Open Collections

UBC Graduate Research

Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam… Suarez-Gonzalez, Adriana; Hefer, Charles A.; Lexer, Christian; Cronk, Quentin C. B.; Douglas, Carl J. 2018-03

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
42591-Suarez-Gonzalez_A_et_al_Scale_direction_adaptive_introgression_accepted_20Feb2018.pdf [ 1.49MB ]
42591-Suarez-Gonzalez_A_et_al_Scale_direction_supporting_material_sep2017_accepted.pdf [ 3.5MB ]
Metadata
JSON: 42591-1.0364052.json
JSON-LD: 42591-1.0364052-ld.json
RDF/XML (Pretty): 42591-1.0364052-rdf.xml
RDF/JSON: 42591-1.0364052-rdf.json
Turtle: 42591-1.0364052-turtle.txt
N-Triples: 42591-1.0364052-rdf-ntriples.txt
Original Record: 42591-1.0364052-source.json
Full Text
42591-1.0364052-fulltext.txt
Citation
42591-1.0364052.ris

Full Text

 1  Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) 1 and balsam poplar (P. balsamifera)  2  3 Adriana Suarez-Gonzalez1, Charles A. Hefer1,2, Christian Lexer3, Quentin C. B. Cronk1* and Carl J. 4 Douglas† 5  6 1Department of Botany, University of British Columbia, Vancouver, Canada 7 2Current address: Biotechnology Platform, Agricultural Research Council, Private Bag X05, 8 Onderstepoort, 0110, South Africa  9 3 Department of Botany and Biodiversity Research, University of Vienna, Austria 10 † Deceased 25 July 2016 11  12 KEYWORDS:  13 Adaptive introgression, local adaptation, admixture, selection, subtelomeric regions  14  15 *Corresponding author: 16 Quentin Cronk 17 Email: quentin.cronk@ubc.ca 18 Running head: Scale and direction of adaptive introgression 19  20  21  22  23  24  25  26  27  2  ABSTRACT 28 Introgression can introduce novel genetic variation at a faster rate than mutation alone, and 29 result in adaptive introgression when adaptive alleles are maintained in the recipient genome over 30 time by natural selection. A previous study from our group demonstrated adaptive introgression 31 from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local 32 ancestry analysis to the whole genome of both parents to provide a comprehensive view of 33 introgression patterns and to identify additional candidate regions for adaptive introgression 34 genome-wide. Populus trichocarpa is a large, fast-growing tree of mild coastal regions of the Pacific 35 Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with 36 intense winter-cold. The species hybridize where they are parapatric. We detected asymmetric 37 patterns of introgression across the whole genome of these two poplar species adapted to 38 contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than 39 vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high 40 levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) 41 compared with admixed P. balsamifera (9 regions). Our analysis also revealed numerous candidate 42 regions for adaptive introgression with strong signals of selection, notably related to disease 43 resistance, and enriched for genes that may play crucial roles in survival and adaptation. 44 Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera 45 introgressed into P. trichocarpa and possible protection of sex-determining regions from 46 interspecific gene flow. 47  48 INTRODUCTION 49 Hybridization, the interbreeding between individuals of different varieties or species, is a 50 widespread natural phenomenon in plants (Ellstrand et al. 1999; Stace et al. 2015) and animals 51 (Dowling & Secor 1997) that has shaped the genomes of many lineages. In natural hybrid zones, 52 back-crossing of early-generation hybrids over subsequent generations can result in introgression, 53 where genetic material from one parental species is incorporated into another species. The 54 permeability of species boundaries to introgression depends on several factors including 55  3  recombination rate and the genomic distribution and number of loci associated with reproductive 56 isolation (Barton & Hewitt 1985; Harrison 1990).  57 Introgression can introduce novel genetic variation, including new gene combinations, at a 58 faster rate than through mutation alone and result in adaptive introgression when adaptive alleles 59 are maintained over time by natural selection (Twyford & Ennos 2012; Slarkin 1985; Rieseberg et al. 60 2003; Abbott et al. 2013; Schmickl et al. 2017). Examples of adaptive introgression in plants and 61 animals include increased herbivore resistance in sunflower (Whitney et al. 2006), flood tolerance in 62 Iris (Martin et al. 2006), mimetic wing patterns in butterflies (Pardo-Diaz et al. 2012), and altitude 63 adaptation in Tibetans (Huerta-Sanchez et al. 2014). Adaptive introgression may be particularly 64 important in rapidly changing environments, where standing genetic variation and mutation alone 65 may only offer limited potential for adaptation (Hedrick 2013; Hamilton & Miller 2015). 