"4-;. ==:: -~ ...... ;;.;;. y)o\~V /1) 50 .vel::' ~O~ ••••• c::. . ::i: $ . :: '.:.: ~ ... ~.~ =:'.~ ..... " .•...•.............. 7:.7. :-: .:-: .7. :-: oL---~--~--~----~--~--~ 229 230 2.0 ".. 1 X X ...-.. 1.5 Xx x > x Q) xX ~ -- 1.0 ...-.. +- xXxx ~ x -- 0.5 xxxX xXxx ~ x;~;::;~iii.!~ 0.0 50 60 70 80 Z· r\/~vv f~'\~~ r~~,"-~ ~ l~"J,.·meJq,~ 2 1 ~ ~ .. i\·J ~ ")):f, Clu... v '\ CL.,d b4.'h 0.. vi (J ~. q ______ F_Z=36-62 R>2.05 + 3.33,/ ,/ ;' '2.00 slope = 2.00 ± 0.02 e, = 0.16 ± 0.01 MeV E (4t ,) ~ U~t1. +~\ 6i~hlA .. nmo"l( V ;\JI\~oR. '-'-I So """'lAm O~--------------~--------+~R~_~2~.0~5~-~2~.1~6------1 A-\'~"""'1II1 ,.\, (' ~ , 0.4 0.2 • Z N o 48 56-62 D 56-68 80 • 62-70 88 • 78 100-108 o 60 104-124 * A .. ~___ L'SC ___ -:-. _ ...... ' .. :.::.- ___ _ • 1\ "..... + --x .. ..:+ . ... ++ * . + .. "" ~ + . J ~ O.OL-------------~------------~----~ 0.0 0.5 1.0 E2 (MeV) lt~ ----, lO~~ lite) ..,,::.- -~-- -:>:10 O'-c::.. 1·1 '1 <.\ Are these correlations applicable Only to known nuclei near the valley of stability. if so, what is special about these nuclei? Dev~ations point to radically different structure elsewhere. OR To all nuclei. :1. ..... v JlAS\.. if so, what generic features of shell structure and interactions are responsible? Signatures of structure in new regions. ~""~'1 ("''''''~b e ""t\ .. tl~1t.. :t,.,..v.-,.,lI4 h,';", ... .. _~~l U 5' ~~t....> u......\~d ... ~O/,.<..q ... s L~ ~ ~<..1J-)'6~ \0( ~w~V'\"'~~~~ • G-... ., A.~\ .;. A~ ~ .. 4.d. ,,~~ b'-~\\-"'r ~ """'j jo..,. c .. ~ -r b.,q,........,.. ~1-cr..-~~".) -f .... . c..)J~oW't 0-231 232 Beam "'Os 100 90 10 70 10 .ZI II 50 II ~ 40 30 20 10 0 Through-Well NaI(Tl) Detector Target Adjustable Target Tube Retractable Faraday Cup 11<'~4.),",3J\'%.\>'"" ~ \O""'~J!).r:) ~.., \ .~,... ~! p-'~I'i..!~ .. ' I . .J: ""'\ .. • _ _ ... ~ . .bV 12C(I92as, 19205,) I Z • 0+ Channel 100 .......... 10 C/) ..... 'c ::J \t-o. 0 1 ~ C/) . C/) ' Q) ~ 0.1 ~ '> ;; 'Ci) c: 0.01 Q) CI) 0.001 0 S~i>~; .... '1~ ...;... w . "'. ~~:f.·...,~ Q4. \.l.V~\ ~lv~ .. , \0 (;) T\'o\ oJ\ er.:.fi-.r. .... ..... 106 particles/sec 108 particles/sec .-. --. --......... _.' .. -Sensitivity(W.u.)=· countslhour lo&Ncr 200 400 600 800 1000 1200 Excitation Energy (keV) "" '\-,; ,), '" "J \., -t., ~,~ ~ ~ -:t,SAc 7 • s ~ ".,,~ '-\ ~. ta ~ t)'-ttt : A : ~o - ~o .l\Jh- tbi-'" . wi • • 0 ..... '; £.. ~ (Y-.'" ..... ~'-':.--~~ ~'yV~ 1+ .\r\A,..... l ~I'; (,.j~~~)J .cJ. (Av.h·~)o/ 233 · ,) -=2.)+1 k~, 0) '\o\A. ~i ~ 1)W : 'I.......,-1'JV\~t:.."" ~ ~,~~ . ~(;o...'\..,.~<..\, -='-.. \'~(.1;",~ J J -~\'01V 2500~--~----,-----,----,----, 2000 1500 1000 500 Z=38-82 3.33 " , , J( J( ,,'2.00 " , ,:" )( , xx,' 2.05<R<3.15,/ '/ , , , , , , , , , , , , , , , , ~,/ */ a=2.02±0.02 €.=156±10 , ' O~~~'--~----~----~--~----~ o 250 500 ·750 1000 1250 Ei+ (keV) ~ h<V\N',.. DY\.J\ (". v ~b.l\(.:l6\. ....... (,j~5V~ ~)-,~k;t'7 C-RS.,~1<.. c-v.,......~:>"-s \J~~<~\..n.s c.l.. ~~')~ :,'n""lV:>ol\J ~1-'\1<.,1)(1<' "t: h:\) oJ E (~;) .... - -- ~ I.>.l..) ... " ~~ S-1"~ '5 ® \j ® :) @ '-@ o .1;_\\ lI'~ ,\. . ..,-H--,~). .e'T 12~' 4.1-11/1 E(II.V) e .:"'-4ph o.~ 6, ..--5ph: 79 124 eo <22 4 30 34 27 IB 67 4B~19 6632 . 3 2 ... 6 "-.-.... )'t::/ ....... ~' .. L .. 0 4 2, •• ~2ph 231 '" ~ ... -27 22 62 ~lPh . 62W6r.:-2 ___ _ 21T °T 47\ 31 10 32 ~ 31 ~.-L 41 Ol~ L.-'2'--__ ....J 0 ~ "'---.-O~).. .. a.. )~--rit.jQ;· ..... .s ·~ \,~<.~ ~\\t .A,...v.\v, ..... ., ;1\1-1-,\"\",,, oQ...'o\1- ·~~ b~ ~ J J - ~ -.-1- 0:,\ ~ \Q.~ \..\ ~\.. .......... "" S~~QS ..... ~-'I). ~\ .' \.. .. ~~. ~_ &..I"'" ' f .. ;' .. . ~.' • ~ . . ~ .. ~ . , - . . -,"" . ~D'" k-:o . .J "'-..... o .. ::=:. ----.. • • " . 9{£ \: "'0 -. )') ~ (~ .. ! ).f t.O ..... ~) • Y\1 .. st · "Ylsh'j ~,+ '" ~..,.. ~ ~'-l 235 236 ' -:::>1' . : :\{ . . . . . ,.' ~ •. ~~ .~. ~~~ A~ ~~),6, r: S~ <i-4l . A:.. ~ ... i~~ \-l~ , . ~ .I I~· ~ I;. " • . I '''., ~ ..J '- ~ C~ ~ .~, J k...., .... ~\;toM ~. \- M • (;~, ~ .A. <. 1 k.-.. • ....., . V .... ~~ ~ .. \·,..,.·~~:r··~(·· ... S4' (7 ,.' , . .!' < . ~-.' .~: ~~.~ -t'~t, " ~·· ~· ·~o . . .... -: ~ . .. '.~. Nt~ ... ~.,,- l).j::o~a-J 1tA/r ."-.f~4\ (f~' ~.aft' ~\~ tJ~ \.4 ... . ,~ .... ,." ~,~. ~ -:1~A< E~1J · LIi)r"l,V~' ~~ ., - ~"C) ~ .A,,~ .,tt,~ --"."""-A. ~;. \. ~~(.' 1)1(,.ty4~~ \ .(n, ~ \ .\ . \4. rtt - '14.......:d, \..1 ~l &t t. ¥ -"'-J ~~4.&\-J"-$ 9 ... 'Y (,.~iVt y f.<t "':~;.~():~~T)? , Mc..~5 C.S,f.) ~;' I~~ .. R.,~ R..~. j , , • \ c.~-c. , ,,-,\~.: ",,\..., ~~~G.¢\, .tJI ~ -s-t ...-c."\ &Nt.c.s <b V'1 "" -:. ~ ~ L IH'tH;"J H) - ~\tn"l\IjJ -l {?l~.) v..~-~(t.lJ)11 -2.0 -'.0 o...v<l..~~' ).,.,.. ,~~..b~ ...... ~ \G:... .. -1 )' .... ;;"\\. \~.Ih c.. ""~\. \'~h1.s 17...<;:)) $";~,,"~o.A~.:!,;hS 4'-. tV:: ~ . ~ s---~ ~ 1v.=:~-:::?,o \.<;\.,~ ):..."'1~~ .:k .. ~,,- A'""" bO c1 . s:y.c..(s) ~ f) ~ ..) (..~ .. ....). ~"'- .~ 237 238 S VM~ "" t((al..., .. ',')-O(~-,,~))-~ltVl\)-fl(W,",,~ '3C' "'(.'"~ ~ ..... ~~;,., ''' .... ' ,....w- , ... ;c.\", ,;~, -~\c. • .., Yl4~~~, ;-* : 6VDll (T=l) 6V (T= 1 + T=.O) . pD . . . . ·so · :!eXii 100 ·120 14'0 iU50 JNe;Bjti;6h Nurh1:>er Experimental Studies of Interaction and Properties of Neutron-rich Nuclei at ISAC A. ReshetinlE. Konobeevski INR RAS TRiUMF - RESEARCH PROPOSAL DRAFT TItle of proposed experiment: MExpaim.,nt.d Stadi.,. of lnt.,r .. c!ion Uld Prop"rti". of N"atron-Rich Nud"i .. t ISAC'" Name 01 group: NRN Spokesperson lor group; A.S. Uj inov Membe~ of the group (name, Institution, status, per cent of Ume devoted to experiment): ~ Institution A.5. njinov INRRAS A.V. I<1y .. chko INRRAS E.5. Konobeevsky INRRAS M.V. Mordovskoy INRRAS S.L Potashev INRRAS A.L Reshetin INRRAS Yu.V. Ry .. bov INRRAS V.A. Simonov INRRAS V.M. Skorkin INRRAS S.V.Zuyev INRRAS Start of preperaUons: November 1996 Dale ready: November 1998 Completion date: fint sage November 1999 SIa.tus Head of Labontory Senior Reseuch Scientist Senior Reseuch Scientist Research Scientist Research Scientist Senior Research Scientist Senior Research Scientist Reseuch Associate Research Scientist Research Scientist Beam Ume requested: 12·h shifts Beam IInelcllannel lSAC-1 Interactions of nuclei with abnormally high value of NjZ-ratio offer an opportunity to investigate nuclei very far from the line of beta-stability or from the region of known nuclei. Experiments with 8He and 11 Li beams uti-lizing the planned SPLIN (Spectrometer of LIght Nuclei) setup are intended to investigate a variety of polyneutron nuclei, superheavy H and He isotope production as well as interactions of nuclei with large NjZ ratio, especially in the fusion channel. High intensity radioactive nuclei beam,,; at ISAC provide significant advantages for such experiments in comparison with other facilities. Today, interest in the problems of neutron nuclei has been renewed, initiated by the development of self con-sistent methods for theoretical description of few-nucleon 5)'stems with large neutron excess viz. polineutron and superheavy H and He isotopes which have abnormally high N /Z ratio. Properties of these nuclides are investi-gated by the spectroscopy of nuclear reactions producing such nuclear species. Pion double exchange reaction, nu-cleon charge exchange reaction with low energy heavy ions and fragmentation of relativistic nuclei have been applied for this purpose in past years. The data on the stability of those nuclides obtained experimentally are significantly different from theoretical predictions. Therefore new experimental studies of such nuclide prop-erties would play a decisive role for further progress of such investigations. 239 240 The region of final nuclei accessible in stable nuclei beam induced nuclear reactions is limited. Rather low NIl-ratio of stable nuclides prevents the neutron nuclei production both in pion double charge exchange reac-tions (due to limitations from the target neutron num-ber) and in interactions between nuclei (due to limita-tions from heavy ion, since the strong rearrangement of nuclei results in extremely low cross section) . Stable nu-clei induced reactions leading to the formation of above mentioned exotic nuclei are usually also not favorable having, 'as a rule, high negative reaction Q-value (30-60 MeV) and hence very low reaction cross sections. Tabl • . Proposed experiment Other experiments g.s.-g.s. g.s.-g.s. Reaction Q-value Reaction Q-value (MeV) (MeV) VBe( U Li,lI>C)4H 13.0 "Be(llB,160)4H -1.2 WBe(ll Li, l~C)~H -5.7 UB(ULi,'OO) 4 n 16.3 7Li(llB,140)4n -16.7 IIB(IILi,lbO) bn 5.9 lOBe(" Li, '~N)~n -16.3 uC(IILi,"Li)!4C 17.0 UC(OLi,tLi)IJC 2.9 IUB(IlLi,190)2n 33.7 lUB(OHe,"N)n 27.7 lUB(OHe,a)!4B 17.6 IIBe(OLi,a)lJB 13.3 Q-values of some reactions induced by radioactive nu-clear beams are positive and rather high, and a few MeV difference in Q-value may lead to significant cross section enhancement. Using the beams of neutron-rich nuclides, such as 8He and llLi (with energy of 1.5 MeV /u), and light stable.nu-clei targets, a large set of polyneutrons and superheavy H and He isotopes may be produced. With the beam energy increasing up to 6 MeV/u, it would be possible to produce the more exotic nuclei. Likewise the use of radioactive targets such as 3H, lOBe and I .. C can extend the region of nuclides studied and/or increase their yield. Ref. 4 5 6 6 .0r---------~------------~ I~O~~~I~~2~~~~ ~(MeV) . . Calcuilled (FRDWBA) dire 1Ift1roD·Sl'alllfu ~ ClOII IICtlcw lor &be RNB 'U(aH,aH) aAd ... bl.-beIm 'LI(,H,aH) RIC~ ill Ule _ (bUL arbiU'IQ') WIlla. 10 20 o~~~~~~~ __ ~--~ •• ·1 ·4 ·2 0 2 4 . ,I • a (MeV) > Q) ::E W <I Table 2: Reaction 17.0 ELi) 32.0 0.78± 0.16 UB( LI,'·O 2n 33.7 E(UO}_48.6 5.9± 0.2 21.8 E(·' N)-15.0 6.9± 0.16 lOC("He,a) B 17.6 E(a)-34.0 0.18± 0.10 lUBe(IILI,"C) H 0.6 El C}-16.0 5.26± 0.17 Proposed Measurements The experiments will utilize 8He and llLi beams pro-duced by ISAC with energies of E(8He)=12 MeV and E(llLi)=16.5 MeV at the first stage. Planned increasing of the primary beam energy up to 6 MeV /u on the second stage would extend the variety of final nuclei accessible for investigation. For estimations the following features of the beam were assumed: intensities of 108 s-1 for8He and 105 S-1 for llLi, energy resolution (AE/E<10-3, beam spot di-ameter on the target of 5 nun, mass separator resolution of 10000:1, permitting clean beams of selected species. The possibility of isotope separation using (AE-E) anal-ysis is limited in some cases by energy loss struggling in the target and AE-detector. Simultaneous measurement of E, AE and TOF would allow to perform clean isotope separation and to determine the energy of outgoing par-ticle with an accuracy of about 100 keV at E=15 - 25 MeV, needed to resolve transitions to excited states. 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 80 70 5 ~E-det - 7/-Lm 1 - 9-'li 2 - 9-11Se l if,;!'~~<f;~~~t'i1W~~~,i~!~'!ffii?t~~,Ij) 10 15 20 E. MeV 1 - ~i+9Be 2 - IOLi+ lOSe 3 - lIU+ I1Se 25 CI) 60 c t.: ~50 40 30 5 10 15 20 E. MeV 25 TOF~I: 0.8 m) bf (ns) 30.9± 0.26 38.4± 0.27 80.9± 0.85 19.8± 0.25 65.8± 0.59 30 30 241 242 700 600 500 2 400 c :::J 8300 200 100 o 1000 500 en 600 C :::J 0 () 400 200 o 200 150 (I') § 100 o () 50 o 500 400 100 o o o o o Eo' MeV 1 - 10 ~ =! 5 - 1 5 10 1 5 10 Eo' MeV 1 - 10 2 - 15 3 - 20 4 - 25 5 - 30 2 1 5 10 1 5 10 t-E-det - 7J.Lm 2 3 9Li 3 15 20 E. MeV 2 3 2 15 20 E+AE . MeV 12C 4 15 20 E. MeV 3 15 20 E+AE. MeV 4 5 25 30 35 5 4 25 30 35 5 25 30 35 4 5 25 30 35 243 3,--------------------, 2 If) 0 :: 6.5 7.0 7.5 s:: D.E. MeV ::l ..ci .8 .... <t .6 .4 .2 0.0 80 82 84 86 t, os Fig.2. S.E. Am~1I ~I DI. / A multiplicil)" lill~r lor th~ NORDBALL s)"sl~m 305 n to CAM"C Colncl •• nc. lI.glll.,. 1ft oeI. CFD Fig. 2. Block scheme of the neutron detcction system designed lor the neutron wall. 1110 25 7i 15 j i 10 100 e..25 keV Gamma Channel Humber Fig. 3. Time distribution spectrum of neutrons and "f-rays measured with an Am-Be neutron source. The energy threshold is 5c:t at 25 keY (given in rccoil electron energy). 244 S.E. Am~1I ~t Ill. / A multiplicity Iilur lor tlr~ HORDBALL syst~m 0.' 0 .7 o.e ~ 0.6 .S! 0 .• ~ W 0.3 0 .2 0 .1 0 .0 0 2 -~e..30 .. V 40 Tlww>cId e.. 7O .. v •• ThrwIoid Ee. 120 !LtV,' 0. ThrwIoid Ee.200 .tV • e I 10 12 U 16 11 2C Neutron Energy (MeV) Fig. 8. Calculated neutron efficiency oC a hexagon shJpe.J detc:ctor as function of neutron energy Cor diCeerenl Cneri\ thresholds. • . 1000r----r---r---r---.-..,.., l'U • 197Au_ 2n. X ~100 .... ~ 0 .0 c: -0 0 10 -0 9 2n (deg) Fig. S. Angular distribution of the di-neutron in the Coulomb fragmentation process II Li + 197 Au ... 2n + X at the beam energy of 29 MeV I A. b) : ~ I' 'E 100 ~ .ci .§. .. ' . I- 80 . .11 :I: -I . ~ :. w .' :I: 60 !a w CJ) ~ ~ Q. a: 40 0 I-0 . W I- 20 w 0 Z 00 10 20 30 40 50 En (MeV) Fig. 4. Neutrons in the cenu-at deteaor coming from ("Lit ·Li) reaaions on (a) an empty lariet frame and (b) an Au taraet (there: were: 9.6 times as many 11 Li in the latter run than in the first). Neutrons are: distinguisbed from pmmas by means of pulse·shape analysis and the response recorded in the deteaor is shown versus the enefl)' deduced from the neulron time.of-fti,hl data. The vertical band of events at ~ M~V ft~"t .. ,,9"1 _"_rev r ...... r __ • ..:._ ...... : ___ ... ____ '!_ -!-' ___ _ _ . . ! .. L .. L _ II,· - --450 400 350 300 2250 c '" ~ 200 150 100 50 0 0 2 450 400 350 300 2250 c '" ~ 200 150 100 50 0 0 2 250 200 Ul 150 .-c '" > '" 100 50 0 ..A -A. 0 2 250 200 2 150 c '" > '" 100 50 0 0 2 Det.l thickness-30 cm diometer-l0 cm 4 6 En' MeV Det.2 thickness-30 cm diometer-20 em 4 6 En' MeV Det.3 thickness- 15 cm diometer-lO em .Ac_'-" 4 6 En' MeV DeU thickness-30 cm diometer- 10 cm 4 245 ;V/ 8 10 12 I-ci 8 10 12 8 10 12 .-~ 8 10 12 246 Det.l: thickness-30cm; diameter-10cm 600 +----L_.J.----L_.J.----L_+ 600 -I-..L-..L-..L-..L-..L-.J.-.J.-.J.-+ 400 2 c Q) > <I> 200 0 600 400 Ul C <I> > Q) 200 0 0 2 0 2 E =E =2 MeV n1 n2 4 6 8 En' MeV E =E =5 MeV n1 n2 1 4 6 8 En' MeV E =E =10 MeV n1 "2 400 200 0 10 12 0 5 10 15 20 25 30 35 40 45 En' MeV 600 E =E =20 MeV n1 n2 400 ~ " ~ 200 "'" 0 .A 10 12 0 5 10 15 20 25 30 35 40 45 En' MeV MAl N CHARACTERISTICS OF THE EXPERIMENT 1. Utilising of radioactive beams and radioactive (stable) targets. 2. Secondary nuclear fragments detection with energies of 15 - 50 me. 3. Clean isotope separation by means of t1E - E and t - E two-dimensio analysis. 4. High energy resolution enough to resolve individual states of residual neutron-rich nuclides. 5. Coincidence measurements with 0.5 - 15 MeV neutron detection. 6. Flexible geometry with large total solid angle. E - $f«cl-ron.,l.r l!~'j« t .. iuco/,( F.15l.:;' TOF- Spectrometer E-spectrometer Range telescope 247 .. ' 248 Experimental Set-up 1. Beam: sBe, IILi, energy of 1,5 - 6 MeV/u, 101 and 1 0~ pps respectively. 2. Targets: lB, ' .loBe, 10.IIB, l2,tJ.14C self-supporting, 0.1 - 0.2 mg/cm2 • 3. Detectors: • 1£ - silicon surface-barrier super-thin detectors ( 3 - 5 mkm depletion depth, 50 -100 mm2 active area); • E - silicon strip detector array (500 mkm thickness, 120x80 mm2 active area); neutron spectrometer -liquid or crystal p-terfenil scintillator array preceded by thin plastic scintillator veto-detectors, (n-y) pulse-shap discrimination. 4. Experimental set-up performances: • total solid angle of 50 - 200 msr (10 msr per telescope) • energy resolution of -100 keV • liming resolution of ",500 ps Experimental Consideration and Beam Time Estimate For count ~~te -estimates on example of 12C(8He, 6He) reaction we assume or estimate the following: • beam intensity on target: 1Q8pps. • target thickness: 0.25 mgJc:m2. • SPLIN solid angle: 10 msr/per telescope (total 50 -200 msr). • approximate cross section projected from known data with 8Li beam and Q-value effect: 10 mb/sr at 6 cm=20° down to Imb/sr a.t 6cm=80°. For differential cross section statistical uncertainties of 3% in 6° angular bins we estimate running time as 10 -25 h/per target depending on target nuclei and number of states to resolve. We anticipate no need for back-ground measurements since pure (enriched) targets will be used. The target related background will be rejected using .6.E-E and t-E analysis. Moderate energy resolu-tion (-500 ke V) will be requied to resolve all the residual states of interest. It can be achieved with the assumed beam spread, target thickness and energy resolution of E-detectors. Additional 10 shifts are required for SPLIN commisioning and testing. " Prospects for Atomic Mass Measurements with the Canadian Penning Trap Mass Spectrometer K. Sharma University of Manitoba K. S. SharmaI, R.e. BarberI, F. Buchinger1, J.E. Crawford2, X. Fengl • 2, S. Gulick2, E. HagbergJ, J.e. Hardl, V.T. I(oslowsl<yJ, J.K.P. Lee2, R.B. Moore2 and G. SavardJ,4 'Univcrsity of Manitoba, Winnil)cg, Manitoba, CANADA R3T 2N2 lMcGiII Univcrsity, Montrcal, Quebec, CANADA H3A 281 JChalk River Laboratories, Chalk Rivcr, Ontario, CANADA KOJ IJO 4Argonnc National Laborato."ics. Argonne, Illinois, USA 60439 Outline: 1. Overview of the CPT spectromcter 2. Special features at ANL 3. What can we learn from atomic mass measurcments? 4. Mass Measurements and super-allowed p-dccay 5. Conclusion 249 250 .. Y-10 ELEC. fEE OTHAU &FLIOOR-.I/ 3 r- !tr:-r!] ~ -~ r= ;== v ~ ~ ~ ~H~-II- I---------r1!.----,71 == == 1 ~I I I I • --~ 5'\.23'1 1I.5B5 .. 1 I CANADIAN PENNING TRAP ELEVATION 95 02 23 MW CPT-SS0 41.1 I'~' ~ANADIAN PENNING TRAPI Basic parameters of the CPT mass spectrometer: • Number of ions required per "shot" = 10 • Typical length of each measurement cycle = Is • Main magnetic field = 6T • Nominal resolution I)M/M = 10-6 • Limiting precision I)M/M = 10.9 • Resolution depends on Icngth of measurcment cyclc, which in turn is dictated by the lifetime of the activity being studied 5 f£C/"a,{ .f€4v-tye~ ot f/..e cPT: - Self sf" iddti11 . ma/If Mt<ffllet - S pecio.l . Ma.feria.& for The specfrotr1efty +u{,e - TY'tA.f c.Ol'lsfi,.uGTioh pY(!serves "-fllit.{" B .r ida<. - Itlf eltmMis c/ui, Jtd . :t; preserve ().xiai s~mMe/;r (rt.ek.a. sjs-!em .... tc eUe"i) . 251 252 Layout of the ATLAS facility and CPT location 'Q.cCE~F:l GOHTIlOl RomA BOOSTE;;...:R-H-H---l1irII LlNAC 65 in. SCATTERING CHAMBER o I ,o,PPROX, SC,o,LE (feet) NEW ATLAS ~"""'-- ECR SOURCE ATLAS ION SOURCE SYSTEM Layout of the Argonne Tandem-Linear AccelexalOr System (ATI.AS). 253 .. IT] ! i j ~ . ] ~ [8 Sl 5c.heM.Jic, view of -f'he "~as Co oole.y • . a.ccumu.la.ft. 254 What can we Icarn from atomic mass measurements? • Improvements and extensions to the "backbone" of well known masses • Explore nuclear structure in exotic regions • Tests of mass formulae • Cases of special interest (1)) 200 204. 208 212 216 220 224 ~ ..,. ,'-' ,"::; :", ,\f' ,~ ,<lfI' ,"' .. " . .. . . , • •••• 'If' • .' of" . . ,.; · .~ .. • • 4' ... .. '# ",' 232 236 240 244 248 252 256 260 264 ' • <1<' ,-36 32 28 216 220 22. 228 232 A-ANL Exotic Beam Facility working paper Chart ofthe nuclides showing the neutron and proton drip-lines as predicted by various mass formulae z ~ a: ~ LU 0 i= ~ CL !:J5 0 a: 5 ~ ANI..· c lir - WI' 80 60 40 20 40 12r---------------------------------~ NEUTRON BINDING OF ODD Sn NUClEI 8 Exp(. 6 4 2 0 60 70 80 110 120 130 . Fig. 1.4: Predictions for the limits of neutron binding from different mass formulas [HASS] in the Sn region are shown (top) and the predicted neutron-separation energies for Sn on the bottom. Mass measurements and super-allowed J3~decay • Provides a sensitive test of the CVC hypothesis through the constancy of the Ft-value • When combined with the value for the weak vector coupling constant (from muon decay) provides a value for VJ» term of the CKM matrjx. This allows tests of the unitarity of the CKM matrix. 255 256 Ft values for the best known 0" -7 0" beta decays . 3080 -3078 I 3076 -:3 3074 ~ (%) 0.10 0.08 0.06 0.04 0.02 -- --------It------ -- ----------30n 3070 3068 3066 L-__ -'-__ ---I. ___ "'--__ -'-__ ---'-__ ---' 5 10 15 20 25 Z (daughter) CONTRIBUTION TO UNCERTAINTY IN FT-VALUE o Chang •• 1990 - 1995 t II FROM Q-VALUE • FROM HALF-UFE • FROM BRANCHING RATIO SOMn 54CO Proposed measurements: Improve the precision of the Q-values for .40, 26m AI and 38mK • Expect good production rates • Lifetimes are long • Try Cor a precision of 10.3 or bctter • A good starting point, could also improve some of the others in "known" data set Extend the data set • Add more points to check thc constancy oCthe Ft values by measuring Q-valucs for 62Ga, 66As, 7°Br and JOs • A confirmation of the constancy would increasc confidence in the corrections applied to the Ft values These will be difficult measurements because: The half-lives of the activities are short (-lOOms) compared to the typical CPT measurement cycle (Is) Shorter cycle times have to be used resulting in lower resolving powers But: Production rates should be good Requirement on precision somewhat more relaxed -1 .5xlO-3 • Conclusion: • The CPT mass spectrometer is being installed at Argonne National Laboratories. • Installation should be complete by December 1997. • First measurements on stable masses to follow • Tests of the gas-filled recoil separator to begin in the fall of 1997. • New injection system complete and ready for tests by December 1997 • Begin measurements on unstable nuclides by early 1998 257 258 Laser Spectroscopy in RFQ Traps 1. K. P. Lee McGill University F. Buchinger, H.M Cheng, J.E. Crawfo~ s. Gulic~ J.K.P. Lee, J. Pinard*, and W.z. Zhao·· McGill University, Montreal. Que... Cauda. *Laboratoire Aime Cotton, Onay, FI'UItt. **SUNY, StOlley Brook, USA. Nuclear Interests: Isotope Shift (IS): ()yA.A. ~ ()<r~ Hyperfme Structure (hfs) ~ A,B coefficients ~ Spins, Moments I, J.l, Q ~ Nuclear Shape Measurements on ndioactive isotopes require: High sensitivity Rapid isotope transfer (short TI12) Narrow linewidths (hfs requirement) Clean samples Spectroscopy with tnpped ions can meet many of these requirements: Very sensitive (a few ions could be adequate) Pure samples (wide variety of sample preparation possible) Wide variety of elements accessible Major limitations: sample preparation solution: accumulation of externally injected ions doppler broadening: ion mean energy, order of e V improvements - rfphase-Iock counting «.03 eV) double resonance counter-propagating laser beams saturation spectroscopy; laser cooling 259 A 4j~ ~~ ai\ }J.c:.~i\\ ~"'~~~ ~:'f~(". t<$.<;..L- ~ J..\'h"'r~ .l>t Ta.~M ~~ P"",\SR.A. 'b~c. WQY" fav ~~ i'~3a,lrl~ 6+ ~ ~c.:}.: ~~~e:t c:w cLj~ I~~ ~ ~(.T~r~ ~1~. Nd:YAG Laser CW Dye Laser I Pulsed Dye Laser TSP Einzel LeniDi ~ 101 ~ PM ~ D TMP LJ ~ : ~:+Vocosnt Fast HV Switch ~-U-, __ ...L...-_-o S\~ ~s.: ToF S~i:hw .. " trr leu \'01\45 d3:s·k.b~\b"-PM ~ \~ i\...1. ..... CJLA. tl~(~c:. s+tJ.1e.~ A<.c:.Il~~i1~ at 1l>1A~ t~lc... S"\M.(.t.l~)"< tQl~ ~1~ Experimental Setup: S:Target with sample; PM: Photomultiplier: D: ~· .. Iicro-channel Plate Detector: TSP: Titanillum Sublimation Pump; T~IP: Turbo-molecular Pump; L: Optical lenses. The RIS and cw laser beams are perpendicular to the YAG beam and pass through the horizontal pair of holes 260 Paul (RFQ) Trap rs ~:--: 1=0 2 Trap holds masses A> S.3V / Z(J2 f1. [volts,mm,MHz] . Motions: Ions oscillate within z ~ 5 mm and with f ~ - 60 kHz Max. ion velocity - Cll~ z : about 2000 rrYs Doppler broadening: fJ.v Iv - vjc ,roughly 4 GHz for A. - 500 nm Buffer gas cooling reduces both the cloud size and ion speed z collisions • Reducing Doppler Spread An ion oscillates in SHM in the trap pseudopotential well i.e., it moves in a phase space elliptical"orbit" vr {orvz} but The RF field rotates the ellipses at the RF frequency The boundary containing the ions changes orientation, but in the absence of collisions its AREA remains constant Vz z 261 ~~ Tc!:I"'S , 3 2.1 YI ...... \'~e.. 600 1000 .'!! 400 (a) c: 0° ~ 500 a C,) 200 0 0 -2 0 GHz 2 -2 0 GHz 2 0 GHz 2 (J) 600 §400 a C,) 200 0 -2 0 GHz 2 0 GHz 2 0 GHz 2 300 400 (h) (i) en 600 §2oo 400 a 200 C,) 100 200 0 0 0 -2 0 GHz 2 -2 0 3Hz 2 -2 0 GHz 2 600 600 .'!! 400 (j) c: ~ 8200 0 -2 0 GHz 2 0 GHz 2 0 GHz 2 600 -E 400 ~ a C,) 200 0 -2 0 GHz 2 0 GHz 2 0 GHz 2 400 600 en 200 C ~ 8 200 0 0 GHz 2 -2 0 GHz 2 0 GHz 2 A group of laser spectra at different RF phase angles measured by phase-selective LIF . The Trapping condition is a: = 0, qz = 0.495. (a) to (r) correspond the RF phase angle from 0° to 3400 where each has 20° difference. The variation of the spectrum linewidth if due to the variation of the velocity spread of the ions along the radial direction. 262 HFS of Stable 1 n, 179Hf ~,---------------------------~ 3000 2500 -E 2000 ::> 8 1500 1000 500 -10 o 5 10 Frequency (GHz) 1200 .,---------------------------~ 1000 800 <II C ::> 600 8 400 200 3500 3000 2500 III 2000 c: :J 0 (,) 1500 1000 500 0 o 5 Frequency (GHz) Spectrum of 172Hf sample 0 S 10 1S 20 Frequency (GHz) 10 10'~ ~.\."'S ... SAto'\pk -'000 IOOlS .. ', f1't' -~o Ilt.Hf "O,\S 172Hf + contaminants Stable HI 263 Beam-sputter / .""t::::==:s-~/ . lon-Irap • _--==0 &-0'1'" r-le-lilcment Fig. 1. Sketch of ion trap and laser beam alignment • • I Ret. Intlns,t y 15 12 9 6 3 o ! . - 6 -4 0 4 8 . 