- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Graduate Research /
- Synergistically Enhancing the Therapeutic Effect on...
Open Collections
UBC Graduate Research
Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials Ghahramani, Yasamin; Mokhberi, Marzieh; Mousavi, Seyyed Mojtaba; Hashemi, Seyyed Alireza; Fallahi Nezhad, Fatemeh; Chiang, Wei-Hung; Gholami, Ahmad; Lai, Chin Wei
Abstract
The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.
Item Metadata
Title |
Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2022-12-04
|
Description |
The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2023-11-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0437787
|
URI | |
Affiliation | |
Citation |
Molecules 27 (23): 8543 (2022)
|
Publisher DOI |
10.3390/molecules27238543
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0