66 Natural hybrid zones provide evolutionary laboratories to identify chromosomal regions that 67 introgress significantly more frequently than expected (Lexer et al. 2004; Buerkle & Lexer 2008; 68 Abbott 2017). Forest tree species with extensive natural hybrid zones, large ranges across 69 geographical and climatic clines as well as substantial trait variation (Savolainen et al. 2007; 70 Soolanayakanahally et al. 2009; Keller et al. 2011; McKown et al. 2013) are attractive for the study 71 of adaptive introgression. Populus spp. in particular, have emerged as models for population 72 genomic studies of adaptation (Weigel & Nordborg 2015) due to porous species barriers and a 73 wealth of genomic resources available (Cronk 2005; Jansson & Douglas 2007; Tuskan et al. 2006). 74 Populus trichocarpa and P. balsamifera are sibling poplar species of the section Tacamahaca that 75 diverged in allopatry rather recently and hybridize freely where they overlap (Viereck & Foote 76 1970). Despite their recent divergence [~76 Ka (Levsen et al. 2012); but see (Ismail et al. 2012)] and 77 morphological similarity, these species are ecologically divergent and adapted to strongly 78 contrasting environments. Populus balsamifera is a boreal species distributed from Alaska to 79 Newfoundland, with high frost tolerance and adapted to a very large temperature range (-62˚C to 80 44˚C) as well as to moderate annual precipitation. Populus trichocarpa, on the other hand, is 81 distributed throughout the western US and Canada, from northern California to southern Alaska, 82 and is adapted to relatively humid, moist (riparian or higher precipitation), and milder conditions 83 (Richardson et al. 2014; Geraldes et al. 2014). 84  4  In a previous study, we explored fine-scale introgression patterns within and around target 85 genes in three chromosomes of P. trichocarpa and P. balsamifera to detect candidate regions for 86 adaptive introgression (Suarez-Gonzalez et al. 2016). Our local ancestry analysis revealed a 87 subtelomeric region in chromosome 15 with P. balsamifera ancestry, containing genes associated 88 with higher chlorophyll and leaf nitrogen content. Admixed P. trichocarpa individuals with these 89 particular P. balsamifera alleles may grow and acquire carbon faster than pure P. trichocarpa 90 individuals. This may serve to counteract shorter growth seasons at higher latitudes as has been 91 shown to be physiologically important in poplar (Soolanayakanahally et al. 2009; McKown et al. 92 2013) and spruce (Oleksyn et al. 1998). A more recent study using admixture mapping and 93 phenotypic analyses provided further support for the hypothesis that hybridization between P. 94 trichocarpa and P. balsamifera is an important source of adaptive phenotypic variation that may 95 allow improved survival in new environments (Suarez-Gonzalez et al. 2018). These results, based on 96 functional and phenotypic tests, showed the potential of local ancestry analyses to identify strong 97 candidates for adaptive introgression (Suarez-Gonzalez et al. 2016).  98 Our previous work, together with other documented empirical cases (Martin et al. 2006; 99 Pardo-Diaz et al. 2012; Huerta-Sanchez et al. 2014), indicate the importance of adaptive 100 introgression. However, little is known about the extent and direction of introgression across the 101 entire genome, and the genomic architecture of introgression at a fine genomic scale. Here we 102 expand our local ancestry analysis to the whole genomes of P. trichocarpa and P. balsamifera using 103 a population-wide resequencing approach and include additional admixed individuals to address the 104 following questions: (i) are introgression patterns asymmetric between these two poplar species? 105 (ii) is there enrichment for certain biological terms in the introgressed regions, in particular, those 106 related to disease resistance, given that P. trichocarpa populations may have been under intense 107 selection pressures for adaptation to leaf rust (La Mantia et al. 2013)? and (iii) are certain genomic 108 regions more prone to (e.g. subtelomeric regions) or protected from (e.g. sex-determining regions) 109 interspecific introgression? 