12 GItz lClSer detuning Fig. 2. Saturation effect in the Ba + fluorescence light at 4934A. 264 ~~p~H(r~ ~. PT' f. ?J3'f "'- os (£1&1) photomultiplier --interference filter --~:::::z===l ion cloud F'", 1. ExpcnmcDtal sct-up with the rf ion trap. excitation of ions by laser light. and detection of the fluorescence light ~aser 583.9 nm o em ol 17122em· 1 1S22cmol rIC- 2. Partial TIl llievel dia~m with the transitions used for sinp step excitation "'" ';;; c: !! .5 QI ~ . QI .... '" QI ... o ::J -f mTh AJ\AA i o 10 20 30 41 laser frequency detunincj (GHzI F'", Jo Spectra of ions of thorium isotopes as ot.ned with siD8ie step excitation. From the observed spa:ua tbe isotope shifts are determined. The hypctfine structu~ of InTb· and 129'fb . remains unresolved with i:his method -.,......,..-:--r-- --- 34544 em-' laser 2 573.6 nm , laser 1 583.9 nm ---- 17122 em-' 7331 em-I =\~*~ 6691 em-I -....... 1.1.90cm-1 Oem-I F'''' ... Partial TIl II level diagram with the transitions used for two photon counts 4000 3000 2000 1000 O+---~--~----r---~----~---r-o 2 t. 6 8 10 12 laser frequency detuning IGHz) rJl.~. H ypcrfine structu~ of zz9-fb. recorded with im1'f'OYCd res0-lution by two stC'p exctar.ion LA~F-R CO{)LIAJ{, of yt+:r.trJ5 :LIJ AN IfF ~AP (I i:~E r....~.~. ~ I..., Ci'11r) ) 41 14 65 251 '2 Spe~ of ~ ltl.7 h .... bt.r- erf LASer UJ()~ -tN1"" ,(61' i""U Ul -c: :;) o (b) u o o o ll) _ 172 1· GHz FREQUENCY (ap7" 120 ,.\\. ~ ~ooo ,[ 1 MHz:s ; "~ -----U 100 MHZ (b)172 'fit w ~ -< a: ~ z :;) SCiOO o 2000 U U 100 MHz (C)176 ...... ill w ~ -< a: ~ z :;) o u {d)176 (\/floe scanning range) lOOO r I 1000 '-3000 [ 1000 3 .... z.s 170 _" U 100 MHz 8 MHZ's 170 ,,\\ -FREOUC::NCY "F OPTIC PUHPINq-266 2 -b'Py.--.en 1 ::{-f O 2 n .... <.t> " 6'poa--<:1> 0 Pi> ----~~ B ~r/#.I$I$/#M1 \WI/lIL--_ _________ -'~L.. ____ M;(rotAJA~e 1 I ~ ~-----' aNa 2000 ms 100 ms Laser on • W4i ~ ott f 1000 InS Microwave on I l off I I 100 ms PMT shutter on I it otf I Counting on I 56 ms gate off I I I I~ 4000 ms Pt.lT Cooling Interference Filter ~ I I I I I I I ~I Detector 1 keY Ion beam to RFQ trap Focussing electrodes VAG laser <.1\:~uf1i Acceleration / electrodes -- ... ~. Dye laser oE , Ionize ~ . ~ Dye laser Plume of ~ ~ selective evaporated excitation material Inj ec tion ...... rr==~--_--oC~====i1 Detector The sill/plest ionization scheme Continuum Ground atate ~ANADIAN PENNING TRAPI 267 268 IS-Feb-96 ll\:19 : 39 . .2 ~'S o 1I:'"v 'B:: 2 .:: v OC 3 ':. v !iC 1 ':. v He T j" .. 1 DC '::.to " .. , (p..f-\:<."~ ~~Ie\~..,~ ~ <;)L X, ~+~ w1~b1..J ~ tell· ~ rf ~ . .:: .~5 D ':1:, ... " 'JE: 2 .. v ~Ir. l · ~ v ~ 1 C; \I "'. 7 . 5'::1 liS ~ 1D(lr. " o ·;TrJPFU' S-D,?O:-Clfi l~: ~3: ~7 2'-----S 1-''5 2. 00P1\1 EJf-----· c: 1-''3 S. (I 1/ P· H,,"r- ,,. I Z" 1 1-'5 . . "',,':' " 1 1 1. 51)MV EJt-----· c: I.IS S. I) \1 {il: H""rcoQo;-' Z" 1 1-''3 • I . : .(IMV ,------EJ-----· C'.I.'':". S . (I \i {il: H"o;-r.,'lO;-' Z:-1 IJS I. :'I)MV r: Hllo;-rcogo;-' 2" I 1 1-'5 1.51)MV --48 1 ~. IJP5 .1 r: HII.. rOlg"" 2'" 1 I-'S L.50MV --494 ~.llp5 = I''':, TRIGI;[F: ".ETlJF· "."~ ••• ~~~~2[ 1m ".tlHRf , . ~t r i Q'i~'" on'-1 2 ~ . 4 L;t 1 [;{IIO Lin .. rO:CtllP' inq 3-m He LFRE.l I HFRE.l HF /:'Or.,'? 3---1m N.;,~ I I-I r I 'l'l~r' on-1 Z ~. 4 ( ;,1 1 ( :,:111) L I no;-I-~'J~,l i ~~R~-;-I IIFP.EJ HF 1-:' or,"" 3--, B ':~J 111; I ~'Jr((OI.' i b .t.llJ I. In •. -' 1-0: Ctlll" i nO:l J- .- 1 m H'; LFF:(I , Hf'F;[ .T HF 1 -----.. B /I .. " 1--;II)r.,.; 3-- . ---_. __ . --t r i ;JI~~I"' on· I 1 2 ~ 1 [I I ( ;·:111.1 Lillo- ! 1_': ftlJr' , i no'l - I m He LFP.l r I ~R[.T~_i 1-'" I 01"· 3 _.-_ .. ID II .... ,! . i ._---l-h(o"jo~~-1 ~t r i (]ge l"' on-I 1 Z ~ 4 E; : I bUO Lino-ro: (tlJP I i n9 3-, m He LFF:E.1 HFRE..T HF , I:' or.''? 3---, 1m I~':'O:I I ____ I ,--'1'00' ,jot ~ . -I - - - 1 .(!Iii rlP'~ ~ .. t:J 269 270 Direct Injection with Gas Cooling BUFFER GAS INLET V 1SEGMENTED RFQ RO~ II ~ I I DECELERATOR ==;]10 mplIlIIlIIlIlIIlIIlIlIllIlIl LI 1llllllllllllJ!l'RUIllIDlII11 II III 1~a ~~~ ~ ~ 40Pa- E (1VICM)- _ BEAM IN =:::1 filllllllllllllllllllllllllllllllllllllllllllHfIIllllllllllllllllllkf \ ~ /I TO PULSE tl It ~~ TO 250 US TURBOPUMP Advantages Versatile J PEDESTAL BEAM IN POTENTIAL MINUS 100 VOLTS Moderate development time No lasers High injection efficiency TO 250 US TURBO PUMP :t~r- u..~~ct\'k..... or ~ ~V I~ ~-\-O ?~ t~ ~ 6.~I\D..~ ~ \~~f 1$<;'0 · S"'Q.\\ o..c.~ os. a. -tr\~~f" The 81t Spectrometer 1. Waddington McMaster University Bl\ 0.\ "IS f\ C. . - \e..-\\<u- o{. \\'\-k-\ -\.0 S\~ 8\\ h.~f'\;! - \IJ \.a..~ \";. -\-h~ '8\'\? -""BG;:() )'-ro.~ ca..\()n·~1 ~O\ -G.~ de..~~r- os-ro..'t . - c..~o..r~~6. ~o..('h~~~ o...r-r-o..,{ - "?o~t\U\,\ v-s«:.k\.\o(" 0..\\ -kw- ~~k"s \'t\ ~\S tn~e.."r, - no"oA- o.\~ rt::cesso..l'V ~ ~ Co-? l~ ~ \ \~ trlAMl\\ T \kH\\ \\\\lsb~ \\..:. l.ls~ -\-Q,.ou.~ L-e.x.a."'"f les . 2.' 6n I . ' 6n 2. 1.2 1.6 I . 1.2 CUI 0.1 O.S 0.' 0.' 0 .2 O. o. J.2 5n 2.' z.a 2. 2.' 2. 1.6 1.1 1.2 1.2 0.8 CUI 0.' 0._ 0. o. 1.1 I .-4n I.' 1.2 1.2 I . I. o.s 0.8 0.1 0.1 0.' 0.' 0.2 0.2 o. 0 0. 0 H K .t~ e.lte'1 "".~\.hp l\ti ~I 271 272 ~-~----PM PM TUBE C TUSE 0 0 L I N. G R i 0 ; 0 ' ! 8GO 8GO 8GO aGO HP Ge TI 1186 mm ITO TARGET '" c '" o U 600000 500000 400000 40000 30000 20000 44- CsT c\<it-h.\.or~ ~ ... c.~r~.J. y ...... -\\C.k:! "?Il-\ Q<06<>.p 28Si + 40Ca at EI~b = 115 MeV Total y-spcclrul1l 4 protons detected 2000 273 274 "\ 01 "'\ 'vJ~c..\ Ec.~ t'\ IJ ~\ E.c.", of' ., . .... ;; .... eM Ene(~ 1= "::Joe .... 'T"'\ ~ TCM + Qc..hc...I"\f'l.C\ .lJ.. .l.'y ~~ I"\Q;'" Co Q-Yo.\'le c.oc-c--e... ou\-= H't + ?:. tu'\ ~~" \ C.\cs ..\} ~ "./-Go.rr.n-.e>v Er'\e"~1 "PQ.(1 ·lc\e. t:r\er~'1 Total Energy Plane: 3 Protons Detected -rrll I I I I' I i I I ' R,(MeV) 275 120000 :I prolollS lktcctcu 100000 80000 60000 40000 20000 ~ a c: i5 300 350 400 450 500 550 u 80000 Total Ellcrgy Gatcd 3p Channcl 60000 40000 20000 0 300 350 400 450 500 550 Energy (keY) • ('IC (") ~ lJ • .;.>~ III ,0 N; (~r) • ,(Ie ( ':1, ~ .\) ., '\ f'\ . • S~CO (,oI.3\,) 1110: 0."\0 0.\\.\ ~ 0 .0'-\ ~ O.O~ 90900: ' 80000: ; "Purc" 3p 'Channel 7RQOQ ' (\OQQQ 50QQ0 40QQ0 30000 20000 10000 ~. 500 1000 1500 2000 c · ::r 0 U · 60000 50000 "Purc" 3pn Chan!lcl 40000 30000 20000 2000 Energy (ke V) 276 (,nl1IH1." , 11'~ ,,"m 'lISM , 1/ JIJ · JI · II JI III ncl'l., Delayed 'Y - ray, 't > 1 f.lsec o isomeric states Dfollowing u-, B-, or p-decay eN=Z nuclei n-p pairing Single particlc states near 100 Sn eJ3-decay Low spin. high excitation cnergy states Order to chaos e Proton activity From excited s~ates To excited states u-.p-decay Energy specific ORDT Isomeric y-decay I>-decay Energy nonspecific Long lived oy-ray multiplicity D'Y-ray sum energy (~(.o.\ J.,.CI"\ ~~J\') omoving tape select lifetime .JA~ -j Super Allowed Fermi Decay of 74Rb D. Moltz Lawrence Berkeley National Laboratory D.M. Moltz, J.D. Powell, J. Cerny, University of California and LBL J.D' Auria, SFU; J.e. Hardy, Texas A&M; G. Savard, ANL I) k '. ~ &l~, -"" f. L-. { n '- -:/ .......-.~ 1/e:CA.}'J l-} L.... ~f>'-,> ... ..- ~;(. ~4# ... c."c-:Jy 3) rz. .. ~ s f1..,,1 J. -run "1.."t.. Itl 3'IIr "1 L;t~ '/"'1 1I,1e! b)-f-~;~-J c- )~r1t''''' -:::;:p E~~?-:::7 .i39'tG AI • ... ~ ()~'7f I yr( Izl?:!· 277 278 SUPEAALLOWED BETA-DECAY: A Nuclear Probe of the Electroweak Standard Model J.C. Hardy E. Hagberg V. KoslowskY G. Savard I.S.Towner Chalk RIver Laboratories ALLOWElJ N(jCLEA~ /3ET~ 1J£CIIY WEAl< IJECIlY £QURrlDN S£J.EC.TIDN nVL£$ ... --;;;:.!-".R ___ J.::.Lt..s...r .:Lor,. ..... (1) (4"1:> AS 0 0)/ (nat. 0"0) .17 a 0,1 41f no 110 PUI(£ I 0+- 0+ I Ll T=O YEc.TtJiC ';£CAY '-_______ --.1 t 1 f'" jj%)QEC) i :; / (t~l . 81?) GV,A : coupli"j C""st.lvt~S < ) = Jna.tr;)( U~enLs 'ilE:RK D£CAY E QII,fTloN :;2---J3.£? ____ .:::;O ..... ~ .uL 1 ~DIRTI"E Co~ec.TIIJ~ t - t(ooP) G;-~: (/ + Ll/() fJ.< -/(Z,QEC ,nudtAf stru.ct".t"~) tJ.8. ::: / (i1lt(.rac.tion) C/1~R.I£ CO!(If£ CTiONS eve r£ST UN ITAR ITY TEST CA4/41JQ - KOIMYIfSNI- ~IISKIII.JA Q.UIlIfIC · ~/)( 1/</& I"fIlTKIX d/] V"" VaS . v.. 5' - Vc4 Vcs Va hi Vu Vts Va INlte/! - IE NeIllRT,ol'l IINITRRITy v~ + V~ + V~ -I III/CJ.ERI( CoIIr,rv/J II "'ON V"d ,.. 0.<17 V~ ""0.22. .V~ -0.005 3i . /It'£ltll&£ o~- o· "V'L£~1l ,f~$"LT G"cc. • hf rJON CDrJPLlfllr; t!DHSTR/</T oS b 279 280 £ X f> E I< /1-1 £ N rilL ,RES U L TS I. GEe VA ,dE p-ru.isic11. ~ /00 ~ V __ --:r~ • ~(I')n)A Ih"ls/l~/d • C{p)'I),q~ C(l1)'1Jf3 alkJ.i.u~ • 8 ('1I~.lt)1l 4 .8I(,Y~tl t.)/l' Q-lJdiu.e tiaalLd 2. LIFer/NE. I'''''~cisic>n ~ o. O,J ~ • IOC) diru.t muu/L1"t,1?fe,n£ tulIA i-rAJ S?u..t1"~1H.aU" • aL( clJ,.e,rs lntU·r~c .. (31e > 99~ (I/~) (QIJ.J:. RI¥{/tr~ (Ch~ /Quu) ( OtJR, RIIJt.t' J LAt) (Chalk RliJtr) 3 ~ .. CHIU~(;£ COR~eCTloN • lJillc'rut(c lll. C&>1tFtj-"Tute1t Mixi~ .5cC~1t pC:f'OLC A1IA t! 'JAtct: • Slu,a-modt.{. CAicu.{AtiDn fltt,,! to o~st.I1.t.t.SJ IHI"€ ~ 1101HJ..n"{DjI£C. 1>1"~ch . • IV()./~ .. + • r1 {S'lrlAUA Lit rAdi.AL iJLUe. func.ti..oK 1J't.I.J~71 pl1.r'(.x& a"u{ t!4It.JAkl'" • lcloods-Scuon IJD.V," flUId" lrlo..tc/iul. k c.ipU"I.i<Cc.rcAL 6in~ Ul'1'5!1 a.1Ui. ,M.ll-mMd p .. (c.~,-281 EXP£IZII'fENT",t. TEsr ~~III'1'HIIiG .<.fIr/~ T4 1'14N-RNlfllJ&/J£ ()~ STATES .E.XPE,fN>tENrIfL CIf""l.lfr~ Plllt~r A£StlLTS (f6P"') (.#,,,.) J'''''I< <1<1 '1/ .,~ V :5'1:1. If .3'f14/ 50/1/\' <3 10:1.1 s"Co JfSU,. "':t10 eve TEST - WO~L]) IJRTF/, /995' -''c "cI "'sc""Un -:1071 4000 1-JC3/)(} *174 3OGO o 0 0 00000 '\: 2000 "0 -AI ~r ~ 1 1000 -10 20 10 20 ao 40 10 A (daughter) l.:it a 03072.3 :t I.Os - ·'STATISTIC,., N v"'U~m/"T)' ON OC - XZ/N ":'.20 282 S~-Z~ 5 vpe-y- 1ft (OlUaJ. ~, ~ c. .. ..!.'4iG J lJ~t l ~ r" ~ SoL 17 ~ Seo.r~,J -For -;pJ tLb _ LV£. ~c/L ·lo"tt.i fo,.. Bt:--fa- rJel"'YR/ ':f-3 G t'"ov .. J. S...t4{-e.. f('~o" ~'»"o'( f}{- Sr J VY-C'.o ~v'dt hqkjyOv~-.t -tv of- ~. 5" ./41J.. :C S1K- :JI..,v-(J ~s:lr ~~...f- 1000 ~""->~€.C-~ -, ,{-(01 .wtA+~ / Je;lwt,~ d(:c;",,,! 283 284 Some Aspects of the Experimental Program at SPIRAL c. Le Brun C02 Laboratoire de Physique CorpuscuZaire (lSMRA) SPIRAL GANIL • First exotic beams: end of 1998 Basic ideas intial phase • 45 - Production by heavy ions (Intensity x~ W = 6 kW) • Fragmentation • Segmented carbon target • Ionisation • ECR source • multicharged ions • Acceleration cyclotron K = 262 2.7 < E < 25 < MeV/amu • Use of the all the GANIL experimental equipment + MUST, DEMON, TAPS, TONNERRE • Equipments under discussion CSSI 285 GANIL Acceierateurs et Aires Experimentaies ( Spiral production cave) High energy "front end" : position monitor + pumps Low energy "front end": extraction + lens + pumps Movable The SPIRAL Facility Postacceleration of Radioactive Ion Beams (RIB) produced by the ISOL Method. I arget+ ECR 2 r -~:--:. :': .. . ' ," 0.2 Ililll:ll ~1 <P::-i-OO-...... !Ull:· ~ I'· ttC'· Analysis, Oi: Oobu...a-oi-oR Monitoring or~.. :Q1 A.I.B . . to the ,~ .. ~ ... \ . Experiments QD Targ&! lor Isobar selection Q.etall ~ Ground R.I.B. to the Experiments Oa Primary Beam from SSC2 "ALPHA" Spectrometer 1 o Sm 06"" B C"**",, ~ Ground Floor =:--. 'I' '" co 0) Building Expected ion intensities and enefgy ranges for the initial phase of SPIRAL Harmonic 3 Harmonic 2 Harmonic 4 Beam RIB Intensity after the low energy 30% $ T $ 40% (5) 100/0 $ T $ 30%(5) separator (1). Wmn Wmax Wmax Wrrin Wmax (ws) /MeViamu) " /MeV/amu) 6He 6xl0+8 (2) 4.8 10.9 22.8 2.7 6.1 SHe 2xl0+6 (2) " " 16.3 " " 17Ne 5xl0·5 (2) " " 24.3 . " 18Ne 5xl0·7 (2) " " 22.9 " " 19Ne 7xl0'S (2) " " 21.6 " " 23Ne 2xl0+s (3) " " 17.3 " " 24Ne 7xl0·7 (3) " " 16.5 " " 25Ne 5xl0·6 (3) n n 152 " " 26Ne 7xl0+5 (3) n " 14.0 " " 27Ne 5xl0+3 (3i " " 13.0 . n a2Ar hl0·a (2) " " 21 .4 " " 33Ar 3xl0+5 (2) " " 20.7 " " 34Ar 2xl0+7 (2) . " 20.1 " " 35Ar 9xl0+s (2) n n 19.5 n " 41Ar 3xl0+S (4) n " 15.7 n " 42Ar 2xl0+S (4) " " 15.0 n " 43Ar lxl0+S (4) " n 14.3 n " 44Ar 5xl0·7 (4) " " 13.7 n " 45Ar 2xl0·7 (4) n n 13.0 " " 46Ar 6xl0+6 (4) " . 12.5 " " 72Kr 4xl0·3 (2) " " 11.4 " " 73Kr 4xl0·4 (2) " " 11.1 " " 74Kr 1 xl 0.6 (2) " 10.8 - " " 75Kr 3xl0·6 (2) n 10.8 - " " 76Kr 5xl0·7 (2) n 102 - n " 77Kr 9xl0·7 (2) " 10.0 - " " (1) - The primary beam intensity is limited by security reasons to 2xl0+ 13 pps or 6 kW. The RIB intensity can change depending on the charge state used in the acceleration. The RIB intensities in the table are for He(l+). Ne(5+), Ar(8+) and Kr(10+). " (2) - Extrapolated intensity measured at 400W at the SIRa separator. (3) - Calculated intensity using !he parameters of the production system determined at SIRa and supposing fJ<W of 36S primary beam. (4) - Calculated intensity using the parameters 01 the production system determined at SIRa and supposing lkW of 4SCa primary beam. (5) - Transmission after analysis considering the cyclotron CIME with Mueller inflector optimised to the harmonic 3 and with Rin) - 34mm. 94 95 96 97 · . . ..•. .: ..•.. · . · Y. L. E. beam line CIME cyclotron Radiation safety system Tvget·ECfUS c.ve Target-ECR.lS systwJ Pick·and-place robot Primary beam line --~- .... : ... ~. · . . , , , ..... : .. .. .... : ... ;.. , , , , ... ~ .. -~--.--­· . . , , --~---r---r--· , , · . , _ •• ___ J ••••• , . , , . , , , , ---,.---.----,-_ ..I . • • , . , , , , .... -.-"" -.- .. .. -,-- -, , , , , , -_ .. --...... . , , , , , , ".:-.-: ...... , . , · , , ••••••••••• , , . · . . ---~---... :.. , . . · , . -·-t-· ~~··:·· 98 M. E. beam line Computer cont. system Test with stable beam Commissioning with RIB , , -- .. _-- .. __ ... _-, , , , , · , _."---'"----"'--, , , , , , ... -:- .... -:- .... -:- .... , , , . , --.-"" -.- -- ... ------ ... --p ...... . , , , . , , , •••••••••• , , , , , , ._.L ___ "-._.,)._. , , , , , , , , , --- t- - ~:- - - -1---, , ... :----:---+---, , , , , ---,- -- -,-- - T--'" , , , , , :~+ )III .... : ClltlE .. '----:---t·· ·~~~l · , · . · . , · . : :ME , . , , .( ....... FM - Field moppiD& , , <l> , , , , , 287 288 G<vJ .. eAv-~OtJ tAnoe.t I fN . ().f"sA "J ~PIRAL 'IJ ,"0 ~cJtw> .r "':"'r.....t" H~ ..to'fA·~ l' "o~ tAt:.,. () [ '1.o..k ouX" W< n-AAc.k.: • ~ .. vt" ___ <..OAW\. c.""" ~ """",c..~~ /\.<.Q..x~ t" ........... ftA. .. __ .' - SPEG- Q.eo","e <Yl. ~ ~ "':'attMUI ""Y\ I L Co F I I s Jc..{4eo( . '"'otM.r'\~ A S J-c_,:ff\.1)'"\'v"\ t-ttA .~c.. s .. t.:ot ........ S(c. . Lu:,~ S~4A....x-~ jlowv... - JI ~--... .... l--t j",.--.t.C't'\ c)(OGIl'1 . lov.S" ~,t.·coI o....st( . h..:~e... '\co.W .......... - II"", ..(.e"Y\, Xi\.a.p .s'fAt'~ ci~lc 230 em ~(-----------~-:..:....:--------------~) E amt de II panicule d~tcclteur X, Y ./ dttccteur bobine plan focal Ie:'" C::::?~----.--~~~~ I 0 D d~tccteur ~emps '\ STA""-,, !~-:::-' . 01'~ . -'~" ... .. J I'll ITI rr r J Exemple : (STOP) \ \ pene d'~nergie 6E dttccteur X, Y ,temps ( STOP) plan fecal d~tCCleur X, Y chambres l d~rive < ~ penc d·tnergie 6E ~o E arrftde I. panicule chambres d'ionisation ( plaques parall~le.s ) ." .. I :". () r. NOLAN Liverpool • L;lrgc.~ erys!aux Ge r - 3 em I - gem • 16 Clover segmenlcs .d> 10em • Efficaeitc I gamma NEW - 10-20 % (photopic 1,3 Me Y) • Resolution- 2 keY - scuil 100 keY • Resolution temps - 6 ns • Shaping time - 2 J.IS • Eleetronique YXI 289 290 AN ION TRAP SYSTEM NEAR SPIRAL • letter of intent with 9 laboratories and 31 physicists • working group to build a project - taking into account the SPIRAL specificities • production modes • multicharged ions - studying the various utilisations • mass measurements • hyperfine interaction with A 2! 50 • half live as a function of ionic states • ~ decays • N = Z nuclei (masses, spectroscopies, magnetic momenta) • Beam purification (isomers, short life time) and beam handling • Studies on the A 2! 250 . - studying the various configuration for collecting cooling and measuring ions - studying various possible localisation • just behind the ECR source • behind the new spectrometer ' " Section IV ' CONDENSED MATTER , Convenor: R. Kieft 2.. CONDENSED MA TIER AT WEEIS SUMMARY Rob Kieft £rf>~,.c"'1'YI en-is .,. K'9Vf·"m~"+s. s· Cone-len ;DI'I$ NMR / I \~ NO NMROtv' Spin Nf1R 't '! '-'ith nu~k",. ,jti~cfl" """ltld Ie rt~iIOI"'~ f./ur/I'.1I' Mtfhods Polariwtiot\ -5 /0 > eo , .. 5~nsitlVa, T. ra'""je T"> I I< H >IT - b .. 1 k ,....d-f,r v 10 ns -"iJo,' - b .. 11o: "".H,,., 293 294 ~ ~R 5~n,if(Vjt7 I O( f/y,t't.lrlJm J07/~rcfN"'t 0 RaR1e /OO/""" .f.. ..., I ()/ 000 fI Li{e-t,Me 'C 2.2/,5 /00 .... :s - hours le//s (. COVt\ + or a.te '> /0 /;$ -'I f"ltdvral -10 G /0 G r~ >olv 110 "l. -). '" (jL) 2- vat;a.bl-t 11>(41. chtml-;tf'1 h~dro~(1" li ~ j. f- WMR . fe~-/:s of" sl41! d{uc/ "",odt'" I -vortex Core stf"vcfu("t! - metes I SVpt'~ ("ondvr+o, i 1'\ +"r-face - VOttt'l 'a.tilc.~ rhas.e' d'Gl9'-0 nt t.-? 23M Lc' c/"v'ott"d ar~q 2 , Pe't't", ... b("d Anju La,.. Cofre lation - p0'-I'lt dC'ft>ci"s ;1'\ semic.ol'ldvctO("5 in ttY /V\ct" lIic:~ G· CO/lII\~ - h,~h -r: filM~ I?, P1o.+z,..... "ICd 11/ Aj A)?>o - Med 'Ylvlfir'e POlt,. - (ht'MI~t''1 lab' - :sfo'Q ~' - f/' V' ~/affo,..W'\ - S""to"a~f: spac e ' - :stt>4J hJafV\tiNl~ olfa.i lab;{;t,'1 ' pt't' , J off Pt'4 ..... ' Low TeMFt',a.tv/e l/",cI(,,4r' O,i(""+(1f,o',, 51 Mn ~IC '" X e J~'rb u,"r .... B· TII(~f'1I - nuJ J~V()t~cJ o ('("a , - f?f, The Sta ... .Ja.rd l1od~1 fool' H'1C, -Tc. £(1.) for d~_y' fGllflflq Concl~ J. Probin5 lli" ~~ ~ of ~up~rcondvcfors Boo . L a'j.,e ]G ~+ Wws fir'1 :(. Status of rnea~vt'~m" ... f~ ."f n(lS~ ,,, YB<I .. C .. ., 0,_.,5 1- }lbSe",. ),SR / r- ,vM~ .sfl"" re la)tatl~" I~ ~~ c,O ,....SR / ;- },IMR 295 296 Solid State Physics 27% Solid State Physics at ISOLDE D. Forkel-Wirth CERNI/SOWE ISOLDE Physics Program 1995 - 1996 BioI. I Medicine 7% Nuclear Physics 48% Atomic Physics 11% 50 experiments 350 physicists 110 institutes Particle and Astrophysics 8% 21 countries Solid State Physics at ISOLDE Hall effect PL 4% CV 5% DLTS 5% Radiotracer Diffusion 3% 3% Beta-NMR 16% EPR 9% Emission Channeling 10% Moessbauer Spectroscopy · 10% Perturbed Angular Correlation 35% Implantation of the probe atom The probe atom spl .. on Its neighbours The radioactive decay transmits the obtained Information to the outside 0--;-<>---::-; Probe atom Detector a , 13, y Perturbed Angular Correlation M~Bbauer.pectro8cOPY Emission channeling The probe atom influences electrical or optical properties 1 ~-decay o.?: . ·:.·L~. ?::.·: ... }---- . . 0 · .. ······ · ·0 ... 0 ·· · .. ·· ·0 .. chemical transmutation causes dlanges in electrical and optical properties Radio Tracer Techniques DLTS, CV, Hall, PL, EPR + radioactive atoms (b) 100 150 250 300 Temperature (K) :J -(I) :J CIJ ;:::;: '< ---II) .., 0-t: :J -CIJ 297 298 '" Cd - Acceptor Hydrogen in Semiconductors Hydrogen appears as H-+; H-, HO,~, H{ ..... ';;U 10".--------, .adopcd C.A. jlOlO § 10" ilOIi U .~ 1017 ~ IOI.~---'-__!_''---! o 3 Kinetics? • Fermi Level Dependence? Hydrogen in 111-V semiconductors H+ --+ 100 eV ~rbed Angular Correlation ~ Hydrogen :~[[LJ time Implantation of acceptor-like PAC probe atoms (111Cd) H+ trapped by Cd- acceptor Hydrogen Diffusion f4.ans 60 ns 1.93 h __ 42m --ol~. miqration energy of hydrogen Hydrogen y Indium Arsenic 299 300 -0.1 -0.2 -0.1 0.0 o 117Cd/117ln in InAs, H loaded 20 40 60 t (ns) 1000 2000 w (Mrad/s) 2 different H configurations H+ immobile onset of H+ diffusion II-VI Semiconductors X-ray and infrared detectors blue diodes 4 o problem: achieving p- and n-type material Il - Iype e e - - .... ... CB -:r_-....,It--__ VB----....... diode ... - 0 0 p-typc J)i.£¥uslon: 107 Cd Cd doping efficiency of silver in p-type CdTe Ag • SSMS --Halleffeet --PL • Aged ~ ._____e -.-~. e- .~ • 1 0 13 ~"","-:::-'::-""""'--:-'---'-----1.~~.l...-~--1---1 0.0 0.2 0.4 0.6 0.8 1.0 fm position along the crystal r1. \J;L..,ukL c.\ .. l . \-\~ .... I .. lJ.~ u,,; •. Transmutation Doping ofCdTe EC ~ 6.5 h Te Cd Te implantation of 107Cd undoped CdTe 107 Ag doped CdTe p-type CdTe doping efficiency? 301 302 c7' E ~ :z;. 'iii c Q) "0 OJ C a. o "0 1016 0.0 increasing doping in p-type CdTe by 107 Cd (Ag) 0.2 • \ . • • • • • • • A -. • • • • • • • • • ... -. . • • ~ + 39 h ~ + 7 h ~ + 4 h .... ... ~.. ~ ...... ~ 0.4 0.6 depth [j..Jm] 0.8 1.0 doping efficiency 100 % r( . W;«,u~t. ~.~tl_6_"" -:) . "';,\.,~ ; .. \. L-Q) (f) co .......J Photoluminescence .£ til c: G) ..... s:: -e Photon Energy -:D . "o~\.n\.-W ; .\\, ~ -1"\(1) ~s CB 700 800 900 Energy (mcV) (b) 1000 1100 PL spectra recaded al8K for silica1,sampJes axataining radioactive 195 Au and 191Pl ,., Pl -> "'lr(2.91l) a) A b) B o o I2d 12d 160<1 5500 6500 5500 6500 Energy (em-I) 303 304 N Radioactive Isotopes in Solid State Physics at ISOLDE 100,--------------------------------------------------, 80 60 -40-20 e neutron rich isotopes • neutron deficient isotopes Fr •• Hg_ As Rb Kr Bill Se .Mn ErTm H~y". C Sa Xe s e "~bTel "In~ Ag Cd _Na eli 01-~~1r-r-r-1~.-1,-~1~~r-1r-.-~.-,-,-~-r-r-.-1~'1~~ o 20 40 60 80 100 120 140 160 180 200 220 240 A Summary Solid state physics at ISOLDE is a prospering field • successful combination of standard techniques with radioactive isotopes ~ labeling of the impurities and unambigous identification Future trends and needs: • new ion beams (LIS) • higher implantation energies (some MeV) • higher intensities Perturbed Angular Correlations (in Semiconductors) T. Wichert Universitiit des Saarlandes Table of Content 1. Defects in Semiconductors 2. Experimental Technique (PAC) 3. Intrinsic Defects 1111n 77Sr and 79Rb in II-Vis I 4. Emission Channeling 8li in III-Vs and II-Vis 5. Interstitial Impurities 111 mCd in II I-Vs 6. Substitutional Dopants 1111n and 111mCd in Si 7. Conclusions 305 306 4 3 ---> (1) '--" 0... 2 ro 0) ""0 C ro CD 0 4.0 4.5 II-VI Semiconductors GaN· • Z.O.S. 5.0 5.5 6.0 6.5 Lattice constant (A) Semiconductor Photonic Devices 7.0 :2 ill < 500 CD CD :J to .-+-:J"" .---. 1000 ~ 2000 3000 Compensation of Dopants in M - X INTRINSIC DEFECTS Frenkel pair VM2- X j2-VX2+ M j2+ Antisite -::z -.2+-L:n -, The electric field gradient M= Zn, Cd X= S,Se, Te act as acceptor donor "btc.-) Se. [Vxx 0 0 1 EFG: 0 Vyy 0 o 0 Vzz Vxx + Vyy + Vzz = 0 TJ = (Vxx - Vyy )Nzz cubic lattice: Vzz = ° defect: Vzz ;I; 0, 0 :5:" :5: 1 307 308 I Probe I + I Defect I 1IIIn ;:::;-- 't = 4 d electric fic1~radient {Vij} a2<l> 1 Vzz:= -2 - -~<l> (<l>(r):electrical iT~ 3 pOlential) / EC ~ Start = j: ~ y,(lilkcV) ~%~ ~ 8" G:\ 3 '( = 12~'i~~---- 00 ~ l I Vzz·Q clock - !t..~ + A[So + 2:Sn . cos(cont)}) Q = O.8b Is " .. t~o.!;..p_(J)_':_! L ___ -,+ ' n=~(t) , Y2 (245 keY) - -F(w) R(t) -- stable 10 [lli] \lIed 00, f, I~ !: t~ • ·0.10 . '\ \ i: • jl 5 Wz . '~.' \ .... ' !, , (0) ~". v'" ... ..". 'fro \."Jr.. ~: 0.00 o 0 200 ' 400 100 200 co (Mradls) t (ns) Acceptor defects in ZnSe R (t) F «(0) -0.10 Se2 -0.05 0.00 i--------l Sc 0.05 ~==::=!:~~~~~~~ 0 -0.10 -0.05 Li /{~.  _ CW . v 2 • "' T 7..n 1" -2 0.00 I-------H 0.05 "---'----'----'---.I...-.J ~~iIIIMo ......... ........J 0 -0.10 N 2 -0.05 0.00 I-------..!! 0.05 "---'---~~J......J u..w~~m.IoIlooI!I.t1I 0 -0.10 2 -0.05 i ..... ."w~oi\MMNW 0.00 I-------..!! 0.05 "--_.l.-_J......J us.tI.lJ/..Iojlllllot.~ ........ 0 o 200 400 0 200 400 600 t [os] Cl) [Mrad/s] 1111n _ Acceptor Pairs in ZnSe : (a) InZn - VZn (observed) r= ifi'a. Eg = ..-f \;h= ...f Nor 08~EI<VED (b) InZn - LiZn (not observed) U in p -ZnSe :rSOLbE ES( A--D+-) '" ..:L . r Vl~ (A--j)~) ~ 43 309 310 CdTe:Li R(t) F(co) -0.4 -0.2 0.0 -0.4 Td=700K -0.2 0.0 0 10 20 30 40 50 0 500 1000 1500 t (ns) CO (Mradls) Doped ll-VI Semiconductors 1.) Donors do.u.ct~ .. cltfec..ts 'i--~" group ill . atZn-slte .(,u I + · n group VII at Se-site ++ 'Br + 2.) Acceptors · detec.t ~ot'd~c.ts v:* , Se group I atZn-slte ':1-' 'Rb-grouE V at Se-slte 1-3A -S f! t~~ 15 10 5 0 10 8 6 4 2 0 IG,O- - ~ I C!:I I -+ --~""'C! - VCcL +- -'Br T~- L~ Cd 311 DOPING CONTROL . Cd'Je: Rbcd R(t). F(ro) 0.10 1.0 0.05 0.00 0.5 -0.05 0.0 0.10 1.0 . 0.05 0.00 0.5 -0.05 0.0 0 100 200 300 0 100 200 300 400 t (ns) ro (Mrad/s) ISOLDE beam line 19Rb _ Healer • 1 experiment -:: 6 implantations • . on-line (1 min 1120 min 1 ... ) • experimental time .;- beam time 312 + v--Li;~;:::: L~ i + i.,. So% 50% ~ £ .... 'ics.·O"f Cko ..... eb ... J ~ ~- AJl-fR 8 Li s ;:'U'i + V -. ii :21 ~ ~ o -2 0 2" WInkel GeGen <110> Rlchlung o .w Ot:! 0..-' < I ' ~ 'd~ z 100 90 80 70 ~60 c: .g () ,lg 40 30 20 10 0 U. Wahl, H. Hofsass, S.G. Jahn, S. Winter, E. Recknagel . and ISOLDE Collaboration., Nucl. Instrum. & Methods B 64 (1992) 221 Lattice Sites of Defects InP: Li <,(00) (..1M> (MO> ~:: · ·V-·- -·~·- · . 0.6 0.4 0.2 ... 460K .... OOK -1 0 TIL T ANGLE lDEG) 2.. 'j)~t ec::tio .... 2n Se t 8 Li. x x UR .8li ZnSe 1{95 as-grown --UT --us 150 200 250 300 350 400 450 500 550 implantation temperature [KJ =') Lc 2 ... ~ 5'0 ~o J T~ 2SoK U R+ L, I ~ 50% .50% 313 314 '0\ A.l.I-. nobel ~ DEFECTS IN SILICON (c:..bo..:t ZS) COMPLEX VQ (MHz) T (K) ... <ijk> ED (eV) Ref . lDlmli1IlIl } do"'ot-s ~1n-HI 360 78 O. <HI> 1.3 [2) In·m 480 78 O. <111> 1.3 1n-H3 270 78 O. <HI> 1.3 In·LiI 172 . 78 O. <HI> 1.0 [2, 17) In-Li2 260 78 O. <HI> 1.0 In-Li3 323 78 O. <HI> 1.0 In-Nal 170 78 O. [20) In-Na2 249 78 O. 1n-Na3 274 78 O. In-Cul 237 78 O. <HI> 0.7 [34) 1n-Cu2 334 78 O. <HI> 0.7 .in-Cu3 408 78 O • <111> 0.7 In-Fel 378 295 O. <311> <1.4 [43) In-Fe2 432 295 0.32 <1.4 In-Fe3 473 295 O. <Ill> <1.4 1n-Crl 370 30 O. <111> <1.5 [43) 1n-Ct2 473 295 O. <111> <1.5 ~ lImW In-Del 28. 