110  5  MATERIALS AND METHODS 111 Samples  112 Populus trichocarpa accessions used in this study were collected by the British Columbia 113 Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) (Xie et al. 2009), and planted 114 in a common garden at the University of British Columbia (McKown et al. 2013). These individuals 115 were from 28 “drainages” (i.e., topographic units separated by watershed barriers) spanning 14° in 116 latitude (45.6°–59.6°) from throughout the species range. For P. balsamifera, we used accessions 117 from 46 provenances throughout the species range obtained from the Agriculture and Agri-Food 118 Canada AgCanBaP collection (Soolanayakanahally et al. 2009). For local ancestry analysis in 119 RASPberry (Wegmann et al. 2011), 50 reference individuals (25 P. balsamifera and 25 P. trichocarpa) 120 and 161 admixed individuals (129 P. trichocarpa individuals with P. balsamifera admixture, and 32 P. 121 balsamifera individuals with P. trichocarpa admixture) were selected from the sympatric zone 122 between P. trichocarpa and P. balsamifera as well as from allopatric populations (Figure 1). On the 123 basis of preliminary results, the 129 admixed P. trichocarpa individuals were reduced to 118 for all 124 analyses, as 11 individuals exhibited only trace amounts of admixture (see results). These 211 125 individuals were selected from a collection of 435 P. trichocarpa and 448 P. balsamifera genotypes, 126 using a previous genome-wide admixture analysis based on a genome-wide dataset of 971k SNPs 127 (Figure S1; Table S1, Supporting Information) (Geraldes et. al., in preparation). Additional sample 128 information and data generated in this study are given in Table S1, Supporting Information. 129 Sequencing, read mapping and variant calling  130 Sampled leaves were flash frozen in liquid nitrogen, or silica gel dried and 131 lyophilized.  Between 50 and 100 mg of leaf tissue were ground in a Precellys 24 tissue homogenizer 132 (Bertin Technologies, Montigny-le-Bretonneux, France), and DNA was extracted using a Qiagen 133 DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Protocol modifications include the use of 12uL of 134 RNAse A applied to each sample, and an additional centrifugation for 2 minutes at 20,000g 135 performed after cell lysis to remove tissue debris. All solution volumes were increased by 1.5x in 136 each step of the manufacturer’s protocol. DNA quantification and purity assessment were 137 performed using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and a 138 Qubit fluorometer (Invitrogen, Carlsbad, CA). High quality purified genomic DNA was used to 139  6  prepare multiplexed sequencing libraries according to the Standard Operating Protocols at the 140 Genome Sciences Centre, Vancouver, BC.  Sequences (100bp paired-end reads) were obtained at 141 estimated 30X or 15X coverage of the Nisqually-1 reference genome on an Illumina HiSeq at the 142 Genome Sciences Centre. 143 For local ancestry analysis, SNPs were called across the whole genomes for 211 individuals 144 allowing us to generate a dataset of unprecedented size for a study of this sort. Short reads from the 145 sequencing libraries were independently aligned to the P. trichocarpa version 3 (v3.0) genome using 146 BWA (version 0.6.1-r104) with default parameters. As the two poplar species are very closely related 147 (Levsen, Tiffin & Olson, 2012; Geraldes et al. 2013) it is possible to call SNPs in both species relative 148 to the same reference with high accuracy (Geraldes et al., 2015). We corrected mate pair metadata 149 and marked duplicate molecules using the FixMateInformation and MarkDuplicates methods in the 150 Picard package (http://picard.sourceforge.net). Reads present in areas surrounding InDels were re-151 aligned using the IndelRealigner method from GATK (version v1.5-25-gf46f7d0). Next, we called 152 SNPs and small indels independently using the UnifiedGenotyper method from GATK. SNPs were 153 then filtered to exclude variants within 3bp of any identified variants, having a mapping quality less 154 than 5, and a variant quality less than 30. Each SNP was annotated using SNPeff (Cingolani et al. 155 2012) with version 3 of the P. trichocarpa genome. All raw sequencing data and alignment 156 information have been deposited in SRA (PRJNA276056).  