295 O. <HI> 20 [2, 47) In-De2 142 295 0.42 3.0 [2, 47) In-De3 451. 78 O. <Ill> 1.3 [2, 48) A Baurichler, M. Deicher, S. Deubler, D. Forkel, J. Meier, H. Wolf, W. Witlhuhn; Appl. Surf. Science §Q (1991) 165. ':"\ b .,1..4..1." r , -rt'O e. ~ .\....Cl Identification of Defects hydrogen in III-V semiconductors 0", .... 1""'<:4 In G¥a:H 4S7MDz 427 MHz 52SMHz 484 MHz 357 MHz GaAs rn.As . <.lOa) Ga. As : <lA.!." Cd.. + .'too eV H+ 0aA£"-c:cs. 101• H"' ern"! _.00.'11 50 100 150 a sao 1000 tJOO (.u 0') QJlI QICio.L .... 0.1. So.os a: .... ow:1t'-cd. 10'" N· em'" e .150 eV r 'l . . i; . ..... B 2~ c " .e 1 ~ ~ ... r----. 17"", -I' -" 7~J-:-~l":ll!  2 1 o.os .... L-_'--_'------' • o 50 UJO 150 0 500 1000 1500 tIns) Ql(Mtadls) G:C- U+-(lM'> QlC'iaL SY~Wlc.tt'f 'De..rck ... owi P/t:/..ft.",) itG./.. Se ... ~c.~ "lti- '{If"..(~?ct) "lf~ . .. ... ;::~; ;. '.f. : . ,': t~:1mCd_H p'airS in 1II-:V"Semi~p!lductors r~t~)~-::::i~~: ',;.:., .:- ' · ·(DeK:~f.;~~.I.;~:·19J.~~~:~~:: . ' . '::r:-::~ '; ' I I I : "(: .. /:.: !:: . ( i ! :· 2.8 GaP ' ___ ...... AIAs . '- .1 51 -" AlxGa,.";'s ~1.2 .D ....... N I ~ -'-.p 0.8 0.4 0.54' , 540 GaP 520 500 480 460 440 429 0.54 GaAs ' / InxGa!.t.s , 0.56 0.60 -', ; . ~. " , 0.56 . 0.58 . 0.60 " lattice constant (rim) 300K InAs , 0.62 0.62 315 316 Study of Donor - Acceptor Pairs DOPING Lo:tlicc, Sit-c. FORMATION DETECTION 1111n /111Cd - P Pairs in Silicon SI ,\d!Kl ,,~~, D 0 vo= 179 MHz. n= 0 In-!' In-!' vo = 195 MHz. !) = 0,65 mIn Si :Pl2·1l"'I l '1 ~o~~~~~~~--~ ;;:2 w tMrod/sJ ::::?;> 'Isold<l. 912' 1 urn TI12=2.8d 1112- 1 Hilled 712' T1I2=l1ps TI12 =.!2!!!!!!, Tl 151 keY Tl 171 keY 512' 512' T1I2=85ns TI/2=85ns ~ 245 key 112' 112' 111ed The. ldt~'c.o.l '~1)~<!"ic skit. lS U~~ ,fo" bo+" proia~ o.:bWlo1 s, t D 317 o vo = 165 MHz, 11 = 0 va = 195 MHz, 11 = 0,65 ( ct. 1), t:Otlcd <lot a.€ .) va = 179 MHz, 1) =0 _ tJJl1 .. J>~ Jd.Q32,4,2:GJ,;W;4 318 • h.c~ ~ Q. ~~tu, t.i I:y 'PAC itt ~""i<:o~d.,.e.io,,~ : 1- '3 A.s 80 ei l-q Rb ~o ",i~ ~·a", JlAw. Col ..t'(1. C.al ~qq ... w~ 2,~ Q{ "'~ WMI", ~t( tL ~s Mi" ,. h.'~"'t"/lowt" ~",~~,ies (r-Pl '0 INV,," SMeV) • h.'~" wA~~S (A::..lOO ) Studies of Defects in Structural Intermetallics at ISA C G. Collins Washington State University Pullman • WITH J. FAN, P. SINHA, B . BAI, M. WEI AND L. PENG • NATIONAL SCIENCE FOUNDATION (METALS PROGRAM) • MORE INFO: HTTP://DEFECTS.PI-IYSICS.WSU.EDU/ Background • High-temperature and strength demands for aerospace materials satisfied by intermetallic compounds such as NiAI (e.g., in Boeing jet turbines) r5irl • highly -ordered, great strength (+) ~ • brittle at low temperature (-) _ • Large national-lab effort is underway to improve properties using traditional macroscopic and mesoscale methods (mechanical testing, TEM, xray) (ORNL, NASA Lewis, Wright Lab). • Point defects (eg, lattice vacancies) affect properties: • constitutional defects when off stoichiometry • equilibrium defects at high temperature: (strength, diffusion, creep) • deformation or radiation defects • What defects are present?? concentrations?? properties?? Only nuclear methods have atomic-scale resolution necessary to resolve point defects and answer questions about them in model-independent way . • At WSU, we have been studying point defects in intermetallies using nuclear spectroscopies with "conventional" probes: Perturbed angular correlation ofr-rays (PAC): 1111n Mossbauer effect (ME): s7Fe 319 320 Hyperfine methods using radio'active probes Nuclear moments of probe atoms interact with internal fields in solids. Interactions "fingerprint" different local environments of probes. Perturbed angular correlation Mossbauer effect PAC ME 111 gamma-ray resonant '-.. !t~-w I-~"'· ~! ~t'"-<JF I IICd ~ Wnuc <-~ ~~Oel l ~uc N_ / -'-source absorber deteclor ffi Ei.,(-<' <fU~ v tZ.Jc. U~ r I' iq MI\~E-n<:. .4J~t.€ Results to date using conventional probes • Annealed samples (constitutional defects) • Quenched-in defects • Equilibrium defects (measure at high T) • Deformation defects Method Host Probe site Ann Quen Equil Def PAC NiAl InA! _ I y. 1IIIn CoAl InAf Y Y FeAI InA! Y CoGa InGa Y ... Inln y - .', '" -TiAl InAI (InTI) y y ME FePc (FeAI) y y 57Fe F~e (FeR h) S~mM J Impurity THI~ TAc.tc sHA6e6 ~MJ'~.( Constitutional defects in ann'ealed NiAl ~~" ~~ vacancy~~~,~ I ~J Pro .. @ Antisite C'l68.1% o o 100 200 I(ns) Identification of constitutional defects (Jiawen Fan and Gary S. Collins) Quenched-in defects in NiAI 005 10 --r--------., 005 1,0 ~ ___ ~..L:....:.:.w.:.;,.JJ.I. G~l) 005 1,0 I:------....... --'"~:_l ... .,... :::: 0.1 ./ '1 = +0.22(1) eV 0.01 1.01---------------1 0.5 1.0 1.5 005 1fT (10 -3 K-1 ) q Thennal activation of Ni-vacancies; binding (Equilibrium defect found to be Schottky vacancy pair) Site fraction 11 related to thennodynamic properties: 11 =8[VNi ]KBI 1- 1\ - 12 [V Ni] = exp(SF / 2kn )exp( -EF /2kBT) KBI =exp(SB / kB)exp(-EB / knT") Fonnation energy Er.=-2~, concentrations, binding Es (Jiawen Fan and Gary S. Collins) 321 322 Equilibrium defects in NiAl (50.3 at. % Ni) 1.0 Tm =1100 oC NV(..lEAIt ;!,Ec..Ax,IfTIDtI 0.5 4uE TO AToM ~I FFuSlo(ll 1.0 ("~M f((II(;) 0.5 G2 (t) 1.0 1.0 r--t--t--t----t---f--+--.,-+-y-rrrlrr.:lrl 0.5 O~~~---~~-~~~~ o 100 200 300 400 t (ns) Thermal activation of Ni-vacancies Nuclear relaxation caused by defect diffusion (1/000 Co) (Bin Bai and Gary Collins) Constitutional or quenched-in defects in Pdln ~(l) CPd =48.0 % 100 200 300 tIns) .,.....---------, c 0 .6 0 .6 1.0 I.. o 100 Annealed Pdln Quenched (SO.lS%Pd) - Identify constitutional defects - Thennal activation of V Pd and V In, (Schottky pair) _ Ep= -2Q= 1.3(2) eV. (Praveen Sinha and Gary S. Collins) S M o () 100 Mechanically-milledPdln 300 t (ns) 0 .06 ,---,---.------.----, (I) c: o 0 .05 :;; 0 .04 .!:; c ~ 0.03 c o u <:; 0 .02 Q) -Q) "0 0 .01 0 .00 II----'---=.L...----'---l o 2000 4000 t mill (s) ~ What are defect concentrations in milled intermetaIIics? - Pdln(111In) is a host-probe system. No probe-defect binding. For random distribution, 11 =8[VPd ](1-[VPd ])7 . High vacancy mole fraction, 4 at.%, and Er=1.3 eV implies a stored energy of 5 kJ/mole, large part of the total stored energy of -10 kJ/mole. (Praveen Sinha and GalY S. Collins) Constitutional defects in FeRh (57Fe ME) ~ ~ ~l·~ tr.f1 ~~~~.~ ~.~ z o (f) (f) :2 (f) z « a: I-abc d -8 -6 -4 -2 0 2 4 6 8 VELOCITY (mmls) Identify constitutional defects F~h. Host-probe system. (Luke s.). Peng and Gary S. Collins) 323 324 Good progress using conventional probes: - identification of defects - mole fractions - thermodynamic properties - novel defect phenomena BUT .. . host and probe choice very limited materials of interest often can't be studied host-probe systems avoid disturbance simpler analysis than for impurities systematic understanding difficult How ISAC facility can help: more probes put pro es on different sublattices SMAll S.&NAt.S -I-t 414 .. 1 PI:I. ~p,.c.TitIJM (oFF.SITE.) MAAI" sPtc:rJtIf N~6<:4 Preliminary ideas: (only non-impurity) Host Istructure Probe Interest TiAI Llo ""Ti (1IIIn) Import. structural mater. CoAl B2 57CO ellIn) . Import. structural mater. AgCd B2 IIIAg, IIlmCd Model system AuCd B2 197Au, IIImCd Model system (Au,Ag)Cd IIIAg, 197Au, Ternary ordering phase B2IL21 IIImCd transition FeRh B2 99Rh, e7Fe) Ferro- and Antiferromag. FePd LIo looPd, CS7Fe) Layered ferromagnet Sample preparation: (foR. (.oNC,~(.IVeJ PI..Q8~S) 1. host prepared by arc-melting at home 2. probe implanted at ISAC 3 . radiation damage eliminated, if necessary, by arc-melting again 4. make measurements 5. for short-lived probes (eg, ll1mCd) prepare sample and measure at ISAC Requirements: Folt (~) PAC spectrometer on site. (Also ME). Bibliography 1 Perturbed yy Angular Correlations: A Spectroscopy for Point Defects in Metals and Alloys, Hyperfine Interactions 62, 1 (1990); G. S. Collins, S. L. Shropshire and J. Fan. 2 Jiawen Fan, PhD dissertation, Washington State University, 1992 (unpublished). 3 Point Defects in NiAl Near the Equiatomic Composition, Hyperfine Interactions 60, 655 (1990); 1. Fan and G. S. Collins. 4 Point defects in B2 intermetallic compounds, Hyperfine Interactions (C) 1,380 (1996); Gary S. Collins, Praveen Sinha and Mingzhong Wei . 5 Praveen Sinha, PdD dissertation, Washington State University, 1995 (unpublished). 6 A new approach to study vacancy defects in high-temperature intermetallic compounds, by Gary S. Collins and Praveen Sinha, Materials Research Society Symposium Proceedings, vol. 364, p. 59, 1995. 7 Equilibrium point defects in NiAl studied by PA C, International Symposium on Structurallntermetallics, Seven Springs Resort, P A, Sept. 1997, Gary S. Collins, Jiawen Fan and Bin Bai (paper accepted) 8 Application of PA C to study equilibrium point defects in intermetallic compounds, Hyperfine Interactions 80, 1257 (1993); Gary S. Collins and JiawenFan. 9 Atomic defects and disorder in mechanically-milled intermetallic compounds, Materials Science Forum 225-227, 275 (1996); Gary S. Collins and Praveen Sinha. 10 Formation of FeCo by mechanical alloying, Scripta Metallurgica et Materialia 29, 1319 (1993); Gary S. Collins and Bruce H. Meeves. 11 Formation of Ni3Fe by mechanical alloying, Bruce H. Meeves and Gary S. Collins, Hyperfine Interactions 92, 955 (1994). 12 Point defects in FeAl, II Nuovo Cimento 180,329 (1996); Gary S. Collins and Luke S.J. Pengo 13 Disordering of FeAI by Mechanical Milling, Materials Science Forum 235-238,535 (1997); Luke S.J . Peng and Gary S. Collins 14 Luke SJ.Peng and Gary S. Collins, March Meeting 1997, American Physical Society, Kansas City. 325 326 Solid State Studies in Oxides: Requirements And Experiments R. Platzer Oregon State University Roland Platzer John A. Gardner Janet Tate William W. Warren Department of Physics Oregon State University Corvallis, OR 97331 Ad""" s. s/(i3ht , Cl,tln;sf,.~ J.A. Sommers Teledyne Wah Chang Albany, Albany, OR 97321 W.E. Evenson Department of Physics, Brigham Young University. Provo, UT 84602 Support by DE-FG06-85ER45191 and DMR-90IJ897 Motivation interesting in its tetragonal c~stal structure tetragonal phase only stable above 1000°C Stabilized by Yttria or Ceria Point defects, impurities, oxygen vacancies influence nucleation, growth and sintering Perturbed yy-Angular Correlation Spectros-copy (PAC) on Indium probe atoms -0.15 -0.10 -0.05 0.00 -0.15 -0.10 :;::-1 -0.05 -- '. n:: 0.00 -0.15 -0.10 -0.05 0.00 0 Zirconia PAC time spectra and Fourier transforms '---'-"'--'--'--'--'---r-"1 5 Ol, . =39.0 Mrad/s 4 3 2 I""-l-+~""f'"-+-+-+-i 0 Ol, = 38.5 Mrad/s 4 3J2 8 2:::: til 1 C: . ..:..... l'l"-t--+--F'~-+-+-+--:! O· Ol,=31 .8 Mrad/s 15 ' 12 9 6 3' "'--"-=-----'--'---'-'-"---' 0 100 "', . :. 200 .' ;: "300 0 100 200 300 400 ;:" . ,: V ;--.' . . ...: .. ' <· t [ns] . ~ , ,;.. co [Mrad/s] .' ' . '". ~ : :~. .::'.: :.~ :. , '" ~ ... ; ~, :., Microscopic model for origin of obserVed interaction frequencies lattice static vacancy dynamic vacancy and 1 f= 1 ( -Ea ) NC exp kB T +1 327 328 PAC interaction frequencies I I I I I 40- -Oppm .5 Nb t¢ </><1> . · oo~ .... ~ .. <9> JlIf:!II!. 35 - 60 ppm undop~~ T " ~60000~000 -70 ppm T.· .,.. 0 (E =0.24 eV) 80 ppm .• ... . . .• .. • a 0 r-. .5 Ale" .coo .· C/) 30- 98 ppm - .x "0 ·co 0 x ·' L.. Q' ~J~Y ~ 320ppm x " ...... 25 -..- x .... . '0 8 . . ··0 20 x <> . .0 .&"ty 600ppm ~ .. , -<>. 1010ppm <? ' . 15 I I I I I I 1 I 700 800 900 1000 1100 1200 1300 1400 T[°C] 50~--~--~-.---r--~~~-r--'---r-o r-. 45 ~ "0 40 ~ 635 .. . ... -....-~~~ __ ~ __ ~~=O~~.5%N: .. -~ s- 30~--~--~~--~--~-'---r--~~~ 600 800 1200 1400 40 3S ~ ....... . ~ 30 oay<hIoride -a .I%Y 2S 20 800 900 1000 1100 1200 1300 Temperature (oC) PAC Spectra (Hf probes) ' :,i,,': ' . . -0.10 .... \i .... . :.· ;,: I-t-i-+-H-+-H-++++L.f""i " ., . .... ·:<;,·, i , ~0.10 . '. :.:~~ .. ~- '~:~.I:.;':~" ,;':~,' . ::i['~fit~ 1¥-4f-~~-4-...J.-H . ;·,:·;:::<;~~f~t,·:·\: 10 8 6 4 2 0 8 6 4 2 . .... '.' . : 0 05 ...................... -'-........ ""-'-................. . :-. ' . ";' " ', .. 0 ·., .. .. 7 .• : .. :, ... ·.:.·.· ~.; .•. :.·.-::.,i ... ,:.:.,:'.L,:,. ;.i,:·~ .. ;.· .,:i.:.:,:::.·.,.9 10 20 .30 40 50 ,60 .70 . p.~:~l·!~,o.q. 20.00--,.3000 4000 , . _~:,c: :i ~t [~~l . , , :· :·.,· . ·x~~~~~;TM~~d1S] ,. . .. · ..~';~~t :. (:,,:-- ' Experim~ta). Setup ~a----r-Ta boat ~ __ ---t-- Cu foil CHAMBER -------------r-'---...&-., Side View (a) Iy. 1 ~(o) In) Substrate r-I C-u .----.1 Top View (b) -0 ..-.. 8 --.--. III c: --329 330 PAC-SPECTROSCOPY (ferlllrued YY-~lIglllnr .correlation) decay scheme or probe nucleus nuclear level spli II illg i I ; I transilion rrcqucncies ULJ VII 'I WI w, WI CLJ VII 'I 0", X .~ "'n 11~II~OI Iii. ~~;.J IT WWJ o I 0 I experimenlal spcctruin I counling rate ralio 'Ni(lll) Rill r---"T"""---.-----, r-.......---~~--,P( ... I (.l lo.ul (b) S (el ... 200 100 ... lim~lnsl Vl l 1.10"~1 r-_~ 110 IDS ",IMrOd/sl ~r------~-----~~~ (b) B .. ITI IS oL--------__ ----~~~ o la) le~alurt! IK\ Parent • II lin • IIlmed I l l Ag 77Kr .17Sr • 79Rb I17Cd .100Pd 18111( 199mllg /I W Parent 1111n IllCd IllAg 17Kr nnr 79Rb 117Cd lool'd 181Hf 199118 · t~ decay Isomer Level In· P Ii' P If· P ~ 16"3 ~ (keY) Ins) 2.8d EC IIICd . 243.S SI2+ 712+ 112+ 84.1 -0.306 49 min IT IllCd 243.S 512+ 1112+ 112+ 84. 1 -0.306 7.S d b- IIICd 245.4 512+ 312+ 112+ 84.1 -0.306 75 min b+ 17Br 129.7 512+ 312+ 312- 9.3 J.31 2.3 d EC 17Se 249.7 512- 312- 112- 9.3 0.«7 20 min b~ 79Kr 147.2 512- 512- 112- 79 0.45 2.4 h b- 1171n 659.8 312+ 112+ 112- 38.7 0.625 3.6d FoC lOORh 74.8 1+ 2+ 1+ 214.5 2. 16 42.4 d b- 1811'a 482.2 3/2+ 112+ 712+ 10.8 J.3 42.6min IT 19911g 158.4 312- 1312+ 112- 2.45 E(YI) !.I+L I· Ig+ce E(Y2) L2+LZ' Ly+cc A:lZ IkeY) ('Y.) IkeY\ 1%\ 171.3 MI+Z%E2 100 245.4 E2 100 -0. 18 ISO.) E)<0.3'YoM3 100 245.4 F.2 100 0. 175 96.3 0.3 245.4 £2 0.95 0. 13 146 MI+M2 39 130 101 84 755 MI+9%E2 3 250 E2 3 -0.443 143 147 £2 0.1 89 E2+2Q-/oMl 344.3 EI -0.360 84 MI 74.8 EI o.m 137 E2 97 482.0 E2 88 -0.288 374 100 158.4 E2 100 -0.366 • D"~~"dWr • IWlplIflrl4/"/k,f .. 1.c,lHp~r~-h'~ ~;11~ ~1~ fG --If- IWlr(UM.f.wh·~ ~~ SwaJJ. e. '1« f 9 y wfN" Z(JfV S~~~ 0.352 A:l4 1\42 -0.2 0.001 . 0.002 0 -O.SII -0.028 0 0 -0.076 -0.062 (b) 0.83113) 0.&3(13) 0.&3(13) 0.76 -0.625 0.076(20) 2.8 ±O.70 A44 0.002 0 -0.031 0 -0.)18 -3.0 331 332 ,Surface Science with Nuclear Spin Polarized 8Li H. Ebinger, H. Jaensch, D. Fick Philipps-University Marburg NMR : Problem, : Solution : ~ probing local electronic surrounding ..,.-- Local Density of States (WaS) * measure adatom dynamics Diffusion Energy Need 1018 nuclei in probe volume for classical NMR but have only 1015 surface sites! f3-NMR Table of Contents *" Surface NMR with 8U * Probing the Local Electronic Structure * Uthium Diffusion *" Electric Field Gradients (EFG) *" Future Research Directions Constraints for ~-NMR Nuclei CHOICE OF lSOTOPf • Lifetime ++ Q.ep,Qlarisation Time (short lifetimes interesting for diffusion aDd NMR) probably • IIIIS ••• I s Lifetime ++ Achievable Coveraee using a chopped Beam • Nuclear Sp'in (with prcfCTCDCC I;?! 1) • Reasonable kiMbc en~ of ~ (Signal Detcctioa) • Polarization (Use of coupling to clI:dronic spin) • "Interesting Element" TREATABLE PHYSICS • Adsorption Site (NMR spectrum) Atomic Motion (Spin RelautioG. Change in NMR spectrum) Electtonic Strucnue (Spin Relaxation) • Technical effort favors model expel imeDts rather thaD time consuming comparative studies • Competition with other Surface Sciax:c techniques (STM I FIM) favors heterogenous systems and the investigation of minority sites • Examples + Growth Process I Favored Adsorptioo Sites (Steps, Impurities) + P!lysisorplion I Chemisorption + Bebavicw of Dopants on Surfaces + etc. Solution of SensitivitY. Problem 1. High Spin Polarization 2. Very Efficient Signal Detection "o."i~y ~oJ .. ~: C \.>le)-I-±"p~ao.:le t N~ - t.}- Bext £& ~ ... t.)- I :-~'P~ I : detector (0°) ! -- ~ I~ ~~ e I ~ I • HCA$~e. ",,,ete.cu· SfHIA oriW.~A~O'" hr cldccttow of ~ ro.~e ASY,""'·.ftr . 333 334 EXJ2erimental SetulL ~e : I,l.{"UtlJrlt d .• I. ~v. Sci. IIC.k ~, {/33S)l'US SOME NUMBERS: 1. Beam Intensity • I I1A. 24 MeV 'Li beam • 5 bar, SO K O2 Gas ~ct Targct Density - 4xl<t" nuclci/cm2 • IntcF Cross Section for Neutron C:lpturc - 100 mbeD ~ Li Fraction - 4x to's ~ Absolute Intensity - 4xIOI atomsls • F{3Ction ofSurfati:e Area (Distance 75 em) : - 10" • Beam Intcnsity aI the Samplc Surfacc Tocal : - 10' lithium's ILi : -4.000'Lils TUDC for a Mooolayer Coveragc - 107 s (100 days) • COlIDters Cover 10"10 of 4n (85% of Maximum Polaiiznion) 2. Polarization • Laser: 20-30mW 671 om (Lithium 01) Modulation 398 aDd 21 MHz • 100 Excitations in Pump Rcgioa • Beam Polariz31ion typically 80 - 90 ". Surfxc PoJarization depending OD Crystal Preparation Time Structure ACTIVATIO~ ~. H.}c.lj" cl .1. l . Vu.Sci.1Moo. 1i 13 (5!S) .oo ... -c "'~---"-l--0 • • • I[.J £(f.) e 4 exp[-«t] NIJde- Spit.< ~/QKCl~OIA ');?a.~e I-l--":::--++-=---+-;"" Eli~ 01 c......acr 7i/lttcWCU .. Surface Science Uthium DesofP.,tion Uc.,....,.MJ: '.3_ ' .32 '.00 0._' 0.78 0.110 Q,25 0." 0.0' /" co ....... , ..... TlKl Change of Work Function > oFO •.....-------, Q) , "" -t \ -e- " <J -2 ~ o ........... ::t -3 , o IUo..UQ.l, coverage / ML Nuclear SR,in Relaxation Rates . .. en ""'-~ 3 3C& I ItlJi ... d. d..,. m ~s (IW)llo-lll ' .) .ai"JU chi. 71.L ~ (9) ,~ - 'SJ 600 i Co~"a,!£ 0.0, HL 800 I , I I 1'Iecownae : 0.02 MoaoIayas , I I,· , 'G "'-,-+ 1000 IZOO T/K 335 336 Relevant Relaxation Mechanisms" I KOrringa Relaxation 1- Local Electronic Density E % + E"/~~ &l(J,.MA~ w«. ~s"'4e + «~i c...J~ t..b-qd;"" f.. ~ L. ~..d ..... $,i~ 1?c.lOUOA.ti044. I Diffusion I . + A~tt l(ijtaJ.iOI4 + 1>jhut.U~ lPcal Eltchie neth L. ~deu-~ ~aliCll.ot 16uA~ it I ""L,' 'C ~ I I 7:= r..CXf>[~T ] A~ ft" 1i~titlCoI. iw TIoX) ])i,,"UdiO!.c3 : a=G(O) ·'-c·In (1 + (w!.e)2) It $e£. Co ?~/ic:&cfcr , ?",,"",.It. 01 ~f,C ~J .~r Local Electronic Structure ... I ~ ~ I.' t I + ~ • .% + ... ... ... ... roo -~ \.\0 OVL~r ~ye ~~OICS IA 1< ~I Ifr.-U Diffusion zT i 'L' ~ J~ ! -I (j) ~ 15 r-----:-~------- L.---4I--.---------------------,II ''\, I .t T /K 10 / 'l\ I~ '--" 5 I- -, " 200 K I, ~ ... ..I. , ~ ""'- .• <;) 0 0 800 K ---_ O~------------~ ~ o 0.2 0.4 0.6 0.8 1 eu / ML MucltAY S'PM ~A)(,Ah'OCA "r ']);/~ ' :l>c.c.o,"~~ 0 I TO"cc w,~ loCAl :pi~lu • Elcefrie fie'tl &wtlL!.eu-l (EFli) . A+ Nd.,sl.J,oriw.! SiIe. . 1f,.!~i JvAt. ~'!!a uUl. l.i4WlAU ~.5e '. . 337 338 Electric Field Gradient O/t~ (OOI) ~ s"'#ilA~ I=z 1I{+2) - 0,10 1I{+1) - O,:IS II{O) - 0, 10 II{-l) - 0,05 1I{-2) - ',00 E -2 'i,~lt/2'\ -~ I 0 'i,-3/2'\ t ~ 'i,+3/Z'\ I I e +1 'l+t/2'f. +:1 I _-'--___ PooIyt ss • (1ft ..., o -2.5 -~ -ISOD J20 J4CI lID lIII _ QI -frequency [kHz] U-Atom eRr: Future Research Directions Experimental Higher Magnetic Fields (y ) Lower Temperaturas RF-Puls Techniques Improved Vacuum Conditions .,/' Higher Flux of Probe Atoms V Science Program Details of the Uthium Diffusion Existing Diffusion Energy Batriers Interaction '*-en AJksJi MfIta/AtornI = +8,6 X lO" V/cm2 = +10 X lOll V/cm2 Probing the Vortex State of Superconductors R. Kieft 2.. University of British Columbia 3 . .J.. T, eJoo. 6fl(" (ela)tatl~1\ I~ 1?~ c,o , ,,SR / r' JlM~ NMR \~ PRe. '1 '1 NO NMRON 339 340 COM parJ~o" of tJMR Pol a (i'Z.a+io t'\ deferiiDI'I. me+nod TI NMR -5 /0 T'> I K H > IT - bu I k Mttttt" .. V ~ 5 en,if,vit7 I o( t/Sr'/fllm Ran" 100/ .... Life+'Me 'C 2 ·2/S covntra.tc: 1:;,"/ $ ('\4 t",.41 -lOG rt solv~IO"l. -J. ~ (17:) ~ Icc-ttl. chtMI~t('1 h~Jrol1(" li e nu c lear d~te("te( Ma~(1til( rtSOMttce. IV udeof' n ~ fhods > 60 ,,, (.I(\isot(op'~ eMISSIO;'l of ... radlt)(u+,,,~ d~cQ.'1 p,.()ciud!> e t ) (f 7 . 10 Sf,n.:J - bc..c Ik MQ.ft .. ", - in+ey-{4 ('If's v e-~R ' 0 7/~rdN"'I I" 0 -> 1/),000 II /OO .... s - hours ~ )/0 /~ -'/ 10 t; va .. ;a.b \~ T~pe I ~»A 3(';)-norma I YI'\da.l T~pe 1f ~ -'< ~ Ma~Y\r+(~ 'Prop~(+;es of SlAfercClldvtior M M ./ He H '5 upet'c ond vC+o 'I' _r~ 1-I - J.fTT n~ e - -x~ yY'\"'c 4 r n~(r) ') I'"" ;V vort e.)( s+a.+ e. H" tt Hct. '- oooA cfo ~ ;m1l = ~c: (,5)· N 4>0 l' 1: <>-f V'O .. tIC('" / Ll ",if- 4 r'<q 341 342 ".......... CJ) ~5 c: :::> -D4 L « '--"3 >. -t-' := 2 ..0 o ..0 0 1 L n.. M 09 netic F, id& Di5 trj buf rot) I'" i he Vo(ter: Shde. of I,of,0f(~ 5u~f(()IIt1(/d"r S 0.4 M E 0.2 ::i '-' 0.0 >- -0.2 -0.4 -0.4 -0.2 0.0 0.2) 0.4 . X (JLm) .f;~ 10 cool M n1a P v-? O~~~~~~~~~~~~~~ o 50 100 150 200 Local Field (G) t1 U0..v Q~c;a~ r -de.ca.~ of q nL(cl~us M LtO(\ If'l a. . VOWME 72, ~u .. _ S , 'PHYStCAL: .REVIEW LETTERS 31 JAHU .... y 1994 New M_-5pia-Rotatioa Measur_t of die Temperatwe DepeadeDce or the M.~Is.PCIIC'!'!..!i~22'b Ia YBazQIJOUS J. E. Soaicr. R. F. KicI\. J. H. Brewer. D. A. Bon • • J. F. Carolaa, K. H. ,Chow. P. Oounjh. W. N. Hardy. Rmin, LiaJI" W. A. MocFarianc, P. Mcndds,· G. D. Morris, T. M. Riscma.," ucI J. W. ScIuIcicIer 0.2 0.1 ~IOC 0.0 I 1--I-l_O.1 -0.2 0.2 0.1 0.0 -0.1 -0.2 o 1 2 TIME (}LS) 3 4 H:: s: kG T: looK 343 344 0.2 ,..... 0 .1 ..... --..... 0.0 .. a.. <: -0.1 -0.2 0 3 ...--. 2 N 1 0 .... x '-" w 0 0 => I- 3 :::i 0... ~ <: 2 -l <: 1 w a::: 0 64 1 2 (0) 0.5 T T=5K J: s4,.~/' . p I%e T) .... 3 TIME (}J.s) (b) 0.5 T (c) 0.489 T 4 66 68 70 72 74 FREQUENCY (MHz) Te'l"~crQture and Maqnetic. Field Dependc.nce. ot the. t1~nehc. Pefi'et("atlon DeptH 70 ~r"" 65 E -3 "I t 60 ..c 55 1400 €1300 0-• ~ ... 1200 1100 ................. '"""""'-............................ .......J 00.40.81.2112.0 APPLI:D rnD (T) 50~~--~--~--~--~-J o 5 ~ ~ ~ ~ ~ TEMPERATURE (K) ~E) E ~ conV"otn.tllltl4/ :,uf'~rcondl(ciD,. 1"-...;_-YS.,C",OHS' Q) ""0 ::J +-' 0... E « 0 Q) e:::: 6145 : NbSe2 Tf =2kG T ==2 .. 4K 0.06 0.05 0.04 0.03 0.02 0.0 1 0 ..... . ::::.:: .... : .. :::~::~::~: :~::~::~::::: :: :::::::::::::~::~ :: .. ... .... ::. : .... : .... : : .... .. :: -0.005 26 26.5 27 27 .5 28 Frequency (MHz) Mo~n~tic fie ki D~?~l'1d~"ct of the vortex CC)f'e '-0 dlus In tVb Sez' 28.5 2.<:'0 ,.- --.--------,---.--------r-------, 50 (\ ie.( ~i q,\ 200 .,-... ~ 150 o Q.. I 100 I 50~-~--~-~--~-~ 0 .0 0 .2 0.4 0.6 0.8 1.0 H (T) 00'" ~. 4-l=t» (I of «. H/uCL) . (I + ~ H /HcL ') 29 345 346 ... G> 50 40 ~ 30 Co ... G> .... a20 ~ 10 .. 0 50 100 150 200 Frequency (MHz) T" b K Semicolld",ftJ" H.. II Itt T Eft e ;J. ~V 250 A"C"O hel. "....... I en I (0) 2:-10 .-o ..-x 5 1-_ H=1.5T I-:::::-,--... I en '-" CD 0 ..-x I-""-..-OL-~ __ -L __ ~ __ ~ __ ~~ 10 o 10 20 30 40 50 60 T (K) H=0.3T E~ = 53('i) K 1 (b) ;u~/~ Te oo.x.() weo.k. 0.2 0.05 0.1 0.15 1/T(K-') covph~ II/.M .3.~1-~~ · ·3 . /. SI9f\Cl\ +0 f\ol·se 'should be wwrn gre1rft";" tha", I~ cur~udl«t F:0ss"l>l~ w"dh pSR pariJC:l.(la~('f In hiql-, fc~ Ich I '> S'T ej" e- I"(d("~ ... /D'-/s .;. r-IIMR · C't "41~~ _ lOr /$ '''''' /' '5 R . 2.. Cat' va,,,] depf" of Ir'\I\p lao'\, ·ft.d/oof\. .... IOO~ ..., /006A 10 (o ........ pqr~· more dlrec t 1'1 Lv, t", 'S TM ros~'bl(' dve to lo~ I:fe+i ...... s lolJ. "'/ T ) T.L '1,. 1_7. 10 347 348 /. Me~su(c. n("O) It'\ vortex of Nb (Tc = 'f.;l/# K ') USI"''; D • A - 500fl 5" - ~1o/l stat~ ~-JJMR 2.. Nb Se 2. ) m ea~vre fh~ vo;-felt COt'e 3· 4f. ra.du.is 'a., a flAo'1ctlorf\ of H ... T -to compare with bu.l/< rY\ea$"v("elVleV\ + (~ 5 R. ') a f'"I. cl STM I 8L.-yrobt-, Y Bq~ C\.\; 0 7 II f'0~S l.L, t IS" 1 o. 'SPirt =~ Rb3 C"o S I(\qlc I XL~ I!, Ik t,,;, k P>L.: z('tJ q.. a I cy H·S TI 2· U·H·V I;' bea"..\I~( ~t\J ar\d ;" $Q""F'~ cha,...,b, .... 3. C ('1ostQt: - base T 31( II reca.k. - c.olJ {I~(,f f..,; th re~otl! (oadl", l4titl-\l)"t b1"eQ.bt\~ vaCUUM IT •.• ) loT Physics Just Beneath the Surface of High-Tc Cuprate Superconductors M. Gingras University o/Waterloo J,1,del GirJ9ras P/.isics Oept. {JnivefSltt of Watel'.bo Roo /(ief/ PJ.YSlcs /)ept.· Universiit of &it;is~ Co/utf)6fa Cristina. A1arcJaeiti p~ iSKs Dept. lJ..niversii:y 0;' 5yracuse ~kift9 for /ltclden prQb/C~S il.at y~ CCt/llIOt See bnti wJ.ue yt;.L( CAI/rII7t ~et: at:. US/~ . nuclear StJ,cf sI:P k ~ecMkfues • nallOl:ribolD!Jf (",lCfQSCPfic eJ wear/ica.7 1- SurF{~r:: .~nttr. l- /U{,;olfA'1L; f'lC1~ • /IQf)Osbucturts (aNG 1>YSWr!S) l6rtV1Sirlt?1) • /lllJ1B/etytl"S (~r.#c ",",t. ~ CMK) 1oor------------:::;:>""1 10 E 10.1 U ~ c: 10·2~-""1 o . 10.5 0~--:!20':--~40':--~60~~80~-1~OO~ T(K) FIG. 1 The temperature <n dependence of the linear response resistivity. A· ""'/-<1 {EIJ}. where E Is the electric field and J Is the current denliity' In the material. The solid curves are for BI~2cacu.O.+, (BSCCO) end, for c:ompar\son, the dotted curves are for h/(h-conduc:tlvlty copper. Each curve Is for a (liferent magneti.: field. indicated In esIa. Data are from refs 33-35. For low-temperature superconductors the drop In the rulstlvlty remains f~ abrupt even In a macnetlc .field (as It Is for BSCCO In zero field only). 349 350 H 1. Mixed State in High-Tc SCs 1.1) Review of properties of type-II superconductors In the simplest scenario a superconductor is a condensation of (Cooper) paired electrons. 1f;(T) is the order parameter measuring the "level" of superconducting order. 'ljJ(T) = 11f;(T) I exp[i4>(T)] (1) 1f;(T) = 0 in the normal state (i.e. Ohmic resistivity). The length scale over which 'ljJ( T) responds to a perturbation is called the coherence length. ~ ~ "size" of the Cooper pairs. 