157 Inference of local ancestry 158 We estimated the probabilities for each of the possible ancestral configurations (P. 159 balsamifera, P. trichocarpa or mixed ancestry) in every SNP across the whole genome of 161 160 admixed individuals using RASPberry, a software that implements a reliable Hidden Markov model 161 (HMM) for admixture (Wegmann et al. 2011), following the same pipeline and parameters as in our 162 previous study on adaptive introgression (Suarez-Gonzalez et al. 2016). Briefly, SNPs with missing 163 data in the parental genotypes were removed using Plink 1.07 (Purcell et al. 2007), the parental 164 genotypes (50) were then phased with fastphase (Scheet & Stephens 2006) by creating the input 165 files with FCGENE (Roshyara & Scholz 2014), and ancestries for each admixed individual were 166 estimated using ADMIXTURE (Alexander et al. 2009).  167  7  To determine the ancestral configurations of each SNP in one of the three categories, 168 ancestries were considered for probabilities >95%. The proportion of introgressed ancestry in 169 admixed individuals was calculated, for each SNP, by counting sites with homospecific ancestry as 170 two and sites with mixed (i.e. heterospecific) ancestry as one, as in Suarez-Gonzalez et al. (2016).  171 We detected regions with unusually high levels of introgression (relative to general genome-wide 172 background levels) in admixed individuals using a sliding window approach and a significance cut-off 173 of three standard deviations (SD) from the weighted mean across all the chromosomes based on 174 SNP density per window. We used windows of 100-kb with steps of 20-kb since this window size 175 provided the best compromise between large numbers of windows with missing data (50-kb 176 windows) and low resolution (1-Mb windows) (Suarez-Gonzalez et al. 2016).  177 To determine if levels of introgression were correlated with certain structural features of the 178 genome, we performed a Pearson correlation (calculating coefficient r) between admixed ancestry 179 values and distance to telomeres. We also explored levels of introgression in predicted centromeric 180 regions (Pinosio et al. 2016). 181  Association between climate and introgression 182 To determine if introgression was associated with climate, we compiled 23 climate variables 183 from ClimateNA (Wang 2012) based on 1971–2000 and performed two principal component 184 analyses (PCAs), one for temperature and one for moisture, using the function prcomp in R. Eight 185 variables were associated with moisture and 15 were associated with temperature (Table S2A, 186 Supporting information). As these two sets of variables behave very differently (moisture variables 187 broadly correlated with longitude and temperature with latitude), they were analysed separately for 188 ease of interpretation. Hypothesis testing was performed using Pearson correlations. 189 Enrichment analysis 190 To detect overrepresented biological terms in introgressed regions, in particular those 191 related to disease resistance, we performed enrichment tests for various terms including Gene 192 Ontology (GO) and Protein Family (Pfam) using Popgenie accessed in November 2016 (Sjödin et al. 193 2009). Since NBS-LRRs (nucleotide binding sites and leucine-rich repeat) are the largest class of 194 disease resistance genes and play critical roles in plant defence (Dangl & Jones 2001), we searched 195 for protein families (Pfam) associated with NBS-LRR domains using the keyword search function in 196  8  the Pfam database (Finn et al. 2016). We compared these Pfam codes associated with NBS-LRRs 197 domains with the enriched Pfam codes in introgressed regions. In addition, we performed an 198 enrichment analysis in a P. balsamifera introgressed region showing signals of positive selection. 199 Tests of selection in the introgressed regions from the pure species individuals  200 We estimated Tajima’s D values across all introgressed regions for the 50 pure species 201 individuals, using 20-kb windows in VCFtools v0.1.12b (Danecek et al. 2011). Average Tajima’s D was 202 estimated within each introgressed region and compared with the average from 20-kb windows 203 without introgressed peaks using ANOVA. To detect windows with Tajima’s D values significantly 204 different from neutral expectations, we estimated the top and bottom 5% of the distribution across 205 the whole genome. The average proportion of amino acid substitutions driven by directional 206 selection (alpha; values range between -∞ and 1) was also estimated in pure species individuals for 207 all introgressed regions using Smith and Eyre-Walker’s alpha (Smith & Eyre-Walker 2002), and 208 generating confidence intervals by randomly selecting genes with replacement (bootstrapping) 1000 209 times in R v. 3.2.1 (R Development Core Team, http://www.r-project.org).  210 Levels of introgression in sex-determining regions 211 To determine if sex-associated regions are protected from introgression, we plotted the 212 location of SNPs significantly associated with sex in Populus (Geraldes et al. 2015) with the levels of 213 admixed ancestry from RASPberry across six chromosomes (4, 5, 9, 14, 18, 19). Geraldes et al (2015) 214 mapped the sex-linked region to these six chromosomes and two unmapped scaffolds in version 3.0, 215 likely due to genome misassembly.  216  217 RESULTS 218 Local ancestry in RASPberry vs previous admixture analysis 219 Eleven of the 129 individuals initially considered as admixed P. trichocarpa did not show any 220 P. balsamifera ancestry with RASPberry analysis and were therefore removed from all downstream 221 analyses. These 11 individuals could have been incorrectly classified previously as admixed or have 222 so little P. balsamifera ancestry that it was undetectable using RASPberry (Figure S1; Q values for P. 223 balsamifera ancestry = 0.011-0.003). The remaining 118 admixed P. trichocarpa contained 0.049% to 224 15.184% of P. balsamifera alleles across their genomes according to RASPberry analysis. These 225  9  estimates were in agreement with previous admixture analysis, though RASPberry estimates (mean: 226 0.0559, SD 0.0399) were, for the most part, lower than previous estimates of Q (mean 0.0682, SD: 227 0.0562) based on a different model-based analysis (Alexander et al. 2009). Admixture levels above 228 1% were geographically limited to interior and northern populations of P. trichocarpa (Figure 1). 229 Using introgressed individuals exclusively (P. trichocarpa admixture levels between 6.161% and 230 18.164%) allowed us to detect introgressed blocks against genome-wide expectations for admixture.     231 Across the genomes (1,168,955 SNPs examined) of 118 admixed P. trichocarpa individuals, 232 we detected 19 regions, which included 1107 genes, with unusually high levels of P. balsamifera 233 ancestry (Figure 2, Table 1). These regions included candidate genes for adaptive introgression 234 previously identified by our previous targeted study (Suarez-Gonzalez et al. 2016). The 19 regions, 235 occurring across 11 chromosomes, showed P. balsamifera ancestry peaks with heights (i.e. 236 percentage of P. balsamifera ancestry) ranging from 0.1778 to 0.2733 and widths ranging from 140 237 kb to 1.02 Mb.  238 Of the 32 individuals initially considered as admixed P. balsamifera, 11 were early 239 generation hybrids (P. balsamifera ancestry estimates above 20%) and were not included in further 240 downstream calculations (Figure S1; Supporting Information). Local ancestry analyses in the 241 remaining 21 P. balsamifera admixed individuals revealed nine regions, containing 545 genes, with 242 unusually high levels of P. trichocarpa ancestry, across five chromosomes (Figure 2, Table 1, S1; 243 Supporting information). These introgressed regions showed P. trichocarpa ancestry peaks with 244 heights ranging from 0.3262 to 0.4273 and widths ranging from 160 kb to 880 kb.  245 Introgression patterns are strongly asymmetric  246 In admixed P. trichocarpa, 2.3% of the genome showed unusually high levels of introgression 247 from P. balsamifera (total size of introgressed peaks: 9Mb; genome size: 394.5 Mb; Table 1), while in 248 admixed P. balsamifera, only 1.04% of the genome showed unusually high levels of introgression 249 from P. trichocarpa (total size of introgressed peaks: 4.1Mb; Table 1). Overall levels of genomic 250 admixture were higher in admixed P. balsamifera individuals (mean P. trichocarpa ancestry: 0.1157, 251 SD 0.0666, weighted by SNP density), compared to admixed P. trichocarpa individuals (mean P. 252 balsamifera ancestry 0.0559, SD 0.0399), suggesting the former are earlier generation hybrids.  253  10  The average width of regions with unusually high levels of introgression was slightly larger, 254 though not significantly (p>0.05),  in blocks with P. balsamifera ancestry  within admixed P. 255 trichocarpa individuals (mean 473.68 kb, SD: 252.371) compared to those with P. trichocarpa 256 ancestry within P. balsamifera individuals (mean 455.56 kb; SD: 227.547 (Figure S2; Supporting 257 Information).  258 There was no overlap between regions showing unusually high levels of introgression in P. 259 balsamifera admixed individuals (9) and those in P. trichocarpa admixed individuals (19). 260 Furthermore, the level of introgressed ancestry across the 19 chromosomes differed between 261 admixed P. trichocarpa and admixed P. balsamifera individuals. In the former, the three 262 chromosomes with the highest levels of P. balsamifera ancestry were chromosomes 17, 13 and 9. In 263 the latter, the top three chromosomes with the highest levels of P. trichocarpa ancestry were 12, 5 264 and 16 (Figure S3; Supporting Information).  