11f;(T)12 > 0 and uniform in the superconducting and perfect diamagnetic Meissner phase. H(x) = Happlied exp{-x/)'(T)} (2) ), is called the London penetration length. Figure 13 Penetration of III applied magnetic field into a semi-Infinite superconductor. The pene-tration depth A Is defined as the distance in which the field decreases by the factor e-'. Typically. A - 500 A In a pure superconductor. Il. == )'(T)/~(T) is an. important parameter characterizing the superconductor: • If Il. < 1/02). superconductivity is destroyed for applied magnetic field H > He. This is the case for a type-I superconductor. /{ .L.------:. .... 1't"peI'4tUft • If Il. > 1/02). there is a third phase. the mixed state, intermediate between the Meissner and the normal phases, for fields Hel < H < He2. This is the case for a type-II superconductor. VORTEX LATTICE MEISSNER NORMAl. ~ • v [J L..-__ .....YV lattice •• 1.3) Vortex liquid state Low-1;. ; H VORTEX LATTICE MEISSNER NORMAL T /I;~h-1;. : H T 1.2) High thermal "susceptibility" of hiqh-Tc SCs High-Tc superconductors are characterized by: .1. A very short coherence length: {(O) ~ 101 A. ·2. A large London penetration length >'(0) ~ 103 A. --+ Hence very large K., thus extreme type-II. -3. Are made of "very weakly" to "moderately weakly coupled Cu-O planes. --+ Quasi two-dimensional systems. -4. High transition temperature: Tc ~ lOOK. ~ ES$MtilllJit, tII'CJbSCDPIc pltsks is ~fD'I$ille flu' rkSL P~,erll~. These four characteristics conspire to dramatically enhance the effect of thermal fluctuations and frozen random disorder in high-Tc superconductors cnmpared to conventional "Iow-Te" ones. For example, critical fluctuations in Happlied = 0 have been observed in the high-Te YBa2Cu307 materials. 351 352 K. koe/, et a/'J (a) 10·' 10·< PAys. ReI!. Lett. 10' 63, /511 (!~8'1J (0) H ~ 0.5 T liP E 10·' ~ 10.2 10.3 loS 10' (b) 10·' 10·' 101 100 E 10·' ~ ... 10.2 10.3 -r.,~ loS 10' • E = ! of {d,n" bdtovior • / lJ9(e)= /o,(rl + /0, (~) Y = b + 11'1){ { M • .t} I llei i:SI"IIOO'=t. \\ ~ order .Collti/JUcu5 I • 'universal" . 1 flU 10·) 10·' 10· ' 10·' 10.5 ~ > 10.6 10.7 10.1 107 10' J (A/m'2J '1-1, I(A) 10.5 10·' ~ > 10' z a: a: 0.15 0.10 0.05 80.8 80.9 T (K) YBa2C~307 H = 6.0 T ....:. .. Hlle 81.0 81.1 81.2 FIG. 1. Normalized linear response resistance as a function of temperature for sample 1 at an applied field of 6 T for data taken upon heating and cooling using the SQUI D picovoltme-ter. Note the hysteresis in the response. Inset: Data taken over a wider range using conventional electronics. The ~ata shown in the inset, taken using conventional electronics, and the other data shown both here and in the other figures using the SQUID, were taken in two different runs 2.nd there is a -O.l-K shift in the temperature scales . . )a.~al' et al.) fRL TO, jtoo (f'ff3) -_ .. 10° YBa2Cu307-~ z fE 10-2 a: 65 Hlle T.Le 70 7 4 1 o 75 80 85 90 T (K) 353 354 E :I: 1.5) Vortex crystal phase. and its meltinq 15 10 H 5 H Clean samples (e.g. single crystal of superconducting materials) show a 1st order freezing/melting transition from a vortex liquid . . ~ to a superconducting vortex array of unknown type. Upon increasing · the applied magnetic field, the first order freezing/melting transition dissapears and transforms into a second order vortex glass transition. ( )\. CRITICAL a ... POINT ... ... I \. VORTEX .... ME~TING / .... I VORTEX ••••••• GLASS .......... . (b)\ TRICRITICAL ... POINT ........ / /..... VORTEX H MELTING VORTEX GLASS / . VORTEX GLASS (e) \. CRITICAL \.\ PO~NT .. ........• CRITICA~> ENDPOINT • TM • TG _ ._.- HC2 -1O.1 AN •• •••••. 10.2 AN • __ ••• 10.3 AN --- 10-4 AN YBa2Cu30H HUe TJ.c OTT 6~0--------~-----=70~------------~L---------~----~--------~ 80 90 T(I<) Effect of Disorder on Vortex Lattice • We have competition between elastic strain energy cost: • the random pinning energy gain: Egain'" (JJ Vp(x)Vp(x')ddx ddx') 1/2 '" UpLd/2 (2) So the total energy, E , is: E - E E - KL(d-2) U Ld/2 - cost - gain - - p (3) This is unbounded (infinitely negative) for large Land d <4. Hence, elastic pert urbation theory breaks down at the Larkin-Ovchinikov length scale ~p : { K }2/(4-d) ep '" u p (4) Impurities: they Pin. they pull. but do they Tear? 3.1) The 1M argument revisited: role of-tQPfl.k1gif;DJ defects. As discussed above, the disorder induces continuous, elastic distortions of the ordered state. It may also induce plastic deformation due to topological defects which do not represent continuous distortions of the ideal ordered state. Example of topological defects can be: • Dislocations in a crystal: 355 356 .• ::In i1.c CDllllent;ollal PIcture, tie LQrkill- Ovdinikw scale: ~. is tic f,,',esT: /~,;,i:~ sCDIt! ill f:~e pl'DbI~.., =~ dtSSlfQf:ilYl ;s oJl'lfc 4t S'M1/ currrnt ~ t:.l.lOt probe j~ I ~ . . -;[" ~I.c VOr'ttx - ,loss picture r.1.r/'e ;S lill"tkr /t!1I!J1i. sCAle, lv6, t:1. .. t: d;Vt!"1f!S ai- t:.ie VOf''Ux-@,uit'-£D_ /lorUx ,/~ ~~"sii:lo/J Types of Positional Ordering • Zero disorder --+ pedect Vortex Crystal" • Weak disorder --+ Bragg Glass: . ~ -. ,.' ... ·:f~:···· i ". ~:~r---.--!-!---------'.~: :-'---::------Jl.-&-a-s-,...,-.,.-:-.§ 3 ,... ~ :e ~ 2 0-X 1-0 .,(l5R: !! f=~1< • • , I 0 50 100 8 (mT) 1 H./oo.",1 150 o 25 100 50 T(K) • • 75 Rrnrt.ICH cr~~~~~~~~~--~~~ : :'"Eill Irr,.,."blt raNSCll'Nt'pltlntd palltl .... voncH • IluclNn 3D 0.5 10 _ • i . -" -:'; ... :.T ~ J ,i!~.. j : !: 1 Ie·.. IlOO .cot , 100 ~.H •• \(mT) <!D 1000 75 ~ iii" 50 25 {vorto: sloss {PiMtJ ":,rtrx It>ttlu 8"'~ s/ass OI~~~rT~~~~,,~rr~ B o 25 50 T(K) 3. Implications for Type-II SCs vortex glass pinned lattice vortex liquid "reentrant glass" normal T Till c C T Internal magnetic field, B, vs temperature, T, schematic phase diagram for a layered type-II superconductor with strong thermal fluctuations and . weak random pinning. 75 357 358 CliO ( la,/~ 1 a .. """ b .. --a. Magnetic field lines (dashed lines) as they might appear on passing through a superconductor containing 'Iine' vortices - neatly correlated from layer to layer of copper oxide (red). so that the patterns of vortices seen on the top and bottom of the superconducting sample are perfectly correlated. b. What happens for '~!l£alse ' vortices. The patterns on the top and bottom are entirely uncorre lated. 1~:'s:.S~ :> S&./ pM a,,, 1.1{;!A'" Nature, FIG. 2 ~Iaunay trlangUlati~ns of the I~ges 51 (toP) and S2 (bottom) shown In ·FIg.l. In the triangulation. each flux line corresponds to the vertex formed by bonds drawn from the flux line to Its n nearest neigh-bours. Vortices that do not have six nearest neighbours are shaded to highlight their locations In 51 and 52. Apparent extra f1ux·line positions are indicated bv filled black circles on. 52. 3?/, '??1- (tiff/If' ! n .tout tf~--Inri rqoJkit/l • clDse. to 4 surJaa. petrolkJ tr> StAcK of wrtrcl!Sj a.) h) t~ ClNllliiion of ~ fu,WtdiciJIQI' tblfl9l, It stvkzce is Sott~uI b'/ aJ"~ tJ.e ~Hc 5tdl o'lti currtttfs' of imD:Jc. VDrttx Ii'les. "ll1siJ~ .. ~ .. t . ~ t J t J t J t J t J {~ M*" oUradJa., ~ ~ QI/Ji 'Wr/iCl.s ~ tic SUI"$Qcz t c) ·f ~ t t J Ji~ YN'tct/~tb iJ L tl fbi,. t .. t~ 1 ~ t I I/()to ,.~ ... Jw. t J ~. . ItAlllla j Pill. ~I ,.,:11{ r~ • Z! (1 pffSl!¢ ' rh a. Smal/- sL,pt!rc#tJldin9 ~ C"I')'t'~ . tie VIJf'~ ' ~ ~. ~ (.,.~~), oNI I!k , Sys~;tI /0$ tliS$i ptrJIonltss. ~weVlr - -I:k VOI'"ki lintS a\a ~Id/ Q/IeS ! - ",Mit J:/.e. vet-iec /irt:S r&ft«;" ~ ,~"''*/ 'f.,;, i l tk iieJI Imts 6tntl "4 Cl AItY oJ 4KKMSS A " . '1 . (I@~ ~~~I \On.c~ -s"."" t/; aL '-~ ~ l.lH): 1. (:1 + bill} . I;' NII.<tr1 pJ..Je - I~ II/JJfIId /,e nIce 41 . i4~#A{"') i'I ,#k,"srAtr ul:rk . . . - OM fn:Jililit IAIIlClIt/ H . "' prIo,w, /.I-NAI( 4M itrI,l-W 'h' w/lJin .. tIrpJ. $ .... ;t at,.., ''0 keV DAd ".,.JJIzN- ~ . ~l#I Jllf!.S/.t,pe vs -rt:Jf),; tJW/ R.. . • PrrdilfliJ.1 tfftd;" a., OIA'Y'.Y'~ sI:t:z&.J':>1) 4 un UJlllllwd/o'It!JI ~~br: M,,,,lbJr ('f141fAtIOft ' ON/ SCr"II/~ IJi. PIYilte ill XI. Otlff"I.'I*"- . 1"1 a"7'''''V'''%'''''I''''7Z''''2P7U'''''~'''''''/ K . ~~ucix:Jr 359 360 • • • 1/,ere are nUl1}erous Pt'oble'l1S (;ust bf?~/eat:~ -t~e Sur:f-c(ce 05- hi~A- -r;. (possibly -;;.!I.JJ6Se:. and Ol:9C1nICS) SUp€I'Cbf>{/UCtC-/'5 t.l.at C~nnol: be easily rCI d(led by ·conven:t,oficl! m;z~cds" Order cc{)del1secl maltel' S'(ster;}s ext/tit:· I( h;ddM fl'otle,Y)s" 6fneCith a sUI',klce ;''t>ter.f~ce W~{CA also C~l}lJot: be eosily ~Cick/fq 6'1 CCllv"f'nt/ona/ cordellsed matte;· eXPf/'1'nJel',tcl/ lYIet~c;ds. . 'Vff'f kkelt, flue/ear $0/'0 state r.ec/vl/que.! (p-Nt1R, PAc) cocJld allol(/ t:l.e Si:£(dy of Stt.eh pltJblems. ,B-NMR on Point Defects in Semiconductors and Metals B. lttermann Philipps- University Marburg Bernd illermann Marlin FiJl/grabe Franlc Kroll FranicMai Klaus Marbach DirkPelcrs Helge 71,icjJ Hails Ackermann Hans-JiJrgen St6clcmann Fachbercich Physik Philipps-Univcrsitit Malburg, Gcnnany physics of isolated point defects in solids • microscopic structure • !hcnnal stability • rcoricntation and/or migration • reactions with other defects applications • diffusion mechanisms • doping problems in wide-bandgap semiconcuctors p-radiation detected nuclcar magnetic resonance (PNMR) highly sensitive CW NMR on implanted probe nuclei . . . ' .. ~" '~';' 12B: 'til = 30ms, I = I 'Li: 'til = 1.15, 1=2 How to get polarized, radioactive beam? a) at accelerator lab: nuclear reaction + recoil selection (Sugimoto, J967) at on-lille separator: collinear laser pumping c) tilted foils, d) polarized ion source, •.. 361 362 The implantation story ofB in Cn (recoil selection technique, Strahlenzentrum GieBcn) Motivation: purely scientific - fundamental aspects of diffusion spin-spin ('dipole-dipole') interactions of an isolated impurity (' 2B) with a neighbouring host spin (63.65CU): a) random 'orientation' of host spins -inhomogeneous broadening of NMR line b) effective coupling of 12B_ and 63Cu-spins, level-crossings in 2-spin Hamiltonian ~ resonant 12B depolarization at certain values of Bc .. : 'cross relaxation' (CR) orientation dependence ofCR - lattice sites effects of diffusion inNMR: (polarization vs. frequency) line-narrowing due to motional averaging t[QJ=lYJ ~~ ------------inCR: (polarization vs. Bc .. ) homogeneous line-broadening due to limited interaction time f\(}=-M Site change and diffusion NMR data a : McDonald McNab 1977 /":.. -:..:./';' ~:..:~~'-(0) - 6 -3 0 3 6 v - v, (kHZ) 71~ . . .. ~ ____ . ~ __ .. 714" 688C .. . .•.. _ ....... _ .... 673K ...... '~ .... ~.-'" .. --..... - ... ~-..... ~--'---...... --' ---. '-':.--~. -: .. >-----..... ..---<>-.... _.:'0'-,... - .... ..... -"11K ._~=. 4"IK _ ,'::_ .. .. ......... .. -.,...... 42CIC •••••••• ••• •••••••• • 400K ... .... '** .. : ::~::: . :.:. = ::::: ::.-.. :,:.:::' =: : :::::~.:.: : .:: : . :: (b) .. ::: ~,.: : ::: :::.= 2.4 2.6 2.8 B. (ke) 400 - 600 K: surviving mobile Bi coexist with immobile B, 300 K: only Bi, immobile mE 350 - 400 K: Bi starts to diffuse 400 -480 K: part ofB; find V cu's of own imp\. cascade: Bi + V Cu - B, E >600 K: Bi and B, both mobile, independent diffusion paths (NMR lines well separated) • Defect-mediated Bs diffusion? a) not by thermal vacancies: incomplete B; - B, conversion ~ Vc,:s only locally available Bsjump ratcs too high ( IVs ~ 500 ___ 105 X IVv CV'h) b) not by thermal interstitials CUi: C;'h = 10-19 at 750 K c) not by VCu (or Cu;) from implantation cascade: =50 - 100 surviving Frcnkel pairs per implantation event but: 4000 B. jumps per lifetime at 750 K ~ each Veu (or Cu;) initiates ~50 jumps? only possible ifB;Veu complex is formed but: NMR and CR lines for T = 400 - 600 K show no static B;Veu complex possible no rapidly reorienting B;Veu complex possible no 'first isolated, static B., then reorienting B;V co' scenario possible Bs migrates by direct exchange first experimental identification of this diffusion mechanism rRL 77, 4784 (96) ( ) doping problems in ZnSe (collinear laser pumping at ISOLDE) p-type doping of ZnSe with Li possible at low concentrations carrier concentration saturates ($ JO I7/ cm3) at higher Li content several mechanisms conceivable Li on different lattice sites -+ self compensation formation of close pairs -+ passivation limited solubility -+ precipitation strong lattice relaxation -+ sballow-deep transition experimental approach: investigate microscopic stucture of lattice sites diffusion behaviour of dopants interactions with intrinsic defects 363 364 <§!. 6 t-v E 4 ~ 2 lattice sites after implantation Lannor resonance at T = lOOK O~~~~~~-W~~ 3.1 50 3.160 3.170 frequency / MHz At 100 K: 80% of detected polarization belongs to cubic sites (four possibilities: two substitutional, two interstitial sites) .... 80% of implanted aLi on sites with cubic symmetry (?) diamagnetic charge state .... either LiZn- (regularly ionized acceptor) or interstitial Li j ' Temperature dependences 8 • • • • • • I • . . . . . . * • . PNMR ~ • ..... I • 5 ' ~ - I 3 ~ . - . • l i ~ . . a . ;J a : . 2 ..... I 2 a s: a a a a a a N o 0 0 0 o 0 0 0 I -0 0 100 200 300 ~ 500 I temperature I K i Total asymmetry T < 250 K: constant; T ~ 250 K: spin lattice relaxation Cubic asymmetry T < 250 K: smoothly increasing; T ~ 250 K:I00% I Linewidth • strong broadenmg at T = 275 K emission channeling '00 .. (M. Rcstlc et aI., 1996) .. tdIahcd .. 1 inlcntitial ,. ~ . site change tetrahedral g .. t so interstitial - substitutional - ... I ........ at 230 K .. I . ...... 20 . 55% substitutional fraction '" from 250 - 500 K '50 200 Z50 3DO SSG _ 450 --pq ...... Spin lattice relaxation 0.0 1.0 2.0 J .O . ___ t_;m~e/s ______ -, Temperature dependence of fasl rcla);~IKm compnncnl ~ 10.0 i c i £ 1.0 ~ 250 300 350 400 -450 temperolute/K two relaxation components bctween 250 and 450 K tentative assignment: 'fast' component: 'slow' component: -+ two 8Li fractions diffusing interstitial Li j ? rapidly reorienting complex? substitutional Liz" relationship to emission channeling data not yet clear Cross relaxation (CR) flip-flops of 128 and neighbouring 63CU spin - drain of 128 polarization • • • • • • • • • • •• • t • • • • + • • .~t~ •• _ •• ~l~ •  /T, /T, • • • • • • •••• • • • • • • • • • • impurity induced quadrupole interaction offsets difference in magnetic transition energies: resonant process static CR: measurc CR-dip positions vs. 8 0 and crystal orientation symmetry of impurity induced EFG's at Cu neighbours lattice site determination dynamic CR: measure CR linewidth vs. T diffusional jumps affect CR-linewidth (limited interaction time 'lifetime broadening'): ABo oc J(l!-tfl + IltJ2 + 4W;'D 'tc: correlation time for B (or Cu) migration W DD: dipole-dipole matrix element diffusional jump rates from CR linewidths 365 366 static CR-spectra T=31OK: simulation = (octahedral) interstitial site o 100 100 B/mT 100 200 B/mT JOO 400 300 T=480K: simulation = substitutional site Diffusion mechanism of substitutional B in Cu ( recoil selection technique, Strahlenzentrum GieBen ) Motivation: purely scientific - fundamental aspects of diffusion Basic mechanisms for the diffusion of a host atom or impurity through a lattice: r---------------------~ Interstitial migration • - 1 r-:l direct exchange L - J - I ( ) .,r -r y vacancy mechanism "'0 -- -').. r "'\ interstitialcy mechanism -< kick-out: A. + I ... Ai dissociation: A. ... Ai + V i Cu self-diffusion: V mechanism (all metals) here: impurity diffusion of boron in Cu .1.. '( )"""""'1., .,r ., "- r-y ) y-Acknowledgements Strahlenzentrum Gie8en G. Clammilzer and his group E. Salzbom Collinear laser spectroscopy (Mainz, Leuven) Rainer Neugart Uwe Georg Matthias Keirn Stefan Wilbert Wolfgang Geithner Stefan Kappertz Peter Lievens Doris ForkeI-Wirlh Angela Burchard ISOLDE 367 368 Optically Pumped Polarized 8Li Beam for Material Studies R. Kieft, P. Levy, A. Zelenski Li I , Li I I Li I I Li I , Li I I U I I Li I I Li 9 9 U 9 9 U 9 9 TRIUMF 1. J-( ic:: J..( - c.v"'~NS IT::! 2.. OFTICQL f>lA-fC,v'C,. ~. A Cc.eLe C.qTIO.v '-DOL INc.,. S.60E+{)6 2.60E+{)6 4.00E+()S 3.30E+{)S 2.IOE+{)S 2.10E+{)S 3.70E+{)4 1.70E+{)s 1.2OE+OS 7.5OE+{)3 SiC pcA:ts I .05sfanl Jlc: SS April 27119 be pdIcts 14.9glcm2 Jlc: SS April 17/19 He foi1s 16.6glanl Jlc: SS Jau3Oll9 1i foils 1.5s1anl Jlc: SS Au&4111 1i foils 1.5slcm2 WSS Jaly29/11 txm:: pck'S 2.0 r:-:z IdS Way 4119 Nt fais llAPal leSS Dec I"" z.c .... )Up'cm2 leSS April 17/19 SiC .... 1.f5e'<:a2 leSS ApriIrTM txm:: pcA:ts 2.1 fIoa2 leSS 1Uy4119 ~ + Li ~ I a , to i I sec --or T~e TSAC. fc-.<:. 'L ,"I.e S lOr A 0 ~ . soD .... e V f at.o~ON 20 keY ISAC 100 em -I Bendini Malnet 369 b + /", .n-, - 0.5"'; BO.5C;~~ -: 0 Laser 672 nm ~r Fig. 6. i 1 5 - FOCo\..tc.I.N'C; L .e.v~e ~ ~ 2. - aL K..Q L r "vQU'Tl2...QL (2 ~ ~ C.~L L.J :; - ~Q~e.O(A~ (AfL ) I O.v I~.ee.. c.."CLL,) 4 - 0P"'IC~L p\..o\K.tflM:;, 6 - Q.#q L'j :r: I ;v <; C! J.{Q."" ~ ~~ • "1' A/ q ~ I.A... 4 L ( - m ~ T"a L v" a p 0 ~ ! ~o "V (O.~- l.o) ./o-14C!..n...~ Co. p~~ Wt ~/.N L'7 Oc:c:. ""J(...~ QT" L~ ~C~ I n.-, fa. <. ~ fa, t:.c, 17 e ye,.,~ 0. ¥I J 7~ ( ~...v ~ # C; 0 0.-. J k1 0 I-t VV' 'i''-'C "'" -t ~ ~c; f= ~ e.. IS S~a.LL. 370 SII2 PIn d3l2• S12 'SIl.7f2 0 -5000 ZS( -\ ~ ",,,,,/4( 4s ,,'" ~~~ \0000 .. ,,*," 15000 "2 ~ l5I100 -3 v lCOOO eV em-l ~ .. )5000 ... .. ., .aooo ,,1/ -5 ! flCUREJ The term diaJram or alomlc Li. il\ ,,·hicb.thc sbllted lines indit~le the obscrYccl electric dipole lran.ilions Ind Ihc numbcn on the lin •• I .. Ihc .... ' ·clcnJths in An,.uom Unils. IAlltr 11'. GroI"", - Grapiluril. DarsltIlUifI IItr Sprlrum l1>n AI"". .... - I'Dlumt ItS".u.Vr I'crlng. Strlin. 1918}./ When the .a- .... da-cft ilia -.&iul pumping regioa llle1 iIlteract with light from & a.cr ..... ,...,.,.. .... 1.'1 10 the atomic beam_ The light u either right- _ Wi h. d i ___ ,. .-,.rued with raped 10 a eo1liau.r . weak magaelie IUdia& iIW. A. ... .t. aiIa prorida a homogeneous field· oC 1_5 mT ill thU rqio ••• 110 ill aapdicaDJlhidded &om the waJ 'elds oC ·the au.tupole mapct by &..e __ ~ (F"ac.l). A.a Ar-iDa1uer plUDped u&1e mode dJe Iuer is , .. ed 10 Ille Dt lac .t. aLi at m-"T am. TIle Luer Ji&ht (typieal1y 25 mW) ill cirealarlJ poI,a.ed ud &ba pidecl1JJ a mirror .,stem Oyer a dUUliee of 15 • 10 Uac n:peri==t.lIlClap at Ille accelerator beam liae. III the ia~ .... Uac IMer '-m!- widened 10 a diameler of 12 mm. A.uiror ~ tllc ia&cractiDa rqioa relect. the Luer beam back for a aecoad -,w1iga witll Uac a&o.ic beam &Ad !or enema! optical cliagil~tia. .opTI <::0 L -512 -1I2 -U2 V2 '.312 512 -m,:-. r ..... 4: SIootdo.&M'-.-a. __ S ... ..,c,.oU,TIOoW ~t.': Ps= l.,,,,--;::: o.!i.,j I ~To /.!cceLe (Z,.CI'T/ON COOL INC, E. ) bE + ~:l A l5" AEllI t:.~. 67) " .. .. .. -r q,Q,;.C;~'T e.'QSI~C; - SO~T L..Q "'~IN<; -t-Li -371 372 -1 I Laser;.. j? .JL p '" S PHI - S PM?. SpH\ ~ St>k1. PtA. ""pl NC; LQ Se.~ L I C; H,. Ec..ct:...J li!.ou.,../z, h-t~s'" ' .se. >ufTl-e»~ . ALa::OI.. ; ;V€u.TeaLI?efl.. C~LL , lSe.a H. SQl..fCTlv(! ION/~a.TIO/J F£Ok H-eTCIS7t;ALe ~TaTes; , · c · I · I • ·  · · · · c · :::~:~:' ~:~ : ~En~ ;:::::: .~.::~ :::':r:~~ r2.0 <"'1) u C, lOA) iR1NAT " "'S·IO 373 ., ..... .... .. 374 ,B-NMR as a Probe of Small Structures and Interfaces R. Kieft University of British Columbia Plan J. COO1parISDt1 or NMR. wifh nuclNIY' dt:.i~~ft>J lY1a9,,~f/~ roon4nc~ n n 0+ the standat'd mod~1 2· Tesi:. r- JlJ1R 3· S~mlcond,,(tor- intC'Yfac~s 1· Co nc\VslOh NMR /' j \~ i-NHR NO NMROrv \. Spin PruessiDn in Q Ma9n~·fi(. fie Id -B 2-Com parJ!>O(\ of tJMR with nLi clear- d~fecfnl mCl~rlti" rt50Mllce Pol Clf; .. atio 1'\ deferfio>'\ me-T-hod 0.2 ,......, D.' ....-'-' 0.0 .. a... <: -0.1 -0.2 3 ......... 2 .... I 0 .- 1 X ........ W 0 0 :::> I- 3 .....J a.. ~ "« 2 .....J « 1 " W 0:: 0 0 64 NMR -s 10 T'> I K H > IT 1 2 TIME (p.s) tv IJdear' n ~ fhods > 60 '7 ... o(\isot(op'~ erv\lS";.IOt'l 0 f ... rQdlo<u-fI(~ dt:c4.'1 products e t ) (f 7 . JO Sf't'l" T > 10 rot Ie: H,,;> z;:-3 4 (b) 0.5 T (c) 0.489 T 66 68 70 72 74 FREQUENCY (MHz) 375 376 1 0 .75 0.5 0 .25 o 100K 2 .25K 50K Lf -;:: S~T Tf " 22K· o 1 2 3 4 5 6 7 8 9 10 Time (fJ-s) Con dC>t'lSPfd Mattey Ph~ S/C.S at J n ~rface5 matenQJ B ~ . sf r:~ • lntefTQ(e rreq ,0 fl (.Qilf\ot be JUr\du~tood In tpt"ms of= prop~I"'+!P> o-f A 1- B Q,lol'\e • I J. t hAs dr; OWV'\ dl'5tll'lrt f'bpuht!'s' E )cGlmr'~S • sen'\i ("'o(\dve+ot' q lJQt'\.tt.cW\ we Its Qr\d QH E. ... fQ HE • u HrA . thl~ fV\Q,'1.h1 f,e' pi m~ S hDI4I,n, 5MR eitecf· • h\~h Tc- Metal Interface ~ . DIAt\51~f'r et (11 Iqq7 ~ ~ S I!"n~;flVit7 I Of t/~rc.-I(lJrn 10 "jsrc!N""l. R Clt\~e 100/"" IA ~ 0 J OJ 000 If Life+IMe ~ 2·2/,~ 100..,,5 -'P hours covt\t (Q.te 10." /s (. > /0 /:s f'atllt'4\ -lOG 10-'1 G rt solv ~'oW\. -J. ~ tf7:) :t va.t~db\~ IDeAl. h~Jro'1L'~ c~tml'5t ''1 li e £. ~ore(l7.oni ef al He.SHIELD Slow Muon Bean'\!> af 'PSI ~~AT1C (y:>ionuf,J 4f 1600 01 1200 . 1: c 6 8,,800 / MODERATOR -t-:llHv HELMH01.n COIL ® 410 370 330 290 2SO Tuae(as) "EINZEl: LENS MCP2 100 "~IUt'\f) L( lYle V f\ -r 'f <10 r' leV ,/ O~~7-~~~~-2~~ 2 3 ~4 S 6 7 8 TUDe(,.s) 377 378 t· 5I,,(p<.-.. cot'ld~(toV" / ),)ovma I Mda. f Intt'/~ce· De G~I\MS norma.\ b t, A Po '"He robc:~ 5 ~p,,"cot'ldv,to,­(51 " 2l I Nt: On-line Nuclear Orientation with Insulating Hosts J. Pond, A. Kotlicki, B. Turrell University of British Columbia Nuclear Orientation (NO) and Nuclear Magnetic Resonance of Oriented Nuclei (NMRON) use radioactive isotopes as microscopic probes of condensed matter to provide local information equivalent to conventional NMR. Get information concerning the magnetic properties of a material: 1. Static HFI - Hn Reflects static electronic magnetization. 2. Dynamic HFI - T1 Information about mag nons. The size of the k = 0 energy gap, aE, in the E vs k magnon spectrum determines the nuclear spin - lattice relaxation rate. aE is a parameter of theoretical interest 379 380 INTENDED PROGRAM AT ISAC 1. Magnetic Multilayers 2. Magnetic insulators?? ''lI\rUt.~~~ l'/I.~ll\~;C. ~.~,,~~ c.r-~ u-s~ \1\ ~v. \~C)r ~ INSULATING MATERIALS Interesting test: use an insulating magnet as a host for implantation. ·If successful, this would greatly increase the range of experiments and demonstrate that on~line techniques were broadly applicable to studying magnetic materials. Objections: 1} Spin-lattice relaxation time, T 1, would be too long; 2} Radiation damage would be a problem. T 1 can be very short in materials with a small magnon energy gap, e.g. T1 = 100 ms in zero applied field in the 2-dimensional ferromagnet Mn(COOCH3)2.4H20, or, in the case of an antiferromag~et, can often be reduced to very low values by application of a magnetic field ("magnon coolin~. The question of radiation damage would be answered by experiment (J~.o.;LJ. cu",,~..L ?) We hope to make an initial test with the Leuven group on the well-studied antiferromagnet MnCI2.4H20, and, if successful, an application of the method would . be the study of 1-dimensional . magnetic systems, · which are of current . theoretical interest. Review of information that can be obtained The emitted radiation (usually y-rays, but could be J3 particles) from an ensemble of radioactive nuclei with spin I in hyperfine field BN, at temperature T has directional anisotropy with respect to the quantization axis (direction of BN). For y-rays, normalized intensity (cold counts/warm counts) is w(e) = I, BqAqPq(cose) q Aq depend on the decay and P q are Legendre polynomials. Bq depend on ( 11 BII) and contain the magnetic I k,T information. NO gives information about the electronic magnetization ( through BN ) and the polarization direction (by using two or more counters). NMRON Consider the oriented nuclear system at low temperature such that there is a measurable y-rayanisotropy. It is useful to reformulate expression for W(9): Here aM is a parameter for the Mth magnetic sub-level (M = -I, -(I - 1), ....... ,I) and PM is the population of the Mth SUb-level. - ;::. . Mp 81\11 I · f= be (-~ B~/~ta) ~ er;PC M114-, /.rIOj 381 382 WlO) 1 Applying an RF field with frequency !.lE V = M.M+I h disturbs the population distribution and changes the intensity W(9). For equally spaced levels (simple hfi) So NMRON gives a precise measurement of BN and monitoring the recovery of W(9) yields the spin-lattice relaxation rate 1fT1. Can do CW NMRON and pulsed NMRON. " .. ~ t::o t: C .. I\ exh-o.d- V,.., • .. &t.J Q,,,cJ. rr, (S';A- f ... II;c.~ rt.'o~~) S4Mnl 0.9 ~ en 0.90 z w ~ 0.85 ~ 0.80 ~ w 0.75 0:: 0.70 '---........ -~:-----':"-~--""---430 460 490 520 550 580 0.94 ~ 0.92 z w ~ 0.90 ~ 0.89 ~ , irl 0.87 """'1,,,,11' 0:: " , , FREQUENCY (MHz] 0.85 '---~--~--~--~-473 0.95 ~ 0.91 z ~ 0.87 ~ I 475 477 479 FREQUENCY (MHz] w . ~ 0.83 t III"~,,, I- i ,1111', ,I 0:: '11111 . . , , 481 ~ 0.79 ti""1 '" 'I 0.75 L..-__ ~ __ ---,-__ ~ __ ~ 500 525 550 575 600 FREQUENCY (MHz] . h:.) ... 11.... .. __ _ .n~~ .• "~~. -------. M=o __ '--__ _ . . r1=-l---II!!..._ w·,J.c. fl'~l.\~.I\C~ <;,....,u.~ MI\'l. -1~ -'2.. -2.-7 -I -(~;:) e}:4:. . ......... ... - . Jl.~ .. ' _~~~-".:.~ '.r ~Sct ... _ ... ~ ' ~.H:~IJII .. .• .•. .... 1Ia!!!! 383 384 PULSED NMRON We can do everything that pulsed NMR does: measure v (and:. BN). T1• T2• Note that we need an extra !!.- "read pulse" to 2 bring the magnetization into the detecting (z) direction. 1t-pulse in NMRON (selective) In magnetic crystals with large hfi and low anisotropy field there is sizable second order effect that adds to any .. ,quadrupole interaction and makes the energy separations aEM.M+1 unequal: M -7 M + 1 transitions can then be selectively excited. 1t~pulse inverts the populations and produces an effect twice as large as CW NMRON signal. M~l ------------- 111-1------x-pulse M ___ l--______ _ 0.95 0.90 0.85 0.80 0.75 0.70 -l-----r----r----,-------, 0.0 0.1 0.2 TIME (5) 0.3 0.4 Fig. 9. A pulsed Tl measurement on them = -3 ~ -2lrwition in S4Mn-Mn(COOCHJh·4H20. The length of the 180° pulse was 250 ns and the fitled line is for a value of Tl = 100 ms. >-f- 1.00 U) ~ 0.95 f-z ~ . 0.90 > f- 0.85 « -l UJ 0.80 eX 0 :l-0" • • • • • • •• • •• « ••••• « • ~ • • A • A £ A A A A 4 A A A AAA AAA ~ XXXXXX)(XXXXXXXXXXXXXxx 100 200 300 400500 TIME [microseconds] Fig. 6. The decay of the amplitude of the single quantum. spin echo perfomed with a 90°_1_180°_1_90° pulse sequence on the m= -3 and m= -2 levels of S4Mn-MnCl2·4H20 (A). The upper line of points (_) gives W(O) after a 90°-1-180° pulse sequence. while the lower set of data (x) are the thermal equilibrium values. The statistical error is indicated by the point (:1:). 385 386 Thermometric detection by NO of NMR of host nuclei Excitation at the NMR frequency of the host puts energy into the host spin system and the resonanc~ can be thermometrically detected via the nuclear orientation of the radioactive spins. The host spins are strongly coupled by the Suhl-Nakamura interaction which involves the virtual mission and absorption of an electronic magnon. This produces: 1. Considerable broadening in the NMR line (absent in the NMRON line for the dilute radioactive spins), 2. A frequency "pulling effecf for the host spins: t::.v I Vu = (vo - vu ) I Vu = IAI<lz>1 Egap•o H::::AI.S For quasi- 2d ferromagnet 54Mn-Mn(COOCH3)2.4H20 (t::.vo I vu) = 0.06 0.9 ~ iii 0.90 z w ~ 0.85 ~ 0.80 ~ UJ 0.75 ~ 0.70 '---~-~-~':-----~-430 460 490 520 550 580 FREQUENCY (MHz] 0.94 II 0.85 '----~--~-~--~-473 475 477 479 481 FREQUENCY [MHz) 0.95 r ~ iii 0.91 z w ~ 0.87 w . ~ 0.831 111111 I I- . i I ""11 II ~ t II II W 0.79 i"lIl II IX: 111111 0.75 . III II I I 500 . 525 550 575 FREQUENCY (MHz1 II III II 600 w ·,le. frCAJ."'~~ "'W~~~ l I I CIINl/AWtJ.. J.11~~e. • r~1/&j -- --1 .. tl'\S TTl. LA"TI"ICE I lit: c:: Systems of future interest Low dimensional systems: static and dynamic hfi; effects of impurities. Exotic systems: "Frustrated" magnetism. lud-Sr~t\S b"i"-1 -. J "I: WJJ.. IASu..oJ.. rc.,,"I\.'~ h~l-/rr.k ~h.\(.~ ~""ew"ok ";"':,l'"cJ . So.~·l'lc... (tr,\)~""'1 ....J h '."j«r) f'cro.f'o;,h'o.t\ (coflc.. cl<lOl'r lil4.. ro..J ,~ ... ,h~:'!1 ! If- Vc.r'A.~~"I~: Co.A,~ ,{'f~r "..hfl~ . .:..Jo c.r~)hJ ... 1.....,Lt, Io.~'ll"' . . S~M. r.~Ir.'c. I~r .. rc.l : IIIOIope "11:1 J.L(run) Decay 3d "Mn 45m 512 3.6 Il+ I1Mn 1.7m 512 7 ll-llCo 18h 712 4.8 Il+ "eu 33h 312 2.1 Il+ IINI 2.5 512 0.7 ll-R.E. "'Vb 9.9 512 2.5 E.C •• 1l+ 'Mrm 2.0m 2.4 Il+ plus many others 387 388 Accelerator Mass Spectrometry at ISAC R.R. Johnson TRIUMF ISACAMS RR Johnson, Physics UBC S. Calvert, Oceanography UBC T. Pedersen, Oceanography UBC A. Glass, Botany UBC R. Sut!on, Nephrology UEC · M. Paiil, Racah Inst. HUJ z. Gelbart, TRIUMF D.Ottewell, TRIUMF R. Schubank, Consultant . CS. Wong, Inst of Ocean Sci. J. Clague, Geological Survey Use ISAC in an offline modc to perfonn AMS experiments in Life Science, Botany, Geology and Ocean Science. OUTLINE 1. Accelerator Mass Spectrometry Technique 2. Sensitivity for Experiments. 2.1 Time profiles (I4C decay) 2.2 Life Science (tracer studies) 3. Science Justification 3.1 Geology/Oceanography 3.2 Life Science 3.2.1 Aluminum 3.2.2 Carbon 3.3 Nuclear Physics 4. Apparatus 4.1 Ion Source 4.2 Accelerate-strip-Accelerate 4.3 Detectors 5. Development Schedule Layout Ion Source Room Now Ion Source construction 1 year 6. Conclusions AMS is good omine project for ISAC Triumf Life Science Projects LS 6: Calcium Resorption Measurements using AMS LS21 : Aluminum Kinetics in Plants Accelerator Mass Spectrometry. Strip 10 posilive ions molecule suppression CAN COUNT A MILLION ATOMS experiments at attomole le~el SlandordNuc:I Physics c:ounIcrs Tracer experimeniSiri living systems: Use AMS to measure biological process times with lifetimes of minutes, hours, and days over long periods in single expo LS 6: Measure loss of41Ca sequestered in the bone pool over transition between pre-, peri, and menopause LS21 : Measure characteristics of 26AI dynamics in plants FoRMS HAS NEG. 1:.0N5 -"" Hydrogen 3H 12.3 ? biochemical, pharmacological and xenobiotic label -+ Beryllium lOBe 1.6 x lOS 5-10 metabolism, toxicology ~ Carbon HC 5730 3 biochemical, pharmacological and xcnobiotic label, clini~ diagnostics 720,000 3-5 300,000 1·3 Silicon 32Si 130 -10& metabolism -~. --"!Calcium 41ea 104,000 2-5 metabolism;'bone development, disease, cell regulation . -_---.J Manganese S3Mn 3.7xllJ6 _104 metabolism Iron $SFe 2.68 1000 metabolism, labeling 60Fe 1.5xl1J6 Selenium 'lVSe 65,000 ? mct.abolisl.Il, labeling Strontium IIOSr 28.6 -1000 tracing Technetium Vl'Tc 2.6xlo& labeling ""Tc 4.2xlo& "Tc 213,000 --.. Iodine I:z9I . 1.6x107 10-100 thyroid metabolism labeling 389 390 14C UNITS COMPARED 10 pCi • I lO-9 SOURCE CONTAM! S o 10 finO! • • T 10-o Iv 100 fCi 100 MODERN L f P 1 fino! • I I • F E E 10-R 100 amo! • A lO-" • .'\ C C ONTEMP ODERN T I 10 arno! 1 fCi • G M E f p • ,.. p '-' N o 10-& 14C 1 arno! • 0 C • " p 1 I '" to 10- % MODERN C 10-1< E _1 amo! A • " .l S J. Vogel AMS7 workshop 1996 OCEANOGRAPHY GEOLOGY Measure Time profile with AMS to give chronology of climatic changes. marker for geochemical changes in the core Sedimentation Rates: 0- 35,000 years G!obal Change Research: C in water and sea floor Ocean Drilling Program: Climate history. This requires measuring samples with 14C/12C ratios of -1 0-14 . A 5% error corresponds to 4 years. Contamination and background determines error in t,ime profile. Need background levels in measuring system low, blank measurements in -1 ():lR level and no cross contamination. This is achieyed"at most AMS labs. ego Argonne., LLRL,ISOTRACE,PRIME,ARIZONA 1000 Measurements per year minimum CARBON TRACING EXPERIMENTS Nearly ALL carbon based chemicals are Labelled with 14 C. some on purpose 1. Label chemical of interest 2. administer: minimal radiation doses allow human studies. 3. Collect samples : tissue blood excreta 4. Chemical Separation and Isolation HPLC Electrophorisis 5. Measure samples with AMS. J VOGEL, LLRL STRONGEST PROGRAM examples: UtS£t..J..S 0 PHI P 1200,---,,-----------, AMS o "0 -:z g 600 c:: < c.l $ 1.25 ng/kg o,-C-~==::=:=::::===.J o 20 :10 W en o C2!5 u.. · 0 ~ 10 00 100 100 mg/kg I Scintillation counting 60 80 100 TIME POST-EXPOSURE (h) V~el ~.al, 391 392 DRUG TRACING EXPERIMENTS OSTEOPOROSIS DRUGS Previous work looking at Bone Resorption J. Prior etal. Drugs now arrest bone resorption and reverse bone density losses (eg Fosamax and Didrocal). Label Drug (I4C) and examine residency time in sy~tem. Animals: biodistributions Humans: clearance time vs resorption Estimate amount of 14C required to monitor Drug in 5 mg of tissue. (I 0.10 Level) . ... . . 300 p Ci administered in 200 ug of Drug Need to prepare initial injection away from where final samples are prepared. Animal studies: 200 samples-biodistributions Human studies: 100 samples-serum&urine VACCINE KINETICS TWO COMPONENT SYSTEM: ANTIGEN-active agent ADJUVANT-release agent Aluminum Hydroxide and Aluminum Phosphate are Adjuvants allowed by FDA. Time release character different . No direct measure of antigen release yet o g c o n c time (hours) 20 Dual Isotope Study proposed. Label both adjuvant (26 AI) and Antigen (14C) and examine time release into serum for them in parallel. Measures efficacy of adjuvant. Animal studies: 500 samples-time and biodistribs Human studies: 200 samples-serum and urine STELLAR PRODUCTION OF 26Al Production of 26Al in galaxy is 3M. per millionyrs Sources: Wolf-Rayonet Stars, SuperNovas type II Nova outbursts, asymtotic Giant Branch stars 25Mg (p,gamma) 26Al (Q = 6307 keY) measured Ep= 198 keY (Stellar React Rate T >0.2 GK) use 25Mg(3He,d)26Al to get proton partial width for T<0.2GK Experiment: Use low en. accel to do EX,citation Function 0.0<Ep<200 keY ? TRlUMF ion source? Estimate yield from widths in lJ Q) -I-' () Energy (tI .. V) 198 135 96 Q) -2 "210 ~ ,~ t. I' I I ,..,1 I I I I -I ~I Iliadas etal PRC53(96)475 Iliadas ctal NucPhysA5 I 2(90)509 Cl)gamma (eY) atoms per hour 7.4 x 10-7 40,000 1.5 x 10-10 82 1.1 x 10-10 61 I I 1 I 1+ ..... ~I!f~ I "-I --. _ ----~_ urine ----N -3 .~10 .... -- , ------10-5 ...... 1'-----J1'-----J1_----.J1L-._IL----l o 5 10 15 20 25 393 394 ALUMINUM IN WHEAT Aluminum has been recognized as a plant growth inhibi tor since 1918. There is root damage from Aluminum in plants growing in Acid Soil Substantial Yield Reductions Situation is worsened by use offertilizers with ammonium and ami des soil acidification Aluminum recognized as a factor that limits plant growth in many arable soils At least 40% and as much of70% of the world's arable land suffer from Aluminum Toxicity Aluminum Transport in Wheat cell wall xylem root symplasm - ~ vacuole - ~ ... - .... r-Transport between the cellular compartments constitute a set of linear differential equations 111 1 i Plant Preparation 24 hours before experiment · Load hydroponic solution with 0.4 ng 26AI 50 micromolar 27 Al in Hydroponic Solution Remove Plant from 26Alloaded solution and Place in Elution funnel Elute plant roots with 26AI free nutrient Collect elutions versus time times: 15 sec - 1 hr : 20 ml 1 hr - 8 hrs : 200 ml 26 AI:27 AI vs · Time after exposure /II IN JN~ fReuu("" Rf-. ~ ~- ! f--1 t f I' 395 396 26 AI:27 Al x 10-13 vs time after exposure m JfL 7W;~l:Y::R7'" IN .--preeL IMINI"1;ey. ! i , • ~ I I ! I ~ ! 1 1 o 5 15 25 Section V PARTICLES 'AND SYMMETRIES . Convenor: J. Behr . PARTICLES AND SYMMETRIES AT WEEIS SUMMARY John Behr 399 A great deal of "fundamental" physics was described throughout the workshop. Here follows a summary of two sessions explicitly devoted to such topics, followed by a summary of the working group. Summary of Presentations The first session was on precision measurements in f3 decay, in traps, dilution refrigera-tors, and by more conventional means. Eric Adelberger from the U. of Washington in Seattle described progress in searching for scalar boson contributions to beta decay (in collaboration with Garcia from Notre Dame). The f3 - v correlation a is sensitive to such contributions. It has been deduced in the f3+ -delayed proton emission of 32 Ar by careful measurement of the shape of the proton energy peak. In the case of the 0+ ---t 0+ Fermi decay to the isobaric analog state, the shape is dominated by the momentum spread of the recoiling nucleus from the f3+ decay. A "not even preliminary" number with an error of 0.025 disagrees with the Standard Model answer a=l by approximately 20". Work on the detector lineshape continues, and a new experiment using a large solenoidal field to remove f3+'s from the proton detector is planned; eventually higher-resolution p detectors and a higher 32 Ar flux with excellent purity is desired. The very clean 32 Ar beam from ISOLDE is essential. (Comments: correlations in fitting between a and the natural width are small because the shapes are not alike. At this level of error, it begins to be necessary to include possible contributions of the scalar-vector Fierz interference term to the constant term in the angular distribution (linear in the scalar parameters Cs + C~, as opposed to a's dependence on ICsl2 + IC~12), so exclusion plots of scalar parameters are offset from the origiil.) Jules Deutsch from Louvain-Ia-Neuve presented Nathal Severijns' transparencies con-cerning searches for right-handed currents in f3+ -decay of nuclei oriented via low tempera-tures. Measurements of the longitudinal polarization of f3+ emitted in 107In and 12N decay placing mass limits W R 2: 300GeV /c2 in left-right symmetric models were presented, as well as plans for 17F. Direct Fermilab collider searches are now at ::::: 700GeV /c2, but nuclear f3-decay, J.L decay, and particle physics direct searches provide complementary information in non-manifestly symmetric left-right models, because they have different dependence on right-handed gauge coupling and CKM matrix. Gerald Gwinner and Mary Rowe presented work at Lawrence Berkeley Lab's 88" cy-clotron in preparation to measure the f3+ asymmetry in 21Na in a Zeeman-optical trap; here trapping technologies should produce highly polarized samples, with a source suspended in space to minimize f3 backscattering. A Zeeman slower is used to pre-slow the atoms before trapping. Precise microwave spectroscopy [which necessitates turning off the lasers and magnetic field of the trap quickly] is working on 23Na, and being attempted on 21 Na, with the eventual aim of using this as a polarization diagnostic; some preliminary results were shown. With 40,000 21Na atoms trapped, f3+ asymmetry experiments should commence soon. The mixed Gamow-Teller-Fermi decay is sensitive to right-handed currents. John Behr presented progress of TRIUMF's Neutral Atom trapping project. A Zeeman-400 optical trap has been linked to the production of the the TRlUMF cyclotron's on-line sep-arator TISOL (and will eventually be moved to the more copious ISAC facility) . The same physics goal as Adelberger's collaboration is being pursued in a ' search for non-Standard Model scalar contributions to the /3+ -v correlation in the 0+ -to+ Fermi decay of 38mK. Here the ZOT enables recoiling nuclei to be detected in coincidence with the /3+ so that the v momentum can be deduced. Several thousand 38K and 37K atoms have been trapped in a vapor-cell ZOT, and several hundred transferred by a laser push to a second ZOT which houses a /3+ telescope and a microchannel plate for recoils back-to-back; in addition a uniform electric field allows efficient collection of most (eventually all) of the angular distri-bution of charged recoils . Coincidences between /3+ and Ar. recoils have been demonstrated. There are more charged Ar recoils than expected, and higher efficiency for Aro detection as well. 37K /3+ -asymmetry measurements are also planned; coincidences between /3+ and shakeoff electrons were demonstrated , which may allow recoil asymmetry measurements. David Vieira was unable to attend. The Los Alamos group has produced a mass-separated ion beam of 82Rb from a 82Sr source. Efforts are under way to trap 82Rb in a Zeeman-optical vapor cell trap (using a neutralizing foil within a Dryfilm-coated cube). The decay of 82Rb is dominated by two Garnow-Teller t ransitions, and a /3+ -asymmetry measurement would be sensitive to right-handed currents. Wisconsin was also not represented , and is also planning /3+ -asymmetry measurements in 37K and 38K (ground state) decays. An efficient' transfer from a vapor":cell funnel to a trap with a /3+ telescope has been demonstrated for naturally occuring 4oK, and the trap is moving on-line. The second session was devoted to atomic, ionic, and mass spectroscopy, in both neutral atom traps, ion storage rings, and ion traps. Wengzheng Zhao from Stony Brook described impressive progress on precision atomic lifetime measurements of Francium 7P3/ 2 and 7P1/2 Ievels, as well as the location of the 8S1/2 and 9S1/2 states. These provide tests of many-body atomic calculations necessary for de-ducing neutral weak coupling constants from planned future Fr atomic PNC measurements. A vapor-cell ZOT captures Fr produced from the Stony Brook Tandem/superconducting linac. The ZOT provides an -Optically bright sample of atoms; populations can be moved to desired atomic levels, and perturbations of the atom by trapping light and magnetic fields can be avoided. (Comments: of the two existing Fr calculations, one is ab initio [Dzuba et aI., PRA 51 3454 (1995)] with estimated error -1%; the other partly empirical [Johnson et al., At.Da.NucI.Da.Tab.64 293 (1996)] with estimated error about 2%, eventually to be done better ab initio.) Harvey Gould from Lawrence Berkeley Lab presented the possibility of a Fr fountain to search for atomic permanent electric dipole moments. Constraints on electron EDM's are beginning to constrain non-Standard Model predictions of time-reversal violation. Sev-eral technical advances in efficiency of collection- preparation of a clean Ac/Fr source by radiochemistry and electrostatic ion collection, a highly directional "orthotropic" oven for alkalis, and a vapor-cell ZOT with record efficiency- have enabled the trapping of 221 Fr from a source at JILA. H.-J urgen Kluge from Heidelberg presented precision measurements at GSI's storage ring and the ISOLTRAP Penning trap at ISOLDE. By measuring ground-state hyper-fine splitting of H-like 209Bi and 207Pb, QED is tested at high fields. The possibility .of atomic PNC measurements by nearly degenerate states in He-like U is being explored. The 401 ISOLTRAP is now a 3-trap system and has trapped Hg isotopes directly from the ISOLDE beam and made precision mass measurements. Guy Savard from Argonne showed the next-generation improvement of the ISOLTRAP, the Canadian Penning Trap which features a more uniform and stable B field. Precision mass measurements to deduce superallowed 0+ -t 0+ Q-values (input for Ft values, hence the absolute Fermi strength) are planned. ,8-asymmetry and ,8-v correlation measurements are being contemplated (the B field allows essentially unit collection of all charged prod ucts) . Tacked on to these sessions was a presentation of 100 /LA target work by Will Talbert. An annular beam is much better for uniform target heating. Much development needs to be done. Brainstorming in the hall suggested a Gatling gun of 10 targets arranged around a cylinder, taking 10/LA apiece, with beam sweeping around them. Working group summary The working group was devoted primarily to concrete issues. Comparison of the low-energy area to ISOLDE was fruitful. Concern was expressed over the small amount of space in the low-energy area for general-purpose scattering chambers, particularly the need for adequate shielding to setup one experiment while another was in prog"i-ess. The need for clean beams (at the very least, clean of molecular contaminants) w~ stressed. Although a surface ionization source can produce 74Rb and 38mK (and perhaps 62Ga) of interest to the Canadian Penning Trap, an ion source capable of ionizing higher-ionization-potential species is of course of great interest, both for survey-type mass measurements and for specific species of interest. Concern was expressed over proximity of the TRINAT lab to separator power supplies, although those power supplies are already being carefully shielded from the separator. Is it possible to have low-intensity and high-intensity (hence contaminated) general purpose beamlines? Better vertical use of space will free up floor space; it was agreed that TRINAT's more precise laser requirements (vs. ISOLDE's) preclude this possibility for TRINAT's lasers, gladdening the convenor's heart. User-friendly ability to change masses quickly is useful. Some brainstorming was done about polarizing atoms in ZOT's, and optically pumping recoiling Aro metastables to the Aro ground state to turn off the signal (hopefully allowing deduction of efficiency for neutrals.) 402 The Electron-Neutrino Correlation in 32 Ar Decay E. Adelberger University of Washington (J/I apo/09' ./6'1 AMPS £}.D t-/I (0(((/4"011 as 0. pro6c ()/ IIftJ .4~/ics e-\l corrt.I~+io~ it. 0,. ... 0+ ft -dtC'1 • 01\1, ~ S tAn (ohf,i~()e In pll;'ciiir • I~ Sfat<tlattl !l.otitl 01 /J,Ju,J tr/(PillN N L-I?. ~1fI1I1dl'lJ V ~ • ....:; e+ } Ittthlilrl~l-) : "J" fJ;MtrV,.{ioli fCf"irlJ 11 ~. ~ e+ e'(J' fo;,.,c [NRC J..cfti';~ 1",6iII, .. &, J" tDlllt,",.~ii)h ntw p~sio s"ta"dll.d IMeld 4-l\edlb.J lldtl\li~"s !-V COl1tlJilh It ~~M.~-ant n;",..{urf of !JI.tiriu 6(~'M V~1(A .renrif1vi-i'1 01 . e-Jl . COmlJ,Oh 10 ntw 1J~'i(J /p 01.-,0' /raMilloti W{Olvi 2 Ita. 'til WJ Btl' {Cllr.lcv'I'-IC~/"-ICr'/1. \ /-(; E-'Csr"./Cr'/1. f).: IC"I'-I/e,,'1' # /Cr/'-f/CIJ1. :: Ii€ . ~/c"rl{clr o.~I1~'~ ff{n, ?HJIt INJ: IMUhHr.'C " ItMll a iI INltptNlfJ 01 palTll; ( /tint «VH1,..{ propeth"t4 or lIj S lit1t,Nliws 6- like r ~ 1l1} IrltU/tNfI(( htliitlt\ ~ S ~ C(lrc.h IIIt().I/ ih~tffertl\f.l vanisnc.s bUlllft "tlci~ J"I«hJ ~r< ovtko~o~1 (VI C~ ~...L 1'.1'1. ~ Cs) C;· /I:..-L /r11. y. Jo I-a. ~ 1E :. MWUtt.JNtJ of t2 ",ill.: ...,/'/. e",m A4J ftArrittilltj !TJ ~ ~ "MW • J) -:, evv dUll, allows .flu,,'k S If'II Iw (((/~/;' /lIt"", P"pfrllfJ (lIJ/io 403 404 I) sffArJ'j mDiI Awi!; • (Jill; 2 PfCClJ( h/(II./u/'tlilt,..h: 1J~ 6/1, 1ttiiAu IJ pU,rc (UMj Q'l • Pl'V6ltM: CR '" ~ ,.. JOOtV ZltIe' 2.) SIfA.J~ .(1- rJ~{' .fAil p4,ltr,h • erttof U QIIYJI'rI"J _ ... , / /' III 1/. tI £,,: VtV' .. _ r -~ - 2Me'" . M'" v....... Slim - (0 1. 6L"l~ {(leel • fit!,.,,' /1amelr (Mill,,, IJr.ltJrr (((DI1 ~(ll JID",(I (J/INn Oi lvtl\ d'~~1',f Ik tltt/QII aliAS hill iI ! n Ar ~ '1~ Cl (Til) L, p+'l1S ttJM/1S fpuUi tt60tJ nAr? ~ Of-j 01- rlAp~,.{((}wr"l ~ j Sb~Plh .furbirJdt~ • ellerJ is '" Itlll1perv/tr.10I A 'V' A !l.!.. A£ GJ-.I t A ~"'A • SfApttplow&l Q'~ I~ltp 1fl&fiA#) wWh A • {Pn /Mkt A fI~ IMI'C TZAr .roufC( Cla,./iAW· IJ /ltd Ii} ,0001/;,fll E:- P cI tfeclfIf 6) P J/ittltJ : 112", PIPb!flrI,: Mid III /etlaN ;3 I!.iiwrll-iitl ClCf~ PIUlitl~ ( tftlt/Hft p/~/o~ 1,~(j~fJ( CJ f:- P drlttlo, pfo!Jlf/rJ: II Uti 10 k/lOvJ deft:&'ill' «!pIiM( /5334 (Vpt"ir.,,,+ AI ISOLOG 5ealfle J NHtt /JQ/ttt) ISoUJ! . to/la~P/AIJO" '2.1p~(o",'\. ~ "l'lArbtet .... C 10\1 L ~ /" 1'1'1 ~d rJ.. lourct > .L --'-{" , ..... t--.... ~olt' q~M" ''''''' P JIJ diixJt At:./(p/uh rtCol/ '" 25" ktV A£. IJTof.~ "" /,," '" I lull P ~ .O~R~V . fA""/", 1 iJ · t /r.,ICpthti,,,.t rell.llvirhi U,"k tail/) Pf01"1ff4 Idr Calr~.II""~j It,.. !tcIII., J'''lJm/~1 dltoll • ritkrlw /lffJOllle pRIIMe/(fJi,,J ~~ ~~uilli,. f 2. ID".f"(~, ('t~M",{,AJ +/Atlr • ().llow S p."ICS, o.f H1/I~/~ tD tloAI 10 ,tl 6tJI Iii • IINI ixttl/lr.l.frl ~tlJ.. a '" O·H~ O.fnt Q~ IfAf.MfJlt ItJPfJhlt !U"ell;" 405 406 32Ar shifted sum spectrum Irom ISOLDE S.Ocl'9S 10AS o n2 = 8189 sum - 3.566E .. 06 cenl = 803.6sl 10A4 1<Y'3 '" C '10A2 ::> 0 0 10Al 2000 60CXi 7000 8000 ar32su •... dal ~hanncl In ~NS pM /()JM!ff .. -flll\dIV/! Iru fiN:; 1 l,j"' -{"'{I~, tail . 32Ar shilled sum Spectrum Irom ISOLDE 5·0cHlS A=32; Z= 17; Ex = 5.031MoV; ace= 11 .150MeV; gam = .050keV; wp/wo = .821.9Ocm; 0 =1.86cm shll = .(-2; Iwhm = S.668keV; frac = 9:l\1!3; Ion = .2.S9kcV . l~I~~~=c~~~~~~~~~'-roli~:r~~~ 10'13 0; l0A2 ~ .. .c ~ 'E :> 3 lOAf lOA-I 6550 ar32su. .!odal 6600 6650 . 6700 6750 6IlOO 6850 C!l.. .lelnumber supu ",IIi) ~ cot OKXr)r. (lio.k l'tsolcJio", ~ SpeOWaI'I Cltll,,(' .... u.s wu ~tJotl (jl.w.~J. 10 JAof,J . +M-I r ~ S'O(V! 5N.allttI Wid!/. tV&<! MtaJIJif,j . cltJUlf':J ? . 32At shilloc sum spccltum from ISOLDE 5·0ct-95 A: 32; 2: 17; Ex = S.C31MoV; ace: 11.15OMoV; gam: .000kov; wplwe =' .621 .9Ocm; D = I .06crn shn = .02; fwhCll = 5.668keV; Irae: 9.683; Ion: 2.59keV 6850 6700 6750 6800 ctl.. .lel r.umber reIrJl IJ /lui lIltr. /JrtlilttlltllNj - 1/{(,1/iJ MIlk ~m C/I.~tkt mw/ uhdert!RN! time/oJ' ffrpO"" qUlllllrla{liI'0 • ti(aJ IfUJw • tlfe/RllIl rIr#oSfui; • AfAlJtll tIr~u !I~, . IMptJri{lIrf. tl"f,/~~..f()r . flt/", ',rs I" plt'hDAI ~ fl) f~il IS331/ ddA Ihclw/,J IlI14,t #( lou", 3.1'; /1(r! DC ~ • If {,y( (Ah aCt/unf lor ()(, II;', .r/rApf. OA/(,t In P~/i(J tMlti/{fl.{t;Jt/ 01 INn w,~/ IJ( t/A tti/fw/ H'( c~~ t(NI~f"",( IJ /J;'IINpf 6850 407 408 M"" 'j''lC'l l~ptll';'eI\.1 p.1 I[OLDc A. 6eltciQ : rp"KtJ wn) Mil /'fin 1J.it JfAmtnlr • IMprOI)( l",rtt"w,/( lfM o~ f.ftiYt/M-II~' (J J'"Mlllln~ • I~P'UfC JI~l(f/,{~ ~'1VY1 3T 1 I ~ ifA{Jtffl."dllj..J . Jo/tnrJ,(J '31A~ ~t- c {'Dil I~e-J (!. c::I I I CJ t-~ dtledm PIIJ divr/t e'ipttilHl~{~ l;",pf~v(",e",li lor hU'/tllfJ ~u. flfArJ q'""" ,lillh lvptr • AI5htr f{/olwf/~r. fJ d.tf!NI)U o 11I5At, 11,4,. /111'111 {,.,tlh ''Itl/It,,1 fJ('(tII, ~Symmetry Tests with Nuclei Polarized at Low Temperatures 1. Deutsch Universite Catholique de Louvain ~ f:>R. "Ri~~ -~J.J CAJ~e'll:s in 11U.c.~ /3- dau:.:y. NATHAL SEVERIJNS KU. LEUVEN nd ua.. LOUV AIN.LA.NEUVE PILD.sTUDENTS: (/NI01): JOHAN CAMPS (KUL) (NIl): ' ERIC T110MAS (UCL) • 5 oK ~~. ~- rid'oliM "" ~ If\~\on (V-I\) { 1ofi. • lCL CA:6 ~ - 14R &\lIc; VL ... 1(L &ill C; + Wit c:c& c; * .t1o.rifd: L R ~ moJel': z. & = ~ I ~.f 0.0035 (~lC.L) .ttl. Wi .. ~c",J U~ ~: ,: yJ ....;.:.;:-- 0 J ••• ~ Y~ 409 410 .t. stot .. s 1 SeaR& fOR 'RH c.( l'" HLRS tnoJee) (X1WR eow~ £\m~1:& QAe. ~ ~ = 0) fill : See daQ.1.3i~ III cc,~ '''~no.(~''SSiCLJ :Ff /:E~T: ~ ~o.Ja)in8- LLlf 1t9tWni.