265 PCA analysis revealed strong associations between levels of P. balsamifera introgression into 266 P. trichocarpa and the first principal component of variables associated with climate (temperature 267 PC1 explained 60% of the variance; Pearson’s r = 0.51, p<0.00001; moisture PC1 explained 63% of 268 the variance; Pearson’s r = 0.23, p<0.01); with increased levels of introgression occurring in colder 269 and drier environments (Figure 3; Table S2B, Supporting information). P. trichocarpa introgression 270 into P. balsamifera also increased in colder climates (Pearson’s r = 0.55, p<0.01), but there was no 271 association with changes in moisture.  272 Subtelomeric enrichment of introgressed regions  273 Overall, regions with unusually high levels of introgression were found at various 274 chromosomal locations, although a weak but highly significant negative correlation was evident 275 between levels of P. balsamifera introgressed ancestry and distance to telomeres (Pearson r2 =-276 0.074, p-value < 10-15, Figure 4). In contrast, there was no correlation between levels of P. 277 trichocarpa introgressed ancestry and distance to the telomeres in admixed P. balsamifera 278 individuals (r2 = -0.002, p-value = 0.734).  279 Levels of introgression in predicted centromeric regions (Pinosio et al. 2016) were well 280 below the significance threshold (i.e. 3SD from the whole genome average) and similar to the 281  11  genomic average (P. trichocarpa ancestry in admixed P. balsamifera individuals: 0.1293; P. 282 balsamifera ancestry in P. trichocarpa individuals: 0.0492; Figure 2).  283 Introgressed regions show enrichment for disease resistance genes  284 Enrichment analyses of biological terms revealed a different set of overrepresented GO and 285 Pfam terms in regions exhibiting unusually high levels of introgression in P. trichocarpa admixed 286 individuals (14 GO and 31 Pfam terms) compared to those in P. balsamifera admixed individuals (14 287 GO and 27 Pfam terms; Table S3; Supporting Information). Of the 58 enriched Pfam terms, two were 288 associated with disease resistance genes: The Toll/interleukin-1 receptor (TIR, PF01582) was 289 enriched in subtelomeric P. balsamifera introgressed regions (6 genes in chromosome 5 and 4 genes 290 in chromosome 7), and the Leucine-rich repeat protein family (LRR_1, PF00560) was enriched in P. 291 trichocarpa introgressed genes (1 gene on chromosome 5, 1 gene on chromosome 8, and 4 genes on 292 chromosome 16) (Figure 5, Table S4; Supporting Information). In chromosome 5, six TIR genes 293 occurred in tandem. In chromosome 7, four TIR genes were interspersed with another type of 294 disease resistance genes encoding NB-ARC domains (PF00931) and showed signals of purifying 295 selection (Figure 6). Genes encoding LRR_1 proteins were located on chromosome 5 (1 gene), 8 (1 296 gene) and chromosome 16 (4 genes). In chromosome 16, the group of LRR_1 genes was 297 interspersed with genes coding macrophage migration inhibitory factors (MIF, PF01187).  298 Only a few common KEGG (1 term) and micro RNA (10 terms) terms were enriched in both P. 299 balsamifera and P. trichocarpa introgressed regions (Table S3; Supporting Information). The P. 300 balsamifera introgressed region in chromosome 3 was enriched for genes that may play crucial roles 301 during response to biotic and abiotic stresses, such as those related to response to oxidative stress 302 (GO:0006979) and peroxidase activity (GO:0004601) (Table S3; Supporting Information).  303 Introgressed regions in pure P. balsamifera and P. trichocarpa are under selection 304 All introgressed regions except for two in chromosome 5 and 16 (Table S5; Supporting 305 Information) contained windows with Tajima’s D values either above or below 5% of the whole 306 genome distribution. Significantly positive Tajima’s D values (i.e., indicating an excess of 307 intermediate frequency alleles that may result from balancing selection) were present in pure P. 308 trichocarpa within three focal regions of special interest to this study (two P. trichocarpa regions 309 identified as introgressed in admixed P. balsamifera and one P. balsamifera region identified as 310  12  introgressed in admixed P. trichocarpa) and in one region in pure P. balsamifera (a region of 311 putative P. trichocarpa origin in admixed P. balsamifera). Significantly negative Tajima’s D  values 312 (indicating an excess of low-frequency polymorphisms relative to