~J Co.a",et..t ~Re~!1.)u 4.t 1f: Mt¥R >:tiD ~Vfc2 (~: ct.) Reeet -eto.f. } 'HyS. r..1t. (:1"6) > 303 E.1t>omo.s e.f:gf." to b& ~~ .. ~1-r • -'-11 • 1>1\ : > .t.50 ~veR~~ tfof.,{YRL ~(19'~) 404-1-rRL 13 (:t",,") '11. (E.) > 30.3 > .t8!l. Ce.mf:6 ~ cf.. IQ ~ ~bf. KlL2.ne.ts.oy ~~aF.} .JET~ Le1:t. 60 (:t.".,.) 3~S • JL - decaJ : • fP cdfi1.ionS : >~6o ~Jc..z. R. T.~ ~f/.. {~RL ~9 (:!99t) 81l .tL f\o~, ~..t. ~R:t> 50 (t.".,.) ~, .t1WR > 651 ~VJc!. (,S: CL) c:oF, :fRl ~lt- (:t',S).z.Yoo &=[~r h.t (~ "f"/c~) 0 . .%0 r/1' .too us 001.0 0.05 0.00 "'Re.sJb f ~ u\h.tiv-e positR011 )'Oe..\\i2.ol::ioo ~~~\~h. '"'\~ fOra.RiZ.ed "'hucli~ o.p to 11Ot.r: Jfu.c.&...s ~:r"l'l :fLjf ~Jf ~.rT\ "Resu..et ..t1w > -. ca,.."1et.. It (oTi;) 2.. (90l Ct.) (~='o) - 0. c:co~ (58) .1.58 o.()O''t (1') .u.o O.OClO't~) L. .tt\ij > .306 Gft.Yfcl.. R -0. COO Ii- (M.) 303 . O.CX'>.f.~ (~) 30~ prA-~ G>-Jo;Wl~ ~e~c.R: i -re 4- e.;-~: O. 004-6(~) '- 1f~.> ~o Gte 'I /c z. (!loG Cc..) 411 412 O ..to O.!.5 o.!.o .lSO O.OS 0.00 , , -0.06 -0.03 o +0.03 soo 200 100 O~O~2~'4~6~+8~10~12~1~4~16 m(v~R)(MeV/c;2) .. 1l • .Jed;.11o «.t. J %Rys. F. •. ~~ (l,8S) ~~~ (£) I) M .... J.,~ "'-' .. f·f ""i!~iI3 f ",:1SiWJ 2) ~ tqs,J .f .""~ f IO~lfiu~1 < IJliJ: .swit.\'e io ,to;lI~ 'O"r'iOj . (P.~) ..IfJ"~ : fJ<teR\'tfI~ il'\ .3 ~c\I,) ~ ~ int~o.c.hon aRe. CoTn~i'e--rnent~j irt ?~CLe LRS - ~ees r ( L..,~ ) ~a 0, my. <<.. ml. r L wR,L 0,251 ----jlr============:::::;] Ie . -.- limits from CDF 0,20 ...J"O ::J 0 15 > ' -0:::"0 >::J 0,10 -N 0,05 1000 o 800 3> CD C) - 600 ~a:. I/) I/) cu ~ .\ e -e- limits from £1lf ! (this work) @~ i\ ""-e.\ -=&..l..cl@'SlcL/ ! ~~~ /. ~~ /e \ /~ .t "L i> ..... ""'j. /' -.-.~ 100 150 200 mass WR ......................................... .... 250 (~Y/e") --CDF -- ~data - if' '1S~y --pdecay ............ 107In."J(" O~...J-~...J-~~~~--~--~ 0,5 1,0 1,5 2,0 2,5 3,0 9F19L 413 414 .J>!.ItIlJ...ti ... fI{ 'C t f-n o.m...,.J B-.... y c<f otiented ~, if \I b ...t ~: ,. [-+IT. J.J(t "",' +(J'f R]} T-~ ~e .Iv. : C<lUfnj stlt~tf , felt"'; f"nc.tion ,':ue .,-:e. • j. .l.. :: :!. F ; ]. nu.&.t ,...6imbcn E C e R· 1'>- Oolt-'JIIY ~.~ co;. ~izohOll ""'ffioi erJ: .J(,~'. ~.-~. CdR. -ffJ.. 'R"' TRYcoeg.eunt L. S,R,Y,T L....r;l..d.....e t!D.lti~cn <f ~ts..0T>S eJnl ltaJ I,-,..MaiuJ -Jet ( 1"0JIiuJ:&.., -04r-"J ~-): 'Ro c <Ff J Gt can be -1 fA...,.r S-.~= .f: RUe:.: .~lRS: I:J. = OZ-• ~ LltS: A= (~«~) It-(P.Jft)t ,,& - (~.JfJ) iT r (~- ~.Jp.) ,,; 1y.~I~ &1-,; IT~I~ @ ,~ ~L I • A::: "tc ,I. _ ('J~jT 'i IY~r 1111 Y!:!£·o.tt \ ~ 1D1rl1: ~ to ~ %,t-Eo - .t.~ .HeY ~ FE: E: 5.' fRetrigerato1 Magnet (3.16 kG) 10 mK ----+--J~ Fe foil 101In beam (-lOss·1) 11:/1 :,-£ lSolenoi~ (600G) ~ .tAfis bd:. -olRi&J 11> fot~ IPolarimete~ (9.S kG) 415 416 ; ~ l:&_-.u~ ... u..y ~1hfI cf rd"'"''- ~oC sIGhs : 203.4GHz o 8 12 8 (kG) :FosJ......",. ~ .srJa- in ~~ .pt81: Jf(t)~' • [Fe,) ~ T(') • ( .. t E1) {(!J r' .J \ ~ =cl:"~la, ¥ ~.fs) . ~ ,.t.511) .. 417 105 MgO and AI time spectra 1(f ~ 1cf1 c: :J 0 () 102 101 100 -100 0 100 200 300 400 Time (nsec) 100000 Zoom on PT-region 1CXXXJ ~ 1000 ~ c: :J 0 () 100 10 1 0 2.0 30 40 RUN 11 .e-/!. 1.5 1.0 0.5 0.0 0 10 20 30 40 Time (nsec) 418 1.2 1 -;:================;:-----1 1 . 1 0.9 Ratio of Ps-spectra (down/up) Run 7 (co/d) Time (ns) • .!:>1st..mol;i~ -effe.cts: • ~\"d- In Fe f~£ &.oJ i!:s b .. c.~in~ : ~~""tn\:s 1oI~ cs~ SWI\.I:e ,.Row ; * o.ho."t "t f rsirRotU .sc...Jtu-J fr :sc..Q,.~\n~ m«Un~ I", f~ diR.chDn (.f..30 e) '- COR~&ClI'I ~t.~1.\)W'I ~~iZ.&1"r¥l e..nJ &st-ely G~d • ~ ~ ~ il1l~re.nI:o.bOl'l ~ en ~.d~: 1!~x. /'1.~, = O. '9'3 (4-3) • tec.cie bms (B.R . ~ / 8.11. ~ : b J.l:. i L jt.. b Rc 'T' ~ 1 fte ' fILe. ' ~ 1 1 ~ inJuuJ t..nSot. ~eb~1I\ tT~T~\ = D. ij'50(4) ~~ . • i~ ~ ~""~ ~Jk.. ~~lc-ee. (.fo.c:Q. v) & : ~ spf"etnolic. ~ds ~nif«asJIf ggJ~J ~ ~m(na.teJ bj ~~!'ab:~ ~~ 1-~-."t .f E:R~OR om £",_ em 1!k,2 ° 6%.. 'Re"",f o.oo.t.J> o. O«JIr EuOI\ .... p. Y!e O.OO.?>%. O.oooT ~o.ss . ...t:iK 0.0005 o.ooo!t. EIIRC>« <m ~ 0.0055 O. OO~i T.toi (Sfst·) (). &0'1' (),OO:!.ft. stobshcJ ~ ().00*'8 O. 00:1.0 ToW O. coSt D. CO:!.r • ~-~: -J.'ff; (rtrYRo : ::! 400 Gterfo.'- , -J.9.1ie; H ( IRloc:.eb) , ~H; R 11 ; 1;, A, R/~ ("'jolJIi...o.., lfi5T, ILL) .:t. 4m re,.Y/c.t. • JL-~1: {81" r, l}&~ : ::! 'so "'ttY/c.'- (ill.iUHF) P'I!.. : ::! IiCJ:> <iiifeV/eL ( %SI.) • coffi.lus L {,.~: LE~ : MERFI : , -J.oa'J IC:ttY Ie r.. !:! 600 €feY/c/. ::! 700 ~ff!l.. 419 420 21N Weak Interaction Studies with Laser-trapped a M. Rowe /G. Gwinner UC Berkeley and LBNL in collaboration with: S.J. Freedman, B.K. Fujikawa, S.Q. Shang, P.A. Vetter Why I a5er traps ? Sample is - Spa.tio1'y confneol to mm3 - no host fai I I bt.\.ffer 80.5 -ex~reu..te.\j Cslld · (T ~ 100 rt<) - i 6Ofopica1~ &.lec.five. (i""~ <>L.if/s ¢ kl1pa-f= SflillilAj) - -tn.p e.x:erb no force. On dautt/,der aJom =9 /!> as~ mme.+tie.s fo-y c.O.-ret c:t 1; on.s + more. (APNC B.c) Principles of an On-Line Trap ChAIle.nSe. : e.ffic.ient tronsF f'1M. 7cl'3ef -to +ro..p wlni Ie.. coolinB fue. o..toc.u.s tOJ3e.t loven 'MeV' • 601 i cl to.rqe.t • fa..st f'C.1c.ll.sc. - pOOf" VltCw.tIrI (>IO-'io«) - hia .... rQ.C£io:hOf\ tra.n~rort ~ior) • eLi ffef"eYI-/iQ.1 pu"'pinj • fa.dia.tion .shieldi~ • r~cool a.+oms - be£lm clivu~e.1ce. 'e.V' tra.p / ex:pe("irn~tQ.1 OJU:\ • T< INIK " Opt\Ol.( f m~l'I. mllLC.ipulttTfon • "i3k Vct~ (" [O-(O-forf') 'tx...." ~ /0 .sec - trap .s~(ow - MOT hoS qc..c.a.dtup:>(e. -Held.. Target Oven I Atomic Beam Source atomic beam nozzles (Ta) lid 25:1 ~ Ta ribbon for resistive heating \ ~x ~ 2 MgO disks, 40 mg/cm alumina crucible (900·C) 25 MeV protons, I uA t Y2. C' No..) = 22. &!.C 't:OVUl ~ \ sec 'toVUl+nonlc ~ Ssec. Oec:ayof JINI " 1100 prodA.t.diov\. ' '" 10 Cf 9!C' ~ ~+rQ.dioV\ '" 2% oL~'-!'-~~~~~~ «Xl 800 1200 1600 2lXO --".,-\ 421 422 F Doppler Cooling Hyperfeinstruktur der D2 Linie in Na-21 und Na-23 3-2 ___ 1-0/ Trllp Lascr Rcpumpcr 2 1 -- ----___ 60 -30 MHz -15 --5119 III 11 (D2 Lillie) ' 'Pro he' I 2000 MHz Grundzustand in schlVachcm Magnctfeld -1 U3L 83" Co..ve 3 Laser Trapping Facility at the LBNL 88" Cyclotron MIRROR ----x.-~~L-..;;; 1J4P1.ATE Om FREON COOUNG 1.14 Pl.ATE SLOWOOWN SOLENOID EXTRACTION COILS 21 No. prod. . , .z~I~ flux of o.m...u thro"tjh MOT , I in 6000 wi-lh Tro..nSVU,le Gool;"'j , I in 800 eff.of ~" .$1 0<.IJe(" , 10 Y. Cave.. S MOT -!J-:-i ..~~ PHOTO DIODE -' ~m~ 5(}()() 4.fo~/.sec CAp!<c.tec{ l...no M.OT QUADRUPOLE COILS +r<tp lifetiu..e r i BALANCE COILS . ~ FIBER ~\ TRAPPING LASER BEAM "9 ~ 'to, ax> a6: SLOW DOWN LASER BEAM If-o,ooo 21 NQ to 0.. fflS In 423 424 P Asymmetry Parameter mea.sure A wit!. 17. o.££l4r .. "y: • sensitive to .. ". od .... jttlAte of Rue'5 -str-en,tJ, ... G/ - '/"''''; =) ('/IrIUI.)~ ~ 17. III .. .,. =/ m", .. ~ It;o6-~V ". . '.r"r d./. ".f/I.,.. r;.: /I.d. f.rl . ¥ . ISO It {I'tt, r23 ... • 3SIHcV-oMeo/--"""'--In tb .... IIoUlu o.pprOlti,., .. tion decAf oDserv .. tions d~ on thrc.e. p .. ro.rv..tu-s : a" e" <,.., C = CA <!cr"7 (,F V.,J I <11 = < If'of I P I 'f{l ) ( <~'7 = < 'If 1 ~ '; .. r,. {'Ip ..:.-(.leur cortt.!JioIJs..,.}y Mpe,.J ." #re. retio tAlc) f!& 'expui..uJs· : 0. "I H (0+.,. 0") ft (al AI.. Mjrror) -=7 G A U·,y .. ) Is A cOllsisfe"t wit), tire Stond&t"c/ Maciel preJidion? A (j -tj+/) = ;~I ""- 0.60 A {j~j)':: ~ - ~ ~ P Asymmetry Parameter lIN 2fN ... 0.. -. e.'" 'Ve + e • c 5U(2)/\ meo.S4lre A wit), 17. ,,""'r .. ~y : - sensitive· t. • ''7. ..dlrliJt .... re of RHC'5 - str-en,tJ. "- G/ - I/",U/: =) ('/I>1"'o)~ ~ 17. ,/",,,,< ", (GeV/c :1') ~--~~,"r-~--~ ... ... ... " .f C. f A .. , .. r.r clis1rihafjoh of 'Ik !>tttS : " ...... t, .f~ .t ,.-it,..,. df 0(, / ... AP ~ coSe dA. ,. or ~ Ht_ ~t.·r~:.t:." ~ 5"" .. J I"'.tr.r.\ ".koc.'~ cyJ;1I9 St:kJ"e: I. coUeet o.tO'" S (g",s) ( /OM,S) (2"'5) :1. optj,,,/ , .... pi_, 3. co ... ,,1 {3 's How IonJ w.ih A ("No.) = 100)000 o.to .. s to Jet 0. 1"/. A? . g (, SO II 1': f (I +.'U) lIt.t : '<1"'JNto't NJ, : i (1-.8')111., : ,07 AIM heed J 7. 011 J,J + =) Nt •t = :2. x 105 Co«'l1ts time:: llC/OSCOIUIts " 500" 11 I< :22~c " __ 1-.-7 ./ 105 ... to",s . Solid ""Ie -'" c),"'e = 70 h .... rs 425 426 Hyperfine Measurement: 1. coIlt'Ct atoms F'=3------3P 2 Y1 F=2 35", J " I"JC"'_K ~ 1 Sfliti;"3 : 4. rfpulse 1772 MH2. in ~"N .. 110" ""H2 ih "N", F'=3-----2-----2. op~caJ pumping F'=3------, J---!---o---!---.- = 2 -----'---Xxxx>,x s. probe F' = 3 ---r----J---t----0--1---Fc2--...... ---23Na Hyperfine Resonance :l 50 c " 0 0 .. 40 D ~ 0 ~ Q. 30 "" .. ~ iii E 0 20 z J. - quadnlpole magnetic field olT - constant holding magnetic field on - all lasers olT r4""-i iJ,is 5~1 dUlj;"J H.~ rf fr(.f~~~~Y to _p t.k. re SoltO.nee =="l /l.,b; p .. tier" : p ~ ~'". Si~'{W·.?t) -'l +0 Wr.r - W. w. " 1; Eltfs 1.771624 1.771626 1.771628 1.771630 1.771632 frequency (GHz) -1.JIen wi1J. 50,000 atOlllS for 5 milla.te S - rf pulse:: Ims I /.(, T pcJse. - re$OlWICe shifte.! by /., KH% (, is 9D.u.ss) '" c 30 e 2S t ~ 20 1 c IS Rf induced ground statc hypcrfmc transition in trapped liN. 1906.47 1906.48 1906.49 1906.50 1906.51 f""lUCllCy (MHz) polo.riz.Ln~ the 5od~1(1?1 : ""f = J JPJIl 2 )",,", '''''''' ... . 1 IC:;,;~ . a cr~D'''' _...l-___ .. .. .... .. . . . .. . ..~ ........ . -I ., ,.,...,1,s tile. FaIJ"-F •• 1 lr..w./ Off" ~, 'H.q'("J" ;~ F=l, .... 2 ..... ;t" 0-ili",;I.r 'c.Ite".~ +2 +1 ~;IIO .. ............ ...... ..  .. ..... . . . .. . . . ... .. . . . . . . 1. .. . . "0 ... ... . .. . . ... . .. .. ... . . F=I o X IlttC -l.oKIi~ I Ior ... .1 ... ;o., dOle t. ",LN',,,i 8-f';,Y l ",h ... oSI.&Cttie s (e st ...... 1" fr... tk. "'i~U of 0-4() p"") 427 428 ... f I> Ii f Ii f: <; T T .. .. <i ~ it h f 1 h '7 C I II i MICROWAVE FREQUENCY =7 pOf",I".tioh 5 F~3 ""F ~ ·fr. d ;.1) 3 o. %5 2- 0 . 014 I 0.007 0 0.0 0 15 -1)-1,-3 o. DOO 5 -Mctsteysoll et.AJ. ) Ph,S. Rev, Lett. Lj7) 113'1 09'13) - (l 5(,t.ffic.ient "~",,bl!r of a.tDJt1 5 tD sta.rt !.3 d~CA)' exp~ritrt~hts - micro WAlle. Sp(!c.trD~CD'p)' in f'''9rt!SS for polAriZAtion m~tAs"reh1ent s (3 dete.ctDr is beiltJ deve/o;>u The ~2Rb fi-asymmetry Experiment: Progress and Plans D. Vieira Los Alanws National Laboratory Outline (15 + 5 min.): 1) Traps & accelerators for high-precision electroweak interaction studies 2) ~-asymmetry measurements in a pure G-T transilion 3) Efficient coupling of a MOT to a mass separator - progress towards trapping 82Rb 4) Outlook Trapping Radioactive Atoms • Advances in trapping aloms (and ions) opens up the next generation of high-precision tesls of eIcctroweak interactions. I) Parity violation in the charged current sector - I3-v-polarizcd atom correlation measurements 2) Atomic parity violation - tests neutral current sector 3) Electric dipole measurements - test of time reversal symmetry • New Technology - magneto-optical + pure magnetic traps - high isotopic & isomeric selectivity (near resonant process) - high concentrations (1010 atoms/cm3) & long confinement times (-100 sec) - cold «1 mK), point-like (typ. 1-2 mm «1» sample in UHV environment - high polarizations (P > 95%) and easy manipulation of sample • Radioactive atoms require efficient coupling of the production source (Le. accelerator & separation system) and the trap. - key to efficiency is sample introduction w/o gas loading - Los Alamos effort focused on the mass separator - MOT coupling approach _":.~,_ .""'[:~,,, ~~ . .. ..... :,,_" ~ .... , . •... ,, ',1 . • ;: ;, · · ~ ~":~f~lt? .~::;~':~ ;;-' .. , .... ~ .. ,," , . 429 430 Wi,iifA\mtgR!}1 ...... .... . (75 s) I ' " 82Rb~~asymm~iryExp. · 82Rb X(E,O) = A P P(E) cos.O. (1+ .%recoil corr.) ',''' .. ': . ... ~ ~  . . ... . -~.~ . . ;.. ' . . . Plastic ' Csi 12K, PMT The p-Asymmetry Experiment Trapped . . , Optical atoms -2'k::... ~.:: trap ' ~ ~." '»' .;c ,.,.,, : ~O -1fY ions/s ~ .~~'C-': ~ ~_~_ U~ *~ ~'- C~tcher _, fOil " .; -separator : ~t:;~=~ ilion source . B2Sr (25 d) => B2Rb (75 s) 3 mCi => 1(fJ dps - 50 mrlhr @ l' 1 J3-detector array ~~-t== ~.~ D Nuclear -r- '/-'0' polarization c , -1 (/J polarized B2Rbatoms Magnetic moment trap Mass Separator and Atom Trap Layout • Ion Source: hot surface ionization for alkali • Electrostatic Quad triplets before magnet and after focal plane • 90° Magnet with normal entry on entrance/exit • final focus onto thin foil (5 mm~) Preparation of the 82Sr Sample • Production: 800 Me V proton beam on Mo target => Sr and more (LANSCE / Isotope Production) • Chemical separation of Sr: - target is dissolved in H20 2 - Sr fraction separated by ion exchange column - lOOx more stable Sr than radioactive Sr - Sample is a mixture of 82Sr (25d) and 85Sr (86d) • Loading the sample in the ion source crucible - 82.85Sr absorbed on cation exchange resin beads (~ = 0.3 mm) (to further purify and concentrate for convenient handling) - resin beads funneled into ion source crucible (W or Re) - Loaded crucible is clamped into SS holder Operation of the Ion Source Twisted Wire Crucible • Resin beads baked in ion source crucible at 300-400oC in vacuum to release CO2 and other volatile gases • After bake out left with C skeleton • Rb diffuses quickly out of C skeleton and is efficiently ionized at hot tip of crucible • 30-40% of 82Rb is released within tens of seconds Coupling a Mass Separator & MOT Pyrex Cube 5mm0 82Rb Ion Beam • Sample introduction without destroying UHV • Measured a ionization/transport efficiency of -20% for 82Rb by 'Y-counting • Use of large (75 mm cjl) laser beams increases capture velocity => high trapping efficiency • Implant in a small Y foil (neutralizer) since ion beam can easily be focussed • Have trapped stable ssRb from the implantation / release method • Currently optimizing release and trapping efficiency 431 432 "B 0. 0. C I-< i!l .... c 0 0 .. =t ~ E " ~Foil Release Studies Foil used for implantation and subsequent release of K2Rh upon heating Foil inductively heated by external RF coil Important foil properties - resistivity - work function - vapor pressure - alkali diffusion Foils tested: - Pt, Mo, Ta, Y, HI' Magneto-Optical Trap Setup High power Ti:Sa laser (-1.5 Watts @ 852 nm) Large laser beams Ij> = 4 cm ( I Ie) -3.5 x 10111 atoms trapped ·U~ .III ,'1 :4111 f f :1:.'" 11;.111 HI ~HII Characterization of MOT Measured number of trapped atoms versus detuning - magnetic field gradient - laser beam diameter For our conditions 4 cm (lIe) beams were optimal Less atoms trapped with larger beam diameters because of finite size of the system 5.E.'D ,---------, ctl - E " .E.l0 00 CD ca 3.e.l0 .000 ~ ~ 2.E+l0 Z ~ 1.E+l0 D.E.OO ~-----+----~ 2.5 3.5 .. .4 .5 Beam Size [em] Number of trapped atoms III C Ib :ij 55 :: g e In :!:' ~ " ~ ~ 6 ~ 0 • a:;-2 5. .. 3' :=: Deluning [11 Trapping Efficiency Measurement close 011 Cs reservoir ;/ >' C\.; .... --_ I .~. , ; iJ · . c .~, ~, 1 ~ , i boo O/J -'- . • • . 1 ! . . I , f 120 0M--- ·-- ...r-. .J lil11ol= 1 Conclusions & Outlook • Trapped 3.5 x 10 10 atom of stable Cs in an uncoated cell • 20% "retrapping" efficiency measured wI OTS coated cell • Mass separator made operation w/ EB surface ionization source • 3 mCi 82Sr (25 day) - x2Rb (75 sec) source preparation developed • Implantation & release studies with stable Rb and x2Rb in an OTS coated cell in progress (- ] 07 82Rb ions/sec implanted & 20-50% released) • Now searching for x2Rb trapping signal • Working toward a goal of trapping 105 - 106 radioactive atoms with an overall efficiency of 0.1 - 1%. Collaborators Mass separator & MOT: * Ralr Guckert - student, LANI. / U. Gicsscn * Xinxin Zhao - post-doc Scott Crane - student, LANL / Utah St. Dave Vieira - co-PI with help from Dale Tupa - early MOT work Daryl Preston - visitor, Cal. St., Hayward Matt Smith - summer student Hermann Wollnik - visilor, U. Giesscn Beta detectors & TOP trap: Azrie1 Goldschmidt - post-doc Steve Brice - post-doc David Steele - summer student Andrew Hime - co-PI Phil Chamberlin - mass scpo dcsign Frank Valdez - mechanical tech . Loyal Benham - electrical tech. Wayne Taylor - X2Sr r<.ldiochcmistry 433 434 /3-v Correlations in Laser Traps 1. Behr Simon Fraser UniversitylTRIUMF 13- 1) CO rrela.+;oV)'s , "" La. sev- Tra.ps TR IlA..m"f " N euTra.l- A +om TrQ.ppio3 .-UY\clec-qrtJd 5 FU TR"lC.tI'1F L.ou.vta,;", '" 1).. HCl~~ Q A. GondOA" "- P. Jo.ckso". - ~ .. Oec.. +sc.h :'f T. w,lso.... @ M.Tr:¥\C ~k M. ()o~\1s.e.!f :y. P.C~"o-ter ~ O. Me(,otl\;Qn c.O.P. Le? It F .. Le.\'lo~ .". ~.A. Beh..- I-. 6~'" _aft" t D .. As<jeirSsoll) O. Hac.tSlj,e..- j. N, II. M . Gc...tA+a. ./ To S""Q."'~V\ 9. je" ,,~; ",,$ "f" I • r j. J1.. 0 'At.("'; 0-@ g-ra.cl ~ nu}e .. .,. ,,/ poc;,"tdc>c-.... P. OCA.~e.' u .. AI \,er-Ta. Heidel IDe.!:!' ./ ("(' .. G:e,el1 @ ::J.O:ll;l\,9 G.R.o~ £.t.west-. O~1D...;o w.P. AllOr-of netdtA( Who.+I\Ol+OM~ CdV' \'e. +r-o.ppeol! L.o..5e" I ~4ppeJ Lo.se,r C.ool ed T-nappetl7 \-l ~ 1-\').0- 1~C:lCli octc. ti veS ~ He . L~ Ne.J#t i/ Lf 'yo-,( ~ ~~e.S tJ\~ Ai A'r"* g] (Q. He.re k'Y"'oq. (@ Sr Be ~ : 'I.e c..s Ora.5ons ~ rB A\~;~ 0"'\';1 (.fo1"" tIOw) ~-y c.orrelo.fion '38""'1< o+~o+ w(e"y): I + Q..~ Cbd-et''' a.Fe __ i ; + J -v fcpm; Ar~~ Ve.c:.iD.,-'t>oson [SC4ld.'r 's _ rev~sa:J 435 436 ty~,. 7.61 m O."I'l.~<t(,,) ~c.. ('0(.1.1'\' ") ';J) .I> ~~­M~ -,.~ f4~'" ~+ - /VIeV 3+ .. 0 .. +_ ... 38K 38mK 19 (0}, (31'- l/ =) I;~;ts On sco..la.,. 'bo~o" "" <b"o;' 19 ~., .... : (3+ f3+ CO r,.ela.-f:ol1 a. ~~!:) 2+ "·o·~ 0.03 DS .d=.J J 9J66 0.27. 5.8 3.8101 Seo..rGh fa-r-SCAlc..r e'l-c.\...<1",:?e ~ ':>J..... Mw ~s 1':oi 9~ ..l!..-0+ WI $ "~0 .4 DS ·2 16760 38A 18 r ::. :i,l '2.'~'1l Me.V 0 4' ~. '" tV ~4 (3/2+) .,. ~ 3602 " ..ill±.- 'It' 27962 T ~ .21J=- ~~lli. 3/2+ I 0 . 0.05 ps 99.67. 5.0 3/2+' 37K 19 f3+ 0.0147. 5.2 I,'l(})'3.8 96. '20) 3.7 1007. 3.5 o. \ O"b ~ Q.c:.. ~"", .... e+r~ A S e.o.....d. ~o -r l,./. .. I..... 0."""[/0"" Rig"" Me.OS" .. e Fe""-; sT,.ell\g+~ ~'3 &.! ·9"" ~ :2.'i°GeV Z e. e "'" 0. Y"I 0 P T\ c.ct. I T V-Q. f> tot; RCl4J, e of- Q.I. PRL li '2' 3/ (leu?) ,;\JWC!' etQ.f. Opt;~ Lt:.1f 12. .)2.Ct (1"'1:20) '-i.'(.(o'0 cc.+O-s ;" I c. .... '3 Si'Q.\'le Cs Oo..,.pc.d H (1"'''''0,", i~ OS~; (I Q.to"r i> C.olc:ll c-o .... {;",ed (tto""",S , 5ep '{b TISOL: COl-O) ., 2< (0 '/Sec. t 'folD 7/sec. 1)( 10 $/sec. 437 -i '4_, " .; " .~,j.:~ .~ .: '. : . . 438 Tl50L. 't 1'- ~" K. P50 P5f) " .001 s.s· ----------------If)~(''f)N_oo,)(X)r''U)lJ)~(r')N-.012 .... 'Ii ...... 1.010 H%j l.ooa .l.Q06 .~ ~.CI04 !; :g .002 .000 0 1000 G,\'I\<::JeAd!:l : .::. i-s 200 0 0 .. a I?>;c:ro", 'I .... &, .. " :z. i .... ! 1-,,-i .00' .... 0 fro .... . M [3 a.t" T R (t.{I1F RESPONSE FU'IC,TION SiCU)-T ole.C09<' E",;" :: ~.O /"'<.1/ ,,~ ~ ~ 400 eoo eoo 1000 -Si(Li)-Telescope lriple-coin. :-, . ~/ ........ 200 - ... 000 1000 -RESPONSE FUNCTION 8ICRON 8C422 200 400 -439 440 60 c.c.O u. o t-40 20 Run H 3869 5S5111II50H nIX· \5-.&.- .... =.-...... . -. " Sat Apr 1211108.031997 3, . .. ; . ArCb '"Af"~;-~2 __ ..Lf -+~ory -0.&:0.'2 "J QI Au'" 3974 SSSInMSOII .... . i.~~ ..J ·~I r-oS i1:: e-Sho.l::toff ([) K+ 8:2."l .,. "eo ry (Sw/Jert. ) Cl.fpm/ Co: ... l~e't..L PP..j£l ')..., (lq~) "" X r.f> (k..-Kr) 441 le- K,t- 12";j:.<a~ 2e- k.~"" 3.0~'l ~ '3C' K4t- l.'i ~.I 0], Lfe- /(S"t: .. o.b~:f:,O\~ A,.+ I'IS±'2.1 ~ 10 iT], ..)p .. ::~ Aor 1.2. I.~. 5.7. 07 let7 E:. .+ 800 *-. . c .. : SIl Aor 12 110 14.1D 1897 I . .... i.-·. . .. Arfl> " .[A;] 0.5 ~ . SUI·. \\198. ~ . ~ . _?/- ... '+ ... .., ' . . . . .1 .. . .' . E'~ (IWVJ Sat IIIIr 1208118140 1"7 ' - . AuD' "3982 , . SUI. 94924. ( x\ 0·"1 • '- ') .. ' ."'. .- s 6 .. :·7+; Aor 1211035.51 1.,7 C~] 20. ·SSStnNSON .... . .. . . Rua' 397' ssstlllSON ..... a~~~~~--~~~~--~~~ " c o :12 u .. o ~ . • X '. , "' ~ SUI~ ' 5' £~ (r"'evJ c o ;:24 u .. o ~I' • X "" . I ? 248. 0 '-t. xl 0") S' Ep[ffev) 442 Opt,",-I p"" .... p;",g of ;"K w~,: MeGlSC4"..e f-» reeo; { a.$!j Yt'I ... et.,..~ ~ e')C tr(l.ct:oO'> · o.f A + new ph.!fSo"s (Se ... .,;c:.h .f'o.,.. r;~"'+-h~ .. .,(e"" Curre.,T;s; GVC t-e5r$ (u.si"', t~ .fro- C"'r:-1k ); I<I.,e.-~ ;veedd : .c:::. {o-~ a."Cl.orac.:1 T U:rn o.(..f. +ra.p ) opt, ca.l& pu ..... p ~4/l.·""~ a. +0"",> -/1 0 llO \11 l~.-e +0 "'.., ~i""_:-:Ce. kt!4+~,;\ ~ ""F= -l. -I 0 TRlL(I"tF eiedl"t'Jrlie.$ $kcYJ . co."" sc..";f-cl,, SO ~$ o.t- "2~I1T::- tNi+L, 1:~s~ ~ ?-OOjA-s-ec. F-{( TR1IAT Ey.ter"l'\a. I c:.Glvi+::t S n:Lt ..... J fo.,.. didtie l¢ser ea.... 1'\0"" d.ra...J ·786 -!l; 7 SO 1"\ "'" '7 H-a.....e. s~pp{;e.,. ~".. 77g rl"'" ~ 170 n ... f.ieeJ.erl; DIAl.NO$l,c.s opt: co.l, jJ-wa.~ sp~ctrosCoJ.J fot'"" (; .... :+d #- of ("O.dioacf,~ a"fo..-u ,. TO f> """i-t"'-OI.c.T +ro.'P T ,..o..V\sveMe . 0f.t-~CCl' P"'-P''''j Co \.'A \' 'rP\f!':j "f"D"'~C + L4se.,. S,ec'froSc.ofY Sc.c.i-e.- T Ml:;, .. e.k PP..A ':i2.. ~(').'-{ (lQQV C ~r weed: . p '" ....,;..., f'",lc,e. J ~sec.. [lSJ = l.'f ~A~SS ~ \{o..,.""O" :: I M J./~ ~Mle. o.."",c,;c.{a." . ol,stn~w"f"D"" }Ie, Ic,il1le pe~T~"'h;"'~ f..'elc/ f'c.4-P I,ea... o..to .. , ~ Q.1Cis (I.f ~'K o"('t'CAI s',,,,41 +oD (,UeQ.I::) . "tIK $'-'<4I+a",s.cu~,> f-"Clpp +0 ~;+Dr/(ock . f3 ~ielot,) .. , ~ lOS c " Uau rn " ~~~~~~~~~. ~[~~ • ... 41100 · su •• ~IS C7}, ~j.:, 111\ 5 \A VII\ MeA.""~ : ~ ':lOO o.+o~5. ~/J';>~"'I< S~L~ t PsO ill Vey-'t;C4.1 ~o T \o~CIl"" s o.f-F S~Li. ..J pso i If\. tvo.f W;+ L, f3~ Ar c;.{e-fee"lbv-s Meo.~u.reol Arc:. "'4.., e $ +~fe. oli$+r~ lo",t-iOY\@ Nev..1"t"a,'s ~Q.'j be. I'k()r,r(, Ar it@ 5~o.leeo.f1 e- de;fecf-,,,,,,,, ~ reu>i I 4~~ ..... t/lAef? ~ I'-'ftro"e"","e~+~ .' ~of a.+OIM $ S~ ~ of- c.10t-lc/ (f~-~"",) ole+u+ioll\: l;",es~Q.,e/ +,_CA, J!w. cP .p,~i"', :'<0 k 9. $. 'l(' 1S ( Po ~ i ti ov\ depeM oleh,e ; ~ 'Mol" !e . 443 444 Laser Trapping & Cooling of Francium Obtained From a Radioactive Source JILA LBNL Kristin Corwin Timothy Dinneen** Zheng-Tien Lu* Albert Ghiorso Kurt Vogel Harvey Gould Carl Wieman Jason Maddi ·present address ANL ··present address JlLA Related Publications : I. Z.-T. Lu. K.L. Corwin. K.R. Vogel. C.E. Wieman. T.P. Dinneen. J. Maddi. & H. Gould. "Efficient collection of 221Fr into a Vapor Cell Magneto-optical Trap" (Submitted to Phys. Rev. Letl.). 2. Dinneen. Ghiorso. & Gould. "An Orthotropic Source of Thcrm.1 Atoms" Rev. Sci. Ins. 67. 752 (1996). 3. Stephens & Wieman. "High Collection Efficiency in a Laser Trap" Phys. Rev. Letl. 72. 3787 (1994). Work supported by NSF & ONR (JILA) & DOE (LBNL) Motivation Precision Measurements • Electron EDM - Increased sensitivity over Cs • PNC - Increased sensitivity & large range of Isotopes Physical and Chemical Properties • Largest correlation and relativistic effects of any "simple" atom Laboratory Source • Development of apparatus off line • Adequate for some measurements . __ ._.:~Jec::~,.." •• ~ / p"",+o".s / "e .. d·_ ... o ... s, __ .L ... ~ ve -.-I'!I1B-;t1l e-f~c. c:R'fI'o!e.-<!?Io "Ite4 .f..s. . __ . __ . __ ____ . ___ .W\:;. VIC+' .. e-Iec-tv_,<.. c!lf>.o[~ _Jf!"_o"11 .e"lh __ ~. __ _ . __ . __ ._____ ._. ___ __ . _. ____ _ __ -.Ep.L.",d_de.. __ .i?,J. __ .~c_f!.r ___ ~'!LL _ ._. ___ . __ . .... ___ . ~ ... _.bv. + e _ n'!t._ . co~ sl!"'''-!'..d __ ,_''-___ ".le''lJ __ .I..,-I:'':. .. _Q~J'__O'_'N ___________ _ _ .____ __ ._.... /..., r- . T ... .:?'. c P . .tt 1t.A c.p S10+_ . CCI .'1 . .s. ~~ v~vl . .'" __ . ~o c1~~":J __ .. __ _ . __ ~ tQ_1f d <I. J . MC?"e./ _.01 0. ~..,. .. _ tfo.±_ . '?cc~ ... o ;l(_ ~~ __ ~.\ ~Lkolf _ ~O."1 _._. __ .___ . _ _ . ____ - ~~,.J"..~~'f J_O·~.(; e .-.<::~_ . . .Jcr " .. /.~r.s .. 'tf, -1"'1'~' "'elo'<) _f!~i> . /I~.t_ f) _ _____ .M_Q kj . ~~/e-J,s. ____ keifCl_'!-c!._~±"'''.!!...cLQ ",L..&.:~.~ e C_ca 'L~..E_v..f?_'~I"_"'Jt. _~ _lE.o.J/I.f __ _____ .. _._ . ... ~..Ie"f,.o.. .e;r)Jf1._TGS:_-h . ___ J:..?~. _p"')~,-,.s. __ ~'l-oj,u! __ §..._. ,g_I __ . ____ .. =~=--=~- _.~.~'~'~-~ '_-_- .. ~~_~-~: ;~~ ~~.~~:~7~~~-.·:~-_-~  . .3~i;-;'~-:-~;:;ie. r~~~_~·-_=='~_:=~~~~-~~.-':-~-~= . l:.OM ... C~~E,'~ ._ 1'/H?1'YCL'z: .... . r<:! __ .H.>'WE . l'lF~~/lfi>.vl" . .. _ . .. .. f~elC"(_ IVIf'iA/ &j>I.'Y ... . ~.l: . _ .. ~C::!::"if{J . TlHt_"-:._._iA./Hl5tV. ----------_._ .. _- --- .... ________ .E.E!: __ .f.~Jf.~J7Z'?.A! __ _'N 1:t"-' __ Dv..';'(J.J::!J.tt(..~!.r= ~) ___ ____ ___ . _ _ ___ _ ... ___ ... . '·li6..H · -l; . ..H'o~ . _/rNO .. !::_fl!.!!. . .if.'l. _ . ~t.~g~ __ .. _~_A/_~~I?:.o _ _ . __ . __ ... _ . ___ _ ~ o Q) .s:::. -.. _~. ~~~!T" wu y.:to .. _ .. e-{A;:c:_T.(.'UY .. _ _ .~4~ ______ ... _ .... __ .. __ . __ ._ .. . e .. ~ - e " ./r'tOII.IIC- c.voc.../C Wlr,tr. e.v.~.c~(c:.. .. F.'. .~c-D, --------_._-_._-... -_._---Electron EDM Theory And Experiment Sm+HeavyN I I Super-symmetery I I Higgs Boson Models : Flavor Mixing I I I Left-right Models I I Super String InsPired: 10.30 10-28 10-26 10-24 I I I r~~~1 t t t 1994 1990 1989 1987 1971 experiment 445 446 '" " ? Fr .. .... 10 !l c: S .. .. Th - Ra - Ac - Fr Decay /' :w .. V /" Ac • au. / :w • [7 Ra ~ ...... Electrostatic Generator (COW) L ;:r f ....... , ...... 1 Am HEUUM . " ~ ....... '" • ---_______ e. ~ . i ...... -e e ~~~ ... ",,/eJee e " ", ... COU£CTOR WIRE·1kY ~330MICROCURlES'll«)RlUM 2211 ~ DEPOSITED OVER 300 CM2 Alpha Spectrum From Collector Wire Ac'" Fr'" AlII' r.W • 7 • Energy (MeV) AdFr produced In the EIec:IrostaIic Isotope Generator 100 U9 .. Th .. ,,..,,. ~ ---• Schematic Diagram of Orthotropic Source @\ '\ Ionizing surfaces ion neutral atom Neutralizer 100V Bias C :::::s o o Q) .~ Cij ~ 0.6 0.4 0.2 Measured angular distribution of francium atoms from the prototype orthotropic source 0.0 L..-.........t.....L.-~---'-~---I_~..L..L-"---l -<!50 -150 -50 50 150 250 angle (mR) 447 448 Laser Spectroscopy of Francium in a Magneto-Optical Trap W.Z. Zhao, J.E. Simsarian, L.A. Orozco and G.D. Sprouse SUNY Stony Brook • Introduction • Measurements ofFr 8S112 and 9S112 energy levels . • Lifetime measurements of Fr 7P 312 and 7P 112 levels __ Supported by NIST and NSF Introduction Our eventually goal is to study weak interaction between the outer electron and the nucleus. Francium has no stable isotopes, why interested in Fr? • Alkali - Calculable ab initio to 1 % or better • PNC effect is 18 times bigger than Cs • EDM is 10 times bigger than Cs • Anapole moment of different isotopes In Cs, Experimental Measurement + Theoretical Calculations Ow = -72.11 ± .27 (exp) ±.89 (theory) Science 275 (1997) 1759. Our measurements on energy levels and lifetimes of excited states in Fr test ab initio calculations of its atomic structure. rrlDleiiiiftor·stu5Y'QHfiranclumj I Moscow I H I Stony Brook I 1~cs..."'/L&l d(''r-\... --;--+--+---+-I~---'-I -II M. Perey H ISOLDE 1-1 I I 1939 1980 1986 1992 1998 Au Target Electrostatic Lenses 18 0 Beam from LINAC • t 449 450 Diagram of energy levels of Fr that are relevant for trapping and two - photon excitation F=1312 F=lll2 , , , , , , , 1330nffi" F=1312 -L..;-r''---/ F=lll2 __ -L._ Trap Laser 8S Probe Laser Repumper Photon Counting I Windows 5!lS 7 SII2 I """ 5!lS I 7 P II2 On On On Off On Off Using the above chopping scheme, we only detect the 817 run photons induced by the excitation to 8s level with 1720 run laser. Chopping of the repumper does not affect the performance of the trap, since the repumper power is close to the saturation level. t:! g;' t--e Q ~ Ul ... = = Q u = Q ... Q .c ~ 1000 900 800 700 600 500 8S1l2 Resonance in 210Fr The resonance frequency is at 5808.578 em-1 .11: A· .;."~ ,. ~ . \. Signal from PMT ~f : • .. _itII,,· 'r~\,... 400 n •• • 300 200 100 o +--------r-------+--------~----~ -400 -200 o 200 400 1.7 J.lm Laser Detuning (MHz) 451 452 eel) images or the trap as the 1 .7~ll1l laser scans thrllll",h resonance. Atoms leave the cycling transition \\'hile ex.citeo to l-ISI;c level, n.:oucing the 71l-1 nm Iluon:scl..'ncl..'. The scan time is about I () min across the picture. A mO\' ie about the scan is available at the Web site http://fr.physics.sunysb .edu/franc iurn_news/frconten.h tm Ab initio theory Johnson et al. (1991) Dzuba et af. (1995) Experiment SUNYSB (1997) -80 Energy difference between the centroids of 78112 and 8S112 in 210Fr • • -60 -40 -20 o Energy - 19732.522 [em-I] • Quantum defect predictions for energy difference between the centroids of 78112 and 881/2 in 210Fr Tom Bergeman • Jesse Simsarian • Wenzheng Zhao • Experiment -0.1 o 0.1 0.2 · Energy - 19732.522 [em-I] 20 0.3 7P312 [02) Lifetime Measurement le>----=._...,...-Laser Excitation 19> Method rap k~_....-___ F= 1512 617 MHz F= 1312 _+-_+-_ F = 1112 _+-_+-_ F= 912 Trap 718nm Fluorescence Decay Laser on Laser off ---r--- F = 1312 --,4--- F = 1112 7S112 46.7 GHz j Chopping for 7P1f2 Lifetime Measurement 718nm I I Excitation 40nsec 817nm lr I ~ l- 4.5jISeC -l- 4 jJSeC --l I-- l.5jISeC Repump Depump Measure l 453 454 Lifetime Measurement Stanrord DG535 Pulse GcncnIlor Rcpumping Iascr • • . . Burleigb WAISOO Wavcmctcr Trapping laser . . • • -a) .ao . -40 0 EXpcr1lDeDt This work 1997 Tlacor)' Dzubaezal. Johnson ez aI. ExpcrllDeat lbiswork Tlacor)' Dzubaezal. JohDsou ez aI. 1995 1996 1997 1995 1996 EOM AOM . . . . . . . . • 40 10 120 160 200 240 Timc(ns) • • 29 29.5 30 7p 2Pl12 Lifetime (ns) -• 20 20.5 21 21.5 7p 2pll2 Lifetime (os) PMT . • To Trap • . 30.5 • 22 Error Budget for the lifetime of the D2 lines of Rb and Fr in percentage Error Rb(%) Fr(%) Systematic TAC-MCA nonlinearity 0.10 0.10 Time calibration 0.04 . 0.04 Truncation error 0.24 0.60 Other 0.23 0.39 Quantum Beats 0.16 0.03 Total systematic 0.38 0.72 Statistical 0.07 0.24 Sum in quadrature 0.39 0.76 Summary of Our Results on Laser Spectroscopic Studies of 210Fr 75 112~ 85112 (Energy Centroids) 19732.522 (15) em"1 • 75112~ 95112 (Energy Centroids) 25671.021(6) em"1 Lifetime of7P lI2 21.02(16) ns Lifetime of 7P 112 29.50(14) ns • * Preliminary Results Summary and Outlook • The heaviest alkali atom, Fr, is a promising laboratory to test Standard Model • Fr has no stable isotopes, but has been trapped at Stony Brook and BoulderlLBL • We have demonstrated precision measurements about the atomic structure of Fr using a MOT • Furthermore, we are going to study 8S112 hyperfme structure and its lifetime • Continue toward PNC 455 456 High-rrecision Experiments in Traps and Storage Rings 1. Kluge GSI CONTENT • -P'l.c. '1:)< pQ.'~i "HU.~<l..(. S\oy(L~ I:.. 'R\"'~ (E'" Q) 0.+ C:. ~T • Tc...~ 'i>e.v.."""'~ IQ/I-? h Q&~ $~~IoV..Q..~'" t.l:~OL "'iRAt» 0..-4- J:Sol...J)~ • f X' t't--nw v....·h h~Q& I1~QsuT~""'e.u."g, \,\u.f Lite. "~Q.8U."e.IoU.<U...o..~'i 'Q. ~'tl Te~b i~ \\~dws.tN. - U" .... "'I'ou<]. • +1.oL4u. .. e. ~ - T o.s~ o~ +t...... S~wLo...~~ "nCbd.al i Lc.. "L- Li k~ 'I.oc..:s SEcoNDARY BEA..M F.ACILITIES 2 5 2 ~ 102 ~ ~ 5 +' ·c :::J (/) 2 (/) (tI E 101 ........ ~ Ol L. CIl c lJJ 5 5 2 ISOLDE-REX ISAC 10-1 -±-~-.-,.....,..-,-...... -r--r-r-'-"""'--'--r-'1r--r--'--'~ o ro ~ ~ ~ ~ w ro ~ ~ ~ 00 Element number ~--------------.- .. ------" 1 ~;Ii!llil\l!.~n~~~i~~~tg~~~~,~!$.~;i~l;,§Sl .1 ,. , : I , Heavy Ion .' ,r ; , / 1, I \, Synchrotron SIS 1 Target ,. /V SOm \ .•. ..- I; # o · "~ . -- -' I ~ -_ .. , '7 ! ",/ JI Projectile l j! cp ;. Fragment Separator FRS \ 11; . : Ij I~ " i . 0' ~ Schottky Pickup t , ~ . "'-'" ! \ ; Experimental "-I ) .... , Storage Ring~.. . :ti~ ESR' Electron \. ,J. Cooler .. ",--,... . Internal Gas Target I op I p: balpnce between => heating by intrabeam s~n~rir:lg => COOling forces, here:· e'~RtrQn ,qooJing AU79+ 360 MeV/u .--. • • • . -...... -. -. -.-- . .-.... . . •• .. ~ • 10 102 103 104 lOS 106 107 10 8 number. of stored ions of I f oc op I P oc No.3 M. Steck et al., Hyperfine Interactions 99 (1996) 245 457 458 c.onsecutive Stripping and Electron Capture of a Single Stored Ion ... Q) ~ o c.. ~ -0 .c . . o rn Revolution Frequency of Ion [a.u.] B. Schlitt et a/., Hyperfi1J.e /fJtera~tiofls 99 (1996) 117 192 Pt 78+ 197 Au' primary beam g;. 19SAu79+ l 8 g/cm 2 Be-Target :::::. l194Au 79+ 193 Pt 78+ ~ I .~ . .196Au79+ 191 Pt 78+ . ~. 188 Ir 77+ 1871r 77+ '-~. '1SS0S76+ & ~. ~ 1.0 'yo 0.5 0.0 192 Pt 78+ (bare) 192Au78+ (H like) 3.4 MeV I c2 -, .M ..... -0.5 -1.0 1871r 76+ (H like) 187 Pt 76+ (He like) 187OS76+ (bare) "'Y' ·1.5 0.02 0.0 -0.02 -0.04 ·0.06 Relative m/q. Difference / % Result: m ( 187ptO+ ) = 186960476 (40) J.lu ISOL TRAP: A TANDEM PENNING TRAP MASS SPECTROMETEF PRECISION TRAP o BUNCHER & COOLER TRAP o ION COLLECTOR " . 1~Y.R~R~lQ~91P'~~"~~P . d.~,t~.r.mi.r:t.a!jp.IJ.,Qt~,xAJ$?.t.r:qn .fr~"qu~IJ~Y iQY tim~~o.f::f!igh~ ~p.ec.tro.~~RPY . '. separa~io.rl :()f ;Isom~.rs .. .. .... . . ," '.. ' ;' ••• ', " ; : .: ... .:' • • ~: w .. : ; •• .. c.. -.CYUINDRICAL:;yiRAP. , ••••••• ~ •• • " ~ . :" 0: ... ;: .. ....... "!!.: .. ..... ~-:"",,'~ · t " , . n1c:l~~ ' ~el~c.tiy.e ; ~ljff~r;ga.? . . cop.~i~;g ." . • ':-. ... ::,. ~~:;. :~.:,: :, .;.- ,-, .:: ':': ':.:~~: .. . ' .... .... · :. ··.i ;~~ -;· :-: ~ : .~ i..; " I accu'rjjulaiiqn~a~il]i fC"opling'.1 ·· •. ; i ~I •.... '·:·: I . • : · .r.~ IV.·' .. ·:::r:.., .... '!-,. · ..... -~ :.., ·~ , 1 ·S'~fiar~ti.()Jl~of;is-O_b·)trs · :· ,. ': ' . b·(m:~llin:$· sto'ppin"g'::i;i'ric{contlnuOlis:or . pulsed re:'ioniiation ISOBAR AND ISOMER SEP ARA TION BY ISOL TRAP 400 . "".---,------:-....,.",-.. """ .. =._=_=._=_= ... =.__ = ___=_=._=_ ...,.,., .  ~oo . II ... zoo : c · ' =" o tJ • 100 o • Eu Sm . Pm Nd Pr .. . ;) .. ~ ... .. , . " . ... :. " • '! • • ••••• • : :.;~:tj:;~ ' .. l " " ... : .. ,;~ :.. ~. , " . . - - - .. _. - .. 51&600 lie 516700 1 Llm::::: 2 MeV ~ mlLlm::::: 0.7.105 1 190 . 111 ::I.lIIO !i: l70 t:I -Precision Trap ~ 3611 ov=240rnHz Co. o ~ 350 j:: ~o "'"'Sm: E=175 keY o .5 I 1.5 ·2 lie - 645536 . 0 " 2,5 3 Hz ] .1 Llm::::: 50 keV ~ m/Llm::::: 3.106 1 459 460 ISOLTRAP III Das Tandem penningfallen-MassenSDektrorneter ISOLTRAP Prazisionsfalle: Ma ••• nbectlmmung KOhlerfalle: Pr:lparatJon· der lone" __ IM'H.DS._~~ III ~~~: Jrr---l..::c...J Paulfallensystem: _ Akkumulatlon d •• konllnulerllchen lonenstrahls (60keV) _ Au •• chull nled.renergeUscher lon.npul •• Ul :1 450 ~ t:J H ~ 400 t.... 0 w :t 350 H !-o )Jc -e 489147.0 Hz ] MASS MEASUREMENTS at FRS/ESR and ISQL TRAP 3/97 PROTON NUMBER 82 80 78 0 FRS/ESR 76 • ISOLlRAP "74 {!] ISOL lRAP an<! FRSIESR 72 70 68 66 64 62 80 58 56 NEUTRON NUMBER BOUND-STATE p~DECAY OF 187Re75+ I !lr'lf"ioiUi®-Wi~j J.l. y" ._ 1870 76' 1 S +76m,e ~-l~r .. ~12' 450 .. 'S7Re75 ' . J • 112- III + 75m,e' 187bs75'(LI) ~ T'1l-14y + 75 m.e 1 '" 2-'" . III 400 j ,..-, 3/2-;> ~ ~ v ... 111' '" =.. ~ 0 >. ~;: 1~70S7~'(K) ~~ e!l + 75 m,e' v s:: . ~ 9 -e 50 Ir N'e1itraFl~1i~1 , JI2- 9.75 keV 0 ... . y ...... 512' Q,= 2.66 keY In- 0 187Re()+ .. 1870SI+ 2 T'Il=5.lO'·y +m,c -:r.'"EosoL. It!.. nI .. PI!L n (.I'I'tq SA'\O 187Re7S+ 4 1870S7S+ BOUND-STATE B-DECAY 1.000 187Re75+ primary beam 2.108 ions T 112 ("'Rc) - S·IO'· Y T", ("'Re"') - 33(2) Y 1.001 1870576+ 3.102 ions after 5.7 h storage Relative Revolution Frequency 1 .002 461 462 MI-LASER SPECTROSCOPY l'l.ILSEI> I)YE LASlm Bi"l' 220 McY/u I'HOTON (;w;.-DETECTOR ~ N10N ;::: 2·10' B = 0.587 ~p/p ;::: 7'10-~ GROUND-STATE HYPERFINE STRUCTURE OF HYDROGEN LIKE IONS ,..--,---F=5 '---L--F=4 FCl'llIi 's Fonnula (wilh correction terrn~) : , l~U,Z) rciaLivi~tic corred,ioll '(l-~) ell;,.-!;" dil'l.,-iltlll illl! . {l-£) . 1II"J;lIdi~i11ioll dil'1.l-illlllioll ·QED 209Bi82+ 1 h 9/2 ........ -c _ C-C C-C p n 351/2 ........ ·a-. p 203T180+ 351/2 3 P 1/2 --1 e-o- CoO €-. p n n GROUND STATE HYPERFINE SPLITTING OF RMSradius Magn. mom. (corr.) Point nuel. (DiraC) Breit-Selia w low Bohr-Weisskopf Theory, no QED Vae. polarisation Self energy Total QED Theorv inel. GED Experimental HIGHLY CHARGED IONS 209Bi82+ 207Pb81+ 5_519 fm 5.497 fm Il = 4.1106 J.1b J.1 = 0.58219 J.1b 212.320 nm 880.017 nm + 26.561(50) nm + 109.64(1) nm Thf!ory + 5.025(330)nm + 29.5(2.0) nm 243.91(38) nm 1019.1(2.1) nm . - 1.64 nm - 6.83 nm +2.86 nm +11.9nm + 1.22 nm +5.08 nm 245.13(58) nm 1024.2(2.5)nm 243.87(2) lim 1019.5(2) nm Bismuth QED . Bah/"-Wf!isskop{ 463 -464 "-0 ....... () ~ ' '7 0> 0 ....... C 0 ....... () Q) "-"-0 () THEORY; CORRECTIONS TO THE G-FACTOR OF THE SOUND· ELECTRON 10-1 1 0-2 10-3 10-4 10-5 10-6 10-7 relativistic correction (Dirac) + a.(Zai/41t \ . QED correction (Grotch et al.) ~ " '.-- :- 1- "- ~ --. .- ._', .. --. \ B.lunq~1I ~,t, ql.(1997) , all orders',in Zo. / ' . • • nuclear size •• o 10 20 30 40 50 60 70 80 90 nuclear' charge Z previous experiments: lA, lD and 4He+ THE G-FACTOR OF THE SOUND -ELECTRON: A TEST OF SOUND-STATE QED eXDedmf:.atal s.f:.t-I.J/2; helium exhaust. 300 K bore,77 K radiation shield, 20 K helium dewar, 4 K UHV -chamber with trap superconducting solenoid nitrogen dewar, 77 K of highJy charged ions possible c: ;:) .e ~ Cii c: Cl 0; 0 c: e u Q) OJ >-e> Q) c: Q) ]! ~ 0,4 0,3 0,2 0,2 0,0 0,0 a) production of the ions in the Penning trap cr b) resistive cooling of C5+_ ions to T E 4 K, time constant: 0,2 s ~5 1~ 1~ timers] "PAR \T\f \f'·()L.ATlbN b't NEUT~ AL C.URRE.N'~ '* .ks~ C>~ ~ Q\o.....cl.ca..:s~ 4.t.. .. ald. ; 1.4. .\t ..... _ ~_ 'i>lLt.eA... 0 t- 1Uc~~ ~~~ ~d.cls. ~ +~ 0t ~ ~ou...~~d.. v.....c>al..cJ.. ~ 0... 40.~ ~~+ do\U.oJ.u. ~ \.U.ow.. ....... ~ ~O'U'Q.~ 0..'1. CJ> ..... po..=d.. -+0 \.u~Lc.-~~ ~~w.a..c.d·s '" V\~""" dJZ..~<U~C>..~ ;\.<. H~- (14k.. u.~cu..iu ....... c'~'.U"'Q.\"t..· ) .. b...Nu...... 2. As.. o.u..c1. '2. "a'PO s4c..ks * ,,~~ ' .¢.o a.u. .... ~....t.... Luo'-U..Gu...~ l s.t"; ... -~~1 'I')Jc. I\.C.W Q..c.~Ou. 'oI2.NUou. u......c.lA.ou.s) ..(~~ ~ As.. ____ ---=~ ASZ~~A·---~~~~ .A~-\~ ----'"-------~--O.4eV O.3eV O.3eV E O.2eV :: 'O.2eV ~ O.1eV O.1eV O.OeV -O.1eV 8 6 4 ~2 000 <I ' -2 -4 -6 -8 5.81 I I I· ,I .... ,1: • . .•. ... .-• • o.;Wea ~ . • ~M. ; • "'~:.9' • A Cbong'M 808284lJti'86:"gO:S2·94 Nuolear Cnarge, Z 5.82 5.83 5.84 5.85 5.86 Radius (Fm) 5.87 465 466 2 TEbT OFTHE STANl>AAD Mo~eL Cs. ex eriment 996 o I--f-------::~ .2 !:::>: O-IL\J iCl...f\ou.S d-u.CL +Oc.. ~fc.c-+s. e.ov..suvi~ w .... CL..\( i~st"\"'" \! dR."iCl.~ou..~ <L..... .... ol-o . ~~ \JiC)Qd-;~ YJeA\.( \So~~\..o...... CONCLUSION • . Storage is the key for precision • Penning traps and storage rings are extremely efficient instruments • A new generation of techniques evolved • High-accuracy studies of exotic atoms and isotopes can be performed Lamb shift hyperfme structure life times masses • Isobar and even isomer separation is possible SYmmetry Measurements at the Canadian Penning Trap G. Savard Argonne National Laboratory C. PoT C;O,L.1. f\~~'TiON A.\ · cG~ 1..1... 7i~~;~.1;~.~:~:~r Lg~ ' ~.'M1~~ ~H)\~A gD~ eAK~e R. X;iv Fe~(, S i· t><r.~!-Lc:-~ ~o.~.ti:I: ~.J!.·~ . i-!F.~:~O !It £~I<. IlMII&I::C;: :r():t:I'-I I-i Ak~Y .... .l5 F~(H ~";,.) ~&.~ 50l> 11\001-£ ~i' KoJLo..,J /(y fUlSutNG. f\)~i 'Ht:~ i/'Ji~~rr.r WI-l:L.[ 1;,..:roVitwc; iHC &b<>~ LiH i~ ~~d' ~l"ci { S.qPER~:1;!:J~WEP' :Ef.Jg:7!p"o ~£;_~~\y P,r~c.is.i9.1');t~~~~ qf Q¥.P D~tern:a.i.Q~Jj!?n of W¢.{I.~:~~.t~r·~g~p.U~.g 'c~:(mmmt Unitarity tests of the ~~imatrix For superallowed transll/onll between 0+ 'r=1 ·~\a.t.e.s From experl~enl From c:alcula~lons of rad"'\lv11'~~ c;/large-dependent effects lEST- NEED FOR PHYSICS B!=yQ.~.9 THJ;.sr~P.M!>~.o.DEL Gy togetherwlth Gil yIeld the 'tel quark mIXing element of the CKM matrix IF MATRIX IS HOT UNITARY lHEN WE NEED NEW PHYSICS Addillonal Z bosons Rlght-Mnded CUl"nlnts 467 468 EXRERIMENiFAf. DATA . ' • . ~. . . .,. • • . . • I . . , Precision measureme.,*. reql!ired on Q-values Half-lives Branching ratios Their contribution to the uncertainty in 'the FT-value should be at the 0.05 % level (0..: uncertainty - 300 eV) (%) -0.10 0.08 1000 CONTRIBUTION TO UNCERTAINTY IN FT-VALUE o Changes 1990 - 1997 t 3080 :1078 o 0 o 0 000 f :1076 x 300 :107. 0\:1072 :1070 3CMI8 o 10 20 30 40 50 A (daughter) • FROM Q-VAL.U_E • FRO,~HA.LF-L,IF:E • F.ROM .BRANCHING RATIO '·c "cl 42sc ''?dn '''0 "mAl '"lr "c. I 10 20 30 40 50 469 470 ..... : ::' 3,0.78 , 30'76 , 30'74' , 30'70 , 3068 3066 5 ------Il---- -- -------- -- ---I ~,% 10 15 20 '25 Z (da~ght~r) Ft = 3072.3 (10) eve verified at the 4 x 104 level '. . .. . ·~::,~"~~J;~I.IO~~~[~Qr~;,p~ ~el~.,(~\~~t~(r .~ I{h.c) 3 = 1.~~~§~9{~8) x10~i' ,, ' 1.1561 (23) Vl.!d = 0.974Q.:\~f: " ':" ::: :, , " V:d,+ V:s + V:~~ ~ Q.~9!2 (13) ' c,,::~, " . : '.~ . . , ,~ , " . '. 1.0082 (40) , 0.99,5 , ' 1.000, , ' ,;~",;,,},,'r'I,.;;: • 1.006 ' .,; ' ",.' 1.010 t::: _." . ~ . ' . . ~ , "''' . ','neutron decay '" .... . . ' . , 1.150 1.155 DAlE .... .... .... x: I (K-1) = 2.2 '.27 AT PRESENT THE UNITARITY CONDmON IS NOT FULALLED BY THE NUCLEAR SUPERALLOWED BETA DECAY DATA OR THE NEUTRON DECAY DATA DO NOTE. HOWEVER: Superallowed bela decay Neutron dcc~y many cases radundancy consIStency STRENGTHS WEAKNESSES sllnple corrc~(';'lol1s groatost po~cn\lal structur4HIependent correcllons precision unlikely noed separni.lon of G., and G. few measummcmts LARGE CHANGES IN FI possible ~ - 1.5 r4' o w 5 o ~ o 0.5 BRANCHING RA:f1()S NECESSARY EXPERIMENTAL Q",ANTlTY AID THEORY (CALCULATED CORREqJON TERMS) Towner·Hardy-tl8rvoy Ormand-Brown Sagawa-w.n GJal..SVzukl 10 20 Z OF · DAUGHreR ---4~1+ ~ ~ GT b:nch ~;-~_~O:..+ / / Non-analoguo bmnch Isospln mixing Parent and deught"r ground states are not per1ect analog·""s ~ Mnasured rain lower than oxpectad lso.pln mlxl"" one conlllbutina /acto, 471 30 472 PROPOSED CPT MASS MEASURE;MENTS GOAL PRECISION CASES SHIFTS REQUIRED Test Measure (aM/M) Ixletlng cue. 1,0-8 Improve molt poorly kno.wn C:8,s_e,s 140, 2,6mAI, 3:8J1)~ 3 9 !xtlnd ba ... llne -8 62Ga, 66As, 70ar, 3~S 20 M ... ul'l nlW, I'Ilevant cases 1;5x10 5 Get handle on atomlcett8Ctidn . - -9 1oC 140 26mAl p..-vloua pl'lClae O-value'ri'ieasur'e-m'ents 4x10 , , 5 15 I roc qB ··· ·· 1 m 473 PENNING 474 . ... _ .. . . _,---- - - _. _._."._---- -r::::=l ~~. " _. . ~ . .... . novO-IS! 10 feel A.n'g,'tf!:(~f!' qQrr~1.~tl.(ln$;·i1fJ!.'bJ~.tfJ·'r.d,~!;iJ y .... ',' " "t : . . . , ) ~· .. ; :y' ·"·. ·I·.· -. ·~·' f ' \ .. \~r •. /":: , . , compare experimental values to SM predictions put limits on tenns "forbidden" by SM Difficulties source thickness and backing detection of low' energy recoil polarization contamination' detector geometry (scat~ering) source strength Solutions beta-delayed par~icle emission (20Na, 32Ar) : sO,urce still a problem , positron Sl!mmi!lg d~tcctor stability atom trap (choose your favorite alkali) source strength polarization background what if the best candidatc is not an alkali Ion trap solutiOl:1: ion trap for sO,uxce'contajpmellt small source thickness, no backing all ionic speCies can be trapped "clean" source fields of the trap used in detectipn optics higl!'detection efficiency without a close geometry shielding from background choose the trap best suited to your needs high capture ef~eien~y!?!? polarization 475 476 Me4~uring A in .<m ion trap -detector B > } many candidates, e.g. 39Ca superallowed decay easily polarized in t:bc ipnjc form . very high detect~on efficiency large geometry al~ow control of backscattering detectors shield,ed from activity on trap electrodes sample can be purified in the trap SUMMARY superallowed 0+ to 0+, CVC, G v , CKM unitarity CVC is fine -detector Gv - Vud- CKM unitarity not satisfied also true for neutron (or maybe not) redundancy simple corrections consistency theoretical ul)certainties experimental uncertainties L test corrections by going to heavier system angular correlations in beta-decay many new experiments ---... determination of the limitations using the confining fields of an ion trap to your advantage might lead to significant improvements . Section VI NUCLEAR ORIENTATION Convenor: P. Dellieij A one-day workshop (see Program below) . was held on April 25 (Friday) on the topic of low teJ1lperature nuclear orientation. A brief overview of some of the talks on the topic of fundamental physics was presented by the Convenor. TRIUMF AUDITORIUM· Friday, 25 April 1997 *** PHYSICS RELATED TO NUCLEAR ORIENTATION AT TRIUMF-ISAC *** PROGRAM chair: K.S. Krane 09:00 - 09:15 09:15 - 09:45 . 09·:45 - 10:30 coffee 11:00 - 11:45 11:45 -12:30 lunch chair: B. Turrell 13:30-14:15 14:15 - 14:45 . 14:45-15:W coffee chair: C. Davis 15:30 - 15:50 15:50-16:10 16:20 .., 17:20 Opening (J-M Poutissou, Assoc. Dir.) Nuclear Orientation at ISAC (p. Delheij , TRlUMF) Low-Energy Tune Reversallnvariance Tests (p. Herczeg, LANL) Constraints on Time .Reversal N on-Invariance from Higb-Energy Experiments (1. Ng, TRlUMF) Nuclear StruCture and r-ruclear Orientation (1. Wood, Georgia Tecb) Weak lntenc:tion Limits ·in Beta Decay (B. Jennings, TIuUMF) TRINAT (J. Behr, TRlUMF) Weak Interactions in Muon and Beta Decay (J. DeUtsch, Louvain) Muon Decay in E614 (0, Wright, TRIUMF) Condensed Matter studies using NO and NMRONat ISAC (B . Turrell, UBC) Round Table Discussion: . - Physics Priorities - isOtope Priorities - Other Issues? . Fundamental Physics at the Nuclear Orientation System: Working Group Overview P. Delheij TRIUMF PHYSICS RELATED TO NUCLEAR ORIENTATION AT TRIUMF-ISAC Proponeut.:! I\.S. \,rlUll' (Orcgon SLn.I.c U nh·.) D. TllrTdl.R. I\idl (UDC), P. Dl'Ihl'ij,C.A. Da\'is (TlUUMF), P . • Jackson,.J. d'Alllin (SFU/TIUUMF) Playsits COlllponents Flluclnllll'ul al r:lay~iQl 1\ IId(,lIr St ntrLllfC Condl'us('(\ Mattcr RcIat('d Explnlllcut.:i Trinat ECi14 Past. DC\·c\0plllcut.:i I~AC aC.<:!'I!aralor N. O. faci Ily Futur(' DC\"c/Opllll'llts ColllllliS!iloning Field configuration ~'~~~toNCt'!iS 'April no,". "()'APkJ', POP.I. 0.0..;; TIMELINE Spring 19!17 Workshop and Priorities July 1997 Octobl'r 1997 Jan-Sep 98 O(·t-Dec 98 Jan 1999 -EEC, Experiment.al Proposals Conclude negotiations "itb DOE Install in ISAC Hall, sabbatical Krane Conuuissioll with (I80Hf or ItI2W ?) Install and COlWllisssioD beam pi})1' cODnt"Ction Start online measurements 479 480 r • height .. yout S. • J I oil -Iftg pietro,. i OAIC .'DCE aoTTOIoI ACC!SS Fl\o~ --}~Pj fX! \ \ \ \ , , 1 \ I I I \ ' \ ' \ ' , I " b(J ._----if ..... --- Jc.----,1 --. .... _- .... -D<l ,> ; I)() - ..... --__ ,. , ,." " ,,' , ,," " ~l I ~ 1 I I 7Jet_-t-- " ,'/ .ft,. 4. r-.,t .. , .,...t dest., tAl a"_ ..utnoctd ft .. 011 _tee ..,. detKtors 481 P.l ) k --, ~ E 1t1 k s -!'b h~ + , 0... ... ~ .t ..... ..,D': VLE-v.) Q.~ /'" . \ ~ ..( \ \ \ "-'" \ ./ '" \ ./ ./ " \ '" -" \ "-\)' 482 rw TRI - SIMULTANEOUS V'r 1!)73 18°Hf isoH'ct.or EO)'II1('utroll Atomic EO)'I 1 !l'J Hg .p. P .. " E E .. ~osr !SAC gs < 1.4 10- 11 gF < 1.4 10- 10 I gS +gl' +2gr I < 10- 10 for co 1"00 130 {(l()O - ,4VAIl,.A8llcry Appendices .. List of Participants . . Program of the Workshop . . Prospectus . 485 WEE IS, Harrison Hot Springs, B.C., Canada, April 26-29, 1997 - PARTICIPANTS' LIST (Updated July 2, 1997) Dr. Eric Adelberger University of Washington Nuclear Physics Lab Box 354290 Seattle Washington WA, 98195-4290, USA Eric@gluon.npl.washington. edu Phone: 2~543·4294 Fax: 206-685-4634 Dr. Alan Astbury TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA astbury@triumf.ca Phone: 222-7353 Fax: 222-3791 Dr. Richard Azuma University of Toronto Dept. of Physics 5 King's College Road Toronto ON, MSS 1A4 CANADA Azuma@triumf.ca Phone: (416) 978-6377 Fax: (416) 978-2537 Dr. Gordon Ball TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Phone: 222-1047 Fax: 222-1074 Dr. Nicholas Bateman TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Baternan@triumf.ca Phone: (604) 222·1047, ext 6444 Fax: (604) 222·1074 Dr. John Behr SFUfTRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA behr@triumf.ca Phone: ~222·1047 Fax: ~222-1074 Dr. Jeff Blackmon Oak Ridge National Laboratory PO Box 2008 Bldg. 6010, MS 6354 Oak Ridge TN, 37831-6354 USA B1ackmon@orph01 .phy.ornl. gov Phone: (423) 574-7834 Fax: (423) 576-8746 Dr. Richard N. Boyd Ohio State University Dept. of Physics 174 W . 18th Avenue Columbus OH, 43210 USA Boyd@mps.ohio-state.edu Phone: 614-292-2874 Fax: 614·292-3639 Dr. Jess Brewer University of British Columbia Dept. of Physics & Astronomy Vancouver BC, V6T 1Z1 CANADA jess@triumf.ca Phone: 822-6455 Fax: 222-1074 Dr. Pierre Bricault TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA bricault@triumf.ca Phone: 222-7417 Fax: 222-1074 Dr. Lothar Buchmann TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA lothar@triumf.ca Phone: 222-7403 Fax: 222-1074 Dr. Richard Casten Yale University 272 Whitney Avenue New Haven CT, 06520-8124 USA Rick@rivieraphysics.yaIe. edu Phone: 203-432-6174 Fax: 203-432-3522 Mr. Jimmy C. Chow U of TorontofTRIUMF Dept of Physics 5 King's College Road Toronto On, MSS 1A4 CANADA jchow@triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Gary S. Collins Washington State University Dept of Physics Pullman WA, 99164-2814 USA CoIlins@wsu.edu Phone: ~335-1354 Fax: ~335-7816 Dr. John D'Auria Simon Fraser University Dept. of Chemistry 8888 University Drive Vancouver BC, V5A 1S6 CANADA Dauria@sfu.ca Phone: 604-291-4607 Fax: 604-291-3765 Dr. Paul Delheij TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA delh@triumf.ca Phone: 222-7440 Fax: 222-1074 Dr. Jules Deutsch Universite Catholique de Louvain Inst. de Physique Nucleaire Chemin du Cyclotron 2 8-1348 Louvain-Ia-Neuve, BELGIUM Deutsch@fynu.ucl.ac.be Phone: 32 10473273 Fax: 321045 21 83 Mr. Jens Dilling University of Heidelberg! TRIUMF 4004 Wesbrook Mall Vancouvere BC, V6T 2A3 CANADA jens@a1ph04.triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Pierre Dube TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA pdube@alph04.triumf.ca Phone: 222-1047 Fax: 222-1074 Ms. Sarah Ruth Dunsiger University of British Columbia Dept. of Physics & Astronomy 6224 Agricultural Road Vancouver BC, V6T 2A3 CANADA dunsiger@triumf.ca Phone: Fax: Dr. Hans D. Ebinger Philipp&-Universitat Marburg Fachbereich Physik Renthof 5 0-35032 Marburg, GERMANY Hans.Ebinger@physik.uni-marburg.de Phone: 49-6421284127 Fax: ~21288993 Dr. Doris Forkel-Wirth CERNIISOLDE CH-1211 Geneva 23, SWITZERLAND Doris. forkel-wirth@cern.ch Phone: 41-22-767-3809 Fax: 41-22-767-8990 Dr. Wilfried Galster Universite Cath. de Louvain Dept. de Physique Inst. de Physique Nucleaire Chemin du Cyclotron 2 Louvain-Ia-Neuve, BELGIUM Galster@fynu.ucl.ac.be Phone: 3210472075 Fax: 3210452183 Dr. Alejandro Garcia University of Notre Dame Dept. of Physics Notre Dame IN, 46556 USA Agarcia3@garnow.phys.nd.edu Phone: 219-631 -9422 Fax: 219-631-5952 Mr. Ermias Gete TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA gete@triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Ulrich Giesen TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA giesen@triumf.ca Phone: 222-1047 Fax: 222-1074 Prof. Michel Gingras University of Waterloo Dept. of Physics 200 UniverSity Avenue Waterloo ON, N2L 3G1 CANADA Gingras@astro.uwaterloo.ca Phone: 519-888-4567, ext 5697 Fax: 519-746-8115 Mr. Alexander Gorelov TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA gorelov@triumf.ca Phone: 222-1047 Fax: 222-1074 486 Dr. Harvey Gould Lawrence Berkeley Nat'l Laboratory MS 71-259 Berkeley CA, 94720 USA Gould@lbl.gov Phone: (510) 486-7777 Fax: (510) 486-7981 Dr. Uwe Greife Ruhruniversitat Bochum Universitatstr. 