expectation possibly resulting 313 from purifying selection) were evident in pure P. trichocarpa in two focal genome regions (two P. 314 balsamifera regions identified as introgressed in admixed P. trichocarpa) and two focal regions in 315 pure P. balsamifera (two P. balsamifera regions in admixed P. trichocarpa) (Table 1, Table S5, 316 Supporting information, Figure 6). Two of these P. balsamifera regions in P. trichocarpa (within 317 chromosomes 7 and 11) and the region showing positive Tajima’s D values (within chromosome 10) 318 were telomeric. We note that unusual Tajima´s D values in focal regions in pure species does not per 319 se allow us to predict balancing or purifying selection in admixed individuals, as any fitness and/or 320 phenotypic effects of introgressed alleles in such individuals is also dependent on their genomic 321 background (Suarez-Gonzalez et al. 2018). 322 In addition, Alpha - a measure of selection at the amino acid level - revealed signals of 323 positive selection in the P. balsamifera introgressed region in chromosome 3 in about 60% of all 324 amino acid substitutions in both P. trichocarpa and P. balsamifera pure individuals (Table S6, 325 Supporting Information).. 326 Are sex-determining regions protected from interspecific introgression? 327 The sex-linked region did not show signals of introgression above the significance threshold (i.e. 3SD 328 from the genomic average). Most SNPs (80%) significantly associated with sex mapped to 329 chromosomes 18 and 19 in the P. trichocarpa genome assembly version 3.0, where no introgressed 330 regions were present (Figure S4). Sex-determining regions in chromosomes 4 and 9 showed admixed 331 ancestry levels below 10%, and in chromosome 5 and chromosome 14, the regions that mapped to 332 sex-determination (5 kb in chromosome 5 and 3.5 kb in chromosome 14) were in close proximity to 333 introgressed regions but did not show admixture levels above the significance threshold (Figure S4).  334  335 DISCUSSION  336 Direction and scale of introgression into P. trichocarpa in relation to environment 337 Our whole genome analysis revealed asymmetric patterns of introgression, with stronger 338 signatures of adaptive introgression from P. balsamifera into P. trichocarpa than in the reverse 339  13  direction. Introgression evident in admixed P. trichocarpa individuals was geographically limited to 340 northwestern Canada and the Canadian Rockies, where P. balsamifera genes associated with 341 adaptation to higher latitudes might allow admixed P. trichocarpa to colonize colder environments 342 as indicated in our previous work (Suarez-Gonzalez et al. 2016). Here, a PCA analysis revealed 343 increased levels of introgression in both colder and drier environments, and a previous landscape 344 genomic analysis identified 21 SNPs in eight regions with unusually high levels of introgression in P. 345 trichocarpa that were strongly correlated with several geoclimate variables including latitude, mean 346 annual temperature and mean coldest temperature (Geraldes et al. 2014). Some correlation of this 347 sort is to be expected because of the difference in the parental niches but it should be noted that 348 admixed individuals make up the majority (or entirety) of northern populations in our P. trichocarpa 349 collection (Geraldes et al. in preparation) and an admixture mapping study revealed strong 350 associations between introgressed regions and adaptive characters that may allow improved 351 survival in new environments (Suarez-Gonzalez et al. 2018). Currat et al. (2008) have argued for an 352 important effect of demography in promoting the introgression of local alleles to invading 353 populations particularly during active invasions and range expansions. However, our species are 354 largely parapatric and separated over much of their range by natural barriers such as the Rocky 355 Mountains. We therefore do not think that an invasion model matches well with our results. 356 Instead, we appear to have gene flow occurring through a hybrid zone, rather than dispersal of pure 357 species deep inside the range of another. Also, the studied Populus species are wind-pollinated and 358 wind-dispersed obligate outcrossers, thus gene flow within each species is expected to be high. This 359 makes it even less likely that introgression between these species is facilitated by demographic 360 processes described for invading species (Currat et al. 2008; Petit & Excoffier 2009). 