150 0-44780 Bochum, GERMANY Greife@ep3.ruhr-uni-bochum.de Phone: 49 234 7003597 Fax: 49 234 7094172 Dr. Gerald Gwinner Max Planck Institut fuer Kernphysik Postfach 10 39 80 Saupfercheckweg 1 69029 Heidelberg Germany ggwinner@pluto.mpi-hd.mpg.de Phone: 49-6221-516452 FAX: 49-6221-516602 Dr. Don M. Hunter TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA hunter@erich.triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Dave Hutcheon TRIUMF 4004 Wesbrook Mall Vancouver BC, V6K 1 C4 CANADA smurf@triumf.ca Phone: 222-7396 Fax: 222-1074 Dr. Bernd Ittermann Universitat of Marburg Fachbereich Physik 0-35032 Marburg, GERMANY Bemd.lttermann@physik.uni-marburg.de Phone: 49-6421 28 2459 Fax: 49-6421 28 6535 Dr. Peter Jackson TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA jackson@triumf.ca Phone: 222-7465 Fax: 222-1074 Dr. Byron K. Jennings TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA jennings@triumf.ca Phone: 222-7428 Fax: 222-1074 Dr. Richard Johnson University of British Columbia Dept. of Physics & Astronomy Vancouver BC, V6T 1Z1 CANADA rrjohnson@triumf.ca Phone: 822-3771 Fax: 822-5324 Dr. Colin Jones Simon Fraser University Shrum Science Centre, P9451 Burnaby BC, V5A 1S6 CANADA Colin-iones@sfu.ca Phone: 604-291-4152 Fax: 604-291-4860 Dr. Rob Kiefl University of British Columbia Dept. of Physics Vancouver BC, V6T 1Z1 CANADA Kiefl@triumf.ca Phone: 6~822-3037 Fax: 6~822-5324 Prof. James King University of Toronto Dept. of Physics 5 King's College Road Toronto ON, MSS 1A7 CANADA King@physics.utoronto.ca Phone:41~97~2959 Fax: 416-97~2537 Dr. JOrgen Kluge GSI Atomic Physics Planck Str. 1 D-64291 Darmstadt, GERMANY J.Kluge@GSI.De Phone: 49 6159 71 3722 Fax: 49 6159 71 2136 Dr. Evgeny S. Konobeevski INR RAS 60th October Anniversary Prospect7A Moscow, 117312 RUSSIA Konobeev0AL20.inr.troitsk.ru Phone: 095-1~4025 Dr. Kenneth S. Krane Oregon State University Dept. of Physics 301 Weniger Hall Corvallis OR, 97331-6507 USA kranek@physics.orst.edu Phone: 541-737-4569 Fax: 541-737-1683 Dr. Syd Kreitzman TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Syd@triumf.ca Phone: 222-7303 Fax: 222-1074 Dr. Bob Laxdal TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Lax@triumf.ca Phone: (604) 222-1047 Fax: (604) 222-1074 Dr. Christian Le Brun Laboratoire de Physique Corpusculaire ISMRA 6 Bolvd Marechal Juin 14050 CAEN Cedex, FRANCE Lebrunch@caelav.in2p3.fr Phone: 33 02 3145 2512 Fax: 330231 452549 Prof. Jonathan Lee McGill University Foster Rd Lab 3600 University Street Montreal PO, H3A 2T8 CANADA Jlee@physics.mcgill.ca Phone: 514 39~7023 Fax: 514 39~7022 Dr. Pierre Leleux Univ. Catholique de Louvain Inst. de Physique Chemin du Cyclotron 2 8-1348 Louvain-l.a-Neuve, BELGIUM Leleux@fynu.ucl.ac.be Phone: 32 10473229 Fax: 32 10452183 Dr. Phil Levy TRIUMF 4004 Wesbrook Mall Vancouver BC, V6K 1 C4 CANADA levy@triumf.ca Phone: 222-7424 Fax: 222-1074 Dr. W. Andrew Macfarlane University of British Columbia Physics Dept. Vancouver BC, CANADA Delaroo@triumf.ca Phone: 734-5234 Fax: Dr. George MacKenzie TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA GHM@triumf.ca Phone: 222-7342 Fax: 222-1074 Dr. W . John McDonald University of Alberta Centre for Subatomic Research Edmonton Ab, T6G 2B5 CANADA mcdonald@phys.ualberta.ca Phone: 403-492 3354 Fax: 403-492-3408 Mr. Roger Miller TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Rim@triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Dennis M. Moltz Lawrence Berkeley Nat'l Laboratory 1 Cyclotron Road Berkeley CA, 94720 USA Dmoltz@lbl.gov Phone: 510-486-7853 Fax: 510-486-7983 Mr. Anthony Colin Morton TRIUMF/Univ. of Toronto Dept. of Physics Toronto On, CANADA acolin@triumf.ca Prof. Susumu Ohya Niigata University lkarashi 2 Niigata, lkarashi, 950-21 JAPAN Ohya@nuexne.sc.niigata-u.ac.jp Phone: 81 252626142 Fax: 81 25263 3961 Dr. Shelley Page University of Manitoba Physics Dept 311 Allen Bldg, Ft. Garry Campus Winnipeg Man, R3T 2N2 CANADA pageOphysics.umanitoba.ca Phone:~474-6202 Fax: 204-269-8489 Dr. Roland Platzer Oregon State University Dept of Physics Weniger Hall 301 Corvallis OR, 97331-6507 USA Platzer@physics.orst.edu Phone: 541 737 2423 Fax: 541 737 1683 Mr. James F. Pond University of British Columbia Physics Dept. Vancouver BC, V6T 1Z1 CANADA jpond@physics.ubc.ca Phone: 822-4334 Fax: 822-4750 Dr. Jean-Michel Poutissou TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA Jmp@triumf.ca Phone: 222-7351 Fax: 222-3791 Dr. James D. Powell Lawrence Berkeley Laboratory MS-88-210, 1 Cyclotron Road Berkeley CA, 94720 USA Jdpowell@lbl.gov Phone: 510486-7983 Fax: 510486-7983 Dr. K. Ernst Rehm Argonne National Laboratory Physics Divison, 9700 S. Cass Avenue Argonne I L, 60439 USA rehm@anlphy.anl.gov Phone: 630-252-4073 Fax: 630-252-6210 Dr. Andrei I. Reshetin INR RAS 60th Anniversary Prospect 7 A Moscow, 117312 RUSSIA reshetin@al20.inr.troitsk.ru Phone: 095-334-08067 Dr. Joel Rogers TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA rogers@triumf.ca Phone: 222-1047 Fax: 222-1074 ·Ms. Mary Rowe Lawrence Berkeley National Laboratory MS-88, 1 Cyclotron Road Berkeley CA, 94720 USA Mary@phYSics.berkeley.edu Phone: 510486-7843 Fax: 510 486-7983 Prof. Gerald Roy University of Alberta Physics Dept Edmonton AB, T6G 2JI CANADA Groy@triumf.ca Phone: 403-492-3517 Fax: 403-492-3408 Dr. Guy Savard Argonne Nat'l Laboratory Physics Div. Bldg 203 Argonne IL, 60439-4801 USA Savard@Anlphy.phy.anl.gov Phone: 613584 3311 , ext 4124 Fax: 6135841800 Dr. Gunther Schatz University of Konstanz Physics Dept. Postfach 5560 D-78434 Konstanz, GERMANY guenter .schatz@uni-konstanz.de Phone: 49 7531-883540 Fax: 497531883090 Dr. Paul Schmor TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA schmor@triumf.ca Phone: 604-222-7415 Fax: 604-222-1074 Mr. Joachim Schueth Simon Fraser University Dept. of Chemistry 8888 Univeversity Drive Burnaby BC, V5A 1S6 CANADA jschueth@sfu.ca Phone: 604-291-5608 Fax: 604-291-3765 Dr. Kumar Sharma University of Manitoba Physics Dept. Rm 509 Allen Physics Lab Winnipeg MB, R3T 2N2 CANADA sharma@physics.umanitoba ca Phone: 204-474-6181 Fax: 204-269-8489 Dr. Tim Shoppa TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA shoppa@triurnf.ca Phone: 222-1047 Fax: 222-1074 Dr. Allan Shotter University of Edinburgh Dept. of Physics Mayfield Road Edinburgh, EH9 3JZ SCOTLAND acs@np.ph.ed.ac.uk Phone: Fax: 31 650 5212 Dr. Kurt Snover University of Washington Nuclear Physics Lab Box 354290 Seattle WA, 98195-4290 USA SnoverOnpl.washington.edu Phone: 206-543-4080 Fax: 206-685-4634 Mr. Jeff Sonier UBCfTRIUMF Physics Dept. 6224 Agricultural Road Vancouver BC, V6T 1Z1 CANADA sonier@triumf.ca Phone: 228-2130 Fax: 822-5324 Mr. Frank Strieder Ruhr Universitiit Bochum Inst. fur Experimentalphysik Universitatsstr. 150 D-44780 Bochum, GERMANY Strieder@ep3.ruhr-uni-bochum.de Phone: 49 234 700 3597 Fax: 49 234 709 4172 Dr. Thomas B. Swanson TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA swanson@alph04.triumf.ca Phone: 222-1047 Fax: 222-1074 Dr. Willard Talbert Amparo CorpfTRIUMF 1 E. Sunrise Drive Santa Fe NM, 87501 USA Willtalb@aoi.com Phone: 505 983-0467 Fax: 505982-5710 Dr. Ian S. Towner Queen's University Physics Department Kingston On, K7L 3N6 CANADA towner@mips2.phy. queensu.ca Phone: Fax: 613-545-6463 Mr. Mike Trinczek TRIUMF/SFU 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA trinczek@sfu.ca Phone: 222-1047 Fax: 222-1074 Dr. Brian Turrell UBC Physics and Astronomy Dept. of Physics & Astronomy Vancouver BC, V6T 1Z1 CANADA turrell@physics.ubc.ca Phone: 822-3150 Fax: 822-6339 487 Prof. Ludo Vanneste University of Leuven I.K.S. Celestijnenlaan, 200D 3001 Leuven, BELGIUM Ludo.vanneste@fys. kUleuven.ac.be Phone: 32 16327261 Fax: 32 16 327985 Dr. Dave Vieira Los Alamos Nat'l Laboratory CST-11 , MS J514 Los Alamos NM, 87544 USA Vieira@lanl.gov Phone: 505667-7231 Fax: 505667-4955 Prof. Jim Waddington McMaster University Physics & Astronomy Main Street W . Hamilton ON, Las 4M1 CANADA JCW@talvax.mcmaster.ca Phone: 905-525-9140 Fax: 905-596-1252 Dr. Thomas Wichert Universitat des Saarlandes Technische Physik Fachrichtung 10.3 D-66041 Saarbrucken 11 , GERMANY thw@tech-phys.uni-sb.de Phone: 496813024219 Fax: 49 681 3024315 Dr. Anatoli Zelenski TRIUMF 4004 Wesbrook Mall Vancouver BC, V6T 2A3 CANADA zelenski@triumf.ca Phone: 222-7302 Fax: 222-1074 Dr. Wenzheng Zhao SUNY Stony Brook Dept. of Physics Grad. Physics Building Center Drive Stony Brook NY, 11794-3800 USA wzhao@nuclear.physics. sunysb.edu Phone: 516-632-8120 Fax: 516-632-8573 488 Program ofthe Workshop on Experiments and Equipment at Isotope Separators as of April 22, 1997 Since this is a workshop questions are encouraged during as well as after the talks. Also, participants, other than speakers, are welcome to show additional transparencies during discussion periods. For this reason the times of talks are only approximate; however, the convenors will make sure that sessions stay close to their allocated total lengths. Saturday, April 26, 1997 14:00-15:30 TRIUMF-ISAC tour 15:30-16:00 Coffee (outside Auditorium) 16:00 Session I: TRIUMF auditorium (Convenor: L. Buchmann) 16:00 Workshop opening A. Astbury (TRWMF) 16:10 The ISAC facility at TRIUMF P. Schmor (TRIUMF) 17:00 Discussion 17:30 20:30-21 :30 Sunday, April 27, 1997 08:45 Session II: 08:45 09:05 09:35 09:45 10:05 10:15 10:25 10:30 Coffee Break 11:00 12:30 12:55 14:25 15:30 16:00 Session m: 11:00 11:15 11:20 11:30 11:35 11:45 11:50 12:05 12:10 12:25 Session IV: 12:30 12:50 Lunch Session IV 14:25 14:45 14:50 15:10 15:15 15:25 Coffee Session V: 16:00 16:25 16:30 16:55 17:00 17:10 17:15 Bus to Harrison Hot Springs Reception Scientific Introduction (Convenor: L. Buchmann) Welcome and Workshop business L. Buchmann (TRIUMF) The ISAC isotope separator and the low energy beam* P. Bricault (TRIUMF) Discussion The ISAC linear accelerator R. Laxdal (TRWMF) Discussion Remarks on establishing ISAC's science program J-M. Poutissou (TRIUMF) Discussion Nuclear Astr0f,hysics (Convenor: 1. D'Auria) Constraints on Be(p;y)s.s from elastic scattering T. Shoppa (TRIUMF) Discussion The planned Seattle-TRIUMF 7Be(p;y)s.s experiment K. Snover (Washington) Discussion The ISAC 7Be beam experiment L Buchmann (TRIUMF) Discussion Experiments with 17F,18F and ~i beams at the A1LAS accelerator E. Rehm (Argonne) Discussion Ongoing and futtrre experiments in nuclear astrophysics in Louvain-la-Neuve P. Leleux (Louvain-Ia-Neuve) Discussion Nuclear Physics (Convenor: K.P.Jackson) Nuclear Structure and low temperature nuclear orientation* K Krane (Oregon) Discussion resUI1U!s Multielement charged particle detectors for research with radioactive beams A. Shotter (Edinburgh) Discussion Efficiencies of 37 Cl and 40 Ar neutrino detectors determined via measurements of /Hlelayed protons from radioactive beams A. Garcia (Notre Dame) Discussion Determination of relative sign of parent/daughter hyperfioe interactions in successive decays via NMR-ON S.Ohya (Niigata) Discussion Condensed Matter (Convenor: R. Kieft) Solid state physics at ISOlDE D. Forkel-Wirth (ISOWE) Discussion Perturbed angular correlations (semiconductors) T. Wichel1 (Saarbriicken) Discussion Studies of defects in structural intermetallics at ISAC G. Collins (Washington) Discussion Solid state studies in oxides; requirements and experiments R. P/atzer(Oregon) 17:25 18:00 Dinner 20:00 Session VI: 20:00 20:15 20:20 20:35 20:40 20:50 21:00 21:05 21:20 21:25 21:40 Monday, April 28, 1997 08:45 Session Vll: 08:45 08:55 09:00 09:15 09:30 09:45 10:00 10:15 10:30 Coffee Break 11:00 Session VIII: 11:00 11:20 11:25 11:40 11:45 12:05 12:10 12:25 12:30 Lunch 14:00 Session IX: 14:00 14:20 14:30 14:40 14:50 15:20 15:30 Coffee 16:00 Session X: 16:00 16:20 16:25 16:45 16:50 17:10 17:15 17:25 17:30 Break Discussion Particles and Synunetries (Convenor: J. Behr) The electron-neutrino correlation in 32 AI decay E. Adelberger (Washington) Discussion 489 Correlation measurements in nuclear {3-decay as a test of the Standard Model* 1. Deutsch (Louvain-la-Neuve) Discussion Weak interaction studies with laser-trapped 21Na I G. Gwinner (Berkeley) Weak interaction studies with laser-trapped 21Na IIM. Rowe (Berkeley) Discussion The 82Rb f3-asymmetry experiment-progress and plans D. Vieira (Los Alamos) Discussion f3-v correlations in Zeeman-optical traps J. Behr (SFUffRIUMF) Discussion Nuclear Astrophysics (Convenor: 1. D'Auria) Decay studies of radioactive isotopes in nuclear astrophysics L. Buchmann (TRWMF) Discussion The I~Cp, y)140 reaction 1. King (Toronto) Measuring the 21Na(p, y)22Mg reaction at ISAC N. Bateman (TRIUMF) The 22Mg(p, y)23 AI and 23 AI(p, y)24Si reactions* 1. D'Auria (SFU) The 150 (0., y/~e reaction L. Buchmann (TRIUMF) Big Bang nucleosynthesis and the 8LiCa,n)llB Reaction R. Boyd (Ohio) Discussion Particles and Synunetries (Convenor: J. Behr) Laser trapping and cooling of 221Fr H. Gould (Berkeley) Discussion Laser spectroscopy of francium in a magneto-optical trap W Zhao (Stony Brook) Discussion High-Precision experiments in traps and storage rings J. Kluge (GSI) Discussion Symmetry measurements at the Canadian Penning Trap* G. Savard (Argonne) Discussion Condensed Matter (Convenor: R. Kieft) Surface science with nuclear spin oriented 8Li H. Ebinger (Marburg) Discussion Probing the vortex state of superconductors R. Kieft (UBC) Discussion Physics just beneath the surface of high-Tc cuprate superconductors M. Gingras (Waterloo) Discussion Nuclear Physics (Convenor: K.P. Jackson) Nuclear physics experiments at Louvain-la-Neuve W Galster (Louvain-la-Neuve) Discussion Coulomb excitation in inverse kinematics with radioactive nuclear beams R. Casten (Yale) Discussion Experimental studies of interaction and properties of neutron-rich nuclei at lSAC* A. Reshetinl E. Konobeevski (INR) Discussion Isotope separators and nuclear orientation L Vanneste (Leuven) Discussion 490 18:00 Session XI: Discussion groups about experiments at ISAC (All Convenors) Nuclear Astrophysics J. D'Auria Particles and Symmetries J. Behr Nuclear Physics K.P. Jackson Condensed Matter Physics R. Kieft 20:00 Banquet Tuesday, April 29, 1997 08:45 Session XII: 08:45 09:05 09:10 09:20 09:35 09:50 10:00 10:10 10:30 Coffee Break 11:00 Session XIII: 11:00 11:20 11:25 11:35 11:40 11:55 12:00 12:15 12:20 12:35 12:40 Lunch 14:00 Session XIV: 14:00 14:15 14:20 14:35 14:40 14:55 15:00 15:10 15:15 15:25 15:30 Coffee 16:00 Session XV: 16:00 16:15 16:20 16:35 16:40 16:55 17:00 17:15 17:20 17:35 17:40 17:50 Workshop ends *to be confirmed Nuclear Astrophysics (Convenor: 1. D'Auria) Nuclear astrophysics : experiments with a recoil mass separator U Greife (Bochum) Discussion The TRIUMF Recoil Product Detection Facility J. D'Auria (SFU) Electromagnetic separation in the TRIUMF Recoil Product Detection Facility D. Hutcheon (TRIUMF) y-detection at the TRIUMF Recoil Product Detection Facility* J. Rogers (TRWMF) The windowless gas target for ISAC G. Roy (Alberta) Recoil particle detection and identification U Giesen (TRIUMF) Discussion Condensed Matter (Convenor: R. Kiefl) ,B-NMR on point defects in semiconductors and metals B. Ittennann (Marburg) Discussion Optically pumped polarized 8Li beams for material studies A.Zelenski (TRIUMF) Discussion ,B-NMR as a probe of small structures and interfaces R. Kieft (UBC) Discussion On-line nuclear orientation with insulating hosts B. Turrell (UBC) Discussion Accelerator mass spectroscopy at !SAC R.R.Johnson (TRIUMF) Discussion Nuclear Physics (Convenor: K.P. Jackson) Prospects for atomic mass measurements with the Canadian Penning Trap mass spectrometer K. Sharma (Manitoba) Discussion Laser spectroscopy with trapped ions J.K.P. Lee (McGill) Discussion The 81t spectrometer 1. Waddington (McMaster) Discussion Superallowed Fermi decay of 74Rb D. Moltz (Berkeley) Discussion Some aspects of the experimental program at SPIRAL* C. LeBrun (GANIL) Discussion Workshop Summary and Conclusion (Convenor: L Buchmann) Fundamental physics at the nuclear orientation system: working group summary* P. Delheij (TRIUMF) Discussion Particles and Symmetries Discussion Nuclear Astrophysics Discussion Condensed Matter Physics Discussion Nuclear Physics Discussion Workshop Conclusion J. Behr (TRIUMF) J. D'Auria (SFU) R. Kieft (UBC) K.P. Jackson (TRIUMF) J-M. Poutissou (TRIUMF) 491 The ISAC Facility at TRIUMF: A Prospectus January, 1997 Construction is in progress at TRIUMF on the accelerated radioactive ion beam facility, ISAC with first beams available during the year 1999. The purpose of this document is to give a prospectus on ISAC in it first few years of operation to assist those planning experiments here. I SAC (Isotope Separator and Accelerator) will produce radioactive beams using the ISOL approach. Intense beams of protons at 500 MeV will bombard a thick target to produce the isotopes of interest using either spallation, fragmentation or fission reactions. The facility is being constructed to ultimately use proton intensities up to 100 ~ but target systems may initially limit this to an order of magnitude lower. The proton beam can be extracted from the TRIUMF cyclotron simultaneously with operations on other beam lines, so radioactive beam production can proceed essentially continuously. TRIUMF runs essentially 7 days a week, for the entire year with two scheduled shut down periods for maintenance lasting about 8 weeks. The system to actually extract the proton production from the TRIUMF cyclotron and direct it to the new· ISAC will be installed early in 1988. The new experimental will be available in the summer of 1997. beam hall hall The production beam can be directed to one of two possible target stations in the new I SAC target hall being constructed (only one station will be available in the first years of operation). The target itself is a cylinder about 19 em in length and is similar to what is used presently on TISOL or at ISOLDE. It is directly coupled to an ion source, both located on the bottom of a extended, ' well shielded vertical' plug. This ' plug (approximately 2 m in height) allows these target systems to be changed smoothly, . remotely and with minimal radiation exposure. All materials which can be radiation damaged are located well away from the hot area. Target changes (which include the ion source) are expected to be made in about 24 -48 hours (includes target conditioning and pump out time) • A great deal of knowledge is available from other thick target ISOL systems on appropriate combinations of target material and ion ' source to produce a wide range of 492 radioisotopes. It was decided at ISAC to initiate operations with radioactive beams which might be rather straightforward to produce and yet still have exciting physics to pursue. The first ion source that will be used at ISAC will be a heated surface ionization source and radioactive alkali beams will result. Based upon the present TISOL operations at TRIUMF and experiences from ISOLDE, beam intensities of such alkalis (Li, Na, K, Rb, Cs, Fr) of the order of lOll or higher at the peak of the mass yield curve could be expected. In addition this ion source should also produce beams of selected other elements such as Sr, Ga, Yb, and others. Of course intensities decrease as one approaches the limi ts of stability. A first design of the ISAC surface source has been assembled and tested successfully. A second series of ion sources (CUSP and ECR) are being studied to produce beams of volatile elements such as He, 0, N, F, Ne, C (as CO), Ar, Kr and others as key high priority experiments require them and they can be produced on the TISOL facility. It is expected that this source should be ready during the first year of operations. A third ion source, similar to the radio frequency sources above, is being developed to produce a 7Be ion beam off-line, also for key approved experiments and should be ready early in operations . At present there are only conceptual plans to develop other sources such as FEBIAD or Laser sources but this could change depending upon the priority of approved experiments and available resources. Following the target and ion source module, the ion beam is directed to a low resolution magnetic pre-separator to remove most of the unwanted species. This is followed by a high acceptance mass analyzing system (magnetic and electrostatic components) which is designed to achieve a mass resolving power of the order of 10000. This system has been designed conceptually and detailed designing is in progress. The mass separated beam is then directed vertically from the underground mass separator (pit) floor, up approximately 8 m to the experimental hall located at grade level. Alternatively, the beam can be deflected to the TRINAT (TRIUMF Neutral Atom Trap) facility, located on a well-shielded intermediate floor. TRINAT is presently located at the TISOL facility in the proton hall at TRIUMF. It is planned to move TRINAT approximately 4-6 months before radioactive beams are available ' from I SAC (presently expected early in 1999) . 493 Once the ion beam is at ground level in the new I SAC Experimental Hall, it will be bent 90 degrees into the horizontal plane using electrostatic elements and directed to the main switchyard. This switchyard will direct the beam either to the RFQ/DTL accelerators for experiments wi th accelerated beam (HE), or to the experimental areas (LE) planning to use the unaccelerated radioactive beams. Work is proceeding on the design of the cw RFQ LINAC accelerator which will take a singly charged ion beam of 2 keV/u with A < 30 or any charge/mass> 1/30 and accelerate i t to 150 keV/u. Following this the beam will be stripped, and ·the selected charge directed to a cw DTL which will accelerate an ion beam with q/A > 1/6 to some desired energy i n the range from 0.15 to 1.5 MeV/u. The anticipated longit~dinal emittance of the final cw bunched (89 ns/bunch) beam will be 45 x keV-ns (i.e., energy spread of ±100 keY f or a . at of ± 0.45 ns) while the normalized transverse emittance will be < 0.2 pi nun mr. A prototype of the first stage of the cw RFQ has been tested at full power and detailed design of the entire system is underway. The entire acceleration system including matching · sections between the RFQ and DTL are expected to be ready for commissioning by the end of 1999. The RFQ will ini tially be commissioned up to 60 keY /u in its final location with stable ions from an . off-line ion source early in 1998. It is anticipated that radioactive beams at full energy will be available in the HE experimental area by April 2000. The Experimental Hall will be ready to receive installation of experimental facilities in the summer of 1997. Present plans indicate that there is space for at least 5 experimental stations (approximately 250 ft2) in the LE area specified for using unaccelerated beams, in addition to the facilities located on the mezzanine floor. Facilities being considered are a standard nuclear spectroscopy counting area, a dilution refrigerator system for low temperature . nuclear orientation studies, a material s·tudies facility using polarized beams and a beta-NMR system, and possibly a penning trap system for mass measurements. In the HE area presently specified for the experiments wi th the accelerated beam present plans call for space at least for the specially designed spectrometer to study reactions with the radioactive beam as well as area 'for the 7Be reaction study, a general purpose scattering chamber for particle reaction studies, and possibly a coulomb excitation system. A system to perform AMS (Accelerated Mass 494 Spectroscopy} studies is also contemplated. There will be computer equipped counting rooms for experimenters on a mezzanine level above the experimental floor. A artist conceptual view of the new ISAC facility at TRIUMF is presented in the attached figure. Strategy for Experimenters A . call for letters of intent to perform studies at ISAC was made in November 1996 and about 13 letters were received in addition to the one experiment previously submitted and approved by the TRIUMF Experimental Evaluation Committee. Present plans call for submission of full experimental proposals to the EEC by June 1997 for approval. This will then allow experimenters, opportunities to seek · funding from the funding agencies (for Canadians, NSERC) in a timely fashion before first beams are available. It will also allow TRIUMF to set priorities and schedules so that the experimental facilities are available when required. The purpose of the WEEIS workshop is to assist potential experimenters in the preparation of the their EECproposals and initiate the process 'of assembling collaboration teams. ' . . . '. , ' " . :, . ". :. ' 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.51833.1-0355472/manifest

Comment

Related Items