361 Although introgression from P. balsamifera to P. trichocarpa can be interpreted in adaptive 362 terms, the reverse is less obvious. The type of environments these species are currently occupying 363 does not intuitively suggest that introgression from P. trichocarpa into P. balsamifera is likely to be 364 adaptive. In fact, introgression from P. trichocarpa, a fast-growing tree adapted to mild and coastal 365 climates, to P. balsamifera, a slower-growing stress-tolerant species occupying northern latitudes 366 with extreme temperature ranges, might be maladaptive as it could decrease the stress tolerance of 367 P. balsamifera (Richardson et al. 2014; Geraldes et al. 2014). . 368  14  We uncovered several candidate regions related to adaptive introgression with signals of 369 selection, including subtelomeric regions occupied by disease response genes (see below). These 370 signatures of selection suggest that introgressed regions may be underlying adaptive processes in 371 pure individuals and potentially in hybrids, supporting the hypothesis of adaptive introgression as 372 has been shown in our previous studies (Suarez-Gonzalez et al. 2016; Suarez-Gonzalez et al. 2017). 373 Alternative explanations for these patterns are recent introgression, unidirectional incompatibilities, 374 or increased levels of recombination. Future functional and phenotypic studies could be used to 375 further test if variants acquired from P. balsamifera have indeed accelerated adaptation in P. 376 trichocarpa and resulted in improved survival in colder environments.  377  378 Evidence for the role of selection in introgression 379 We obtained several indications that introgression in this system is not neutral. While none 380 of these indications is conclusive on its own, taken overall they are strongly suggestive of selection. 381 First, certain genome regions are hotspots for introgression. One explanation for this, and perhaps 382 the simplest one in light of our local ancestry results (Fig. 2), is that these regions are under 383 selection and therefore tend to introgress faster. The term “comet alleles” has been used to 384 described similar rapidly introgressed haplotypes in mice (Staubach et al. 2012). 385 Second, we have detected significant enrichment for certain gene ontology terms, which 386 suggests that the strongly introgressed regions are not a random sampling of the genome as might 387 be expected under neutrality. In addition, it is striking that some of the functional categories 388 enriched contain genes that may play crucial roles in survival and adaptation, such as those related 389 to disease resistance (see below). 390 Third, we found signatures of purifying and balancing selection in pure individuals in 391 genomic regions identified as introgressed in admixed samples. Purifying selection in the donor 392 species P. balsamifera suggests that variation at such loci is functionally relevant. The functional 393 importance of such genes in the donor species is exemplified by one protein family associated with 394 disease resistance (TIR, PF01582), that is over-represented in a P. balsamifera introgressed region in 395 chromosome 7, showing signals of purifying selection. Although we cannot be certain that the 396 signals of balancing selection in pure P. trichocarpa also apply to admixed individuals, this finding is 397 consistent with the maintenance of allelic variation (including potentially introgressed variants) by 398  15  selection. As noted elsewhere “… natural selection should favor introgression for alleles at genes 399 evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, 400 or self-incompatibility genes in plants” (Castric et al., 2008). This is unsurprising, as diseases can be 401 important agents of tree mortality (Holdenrieder et al., 2004). Finally, we should note the findings of 402 a previous study that many introgressed regions are in fact associated with adaptively-relevant 403 phenotypes (Suarez-Gonzalez et al., 2018). 404 Implications for adaptation to future climates 405 Changing climate conditions are expected to have a far-reaching impact on forest species 406 (IPCC et al. 2014; Sturrock et al. 2011), especially if warmer temperatures and increased 407 precipitation increase the probability of tree diseases in northern locations. Southern P. trichocarpa 408 populations may have been under intense selection pressures for disease resistance, as suggested 409 by the negative correlation between latitude and leaf rust severity across P. trichocarpa populations 410 from the Pacific Northwest (La Mantia et al. 2013). If changes in climate result in more favorable 411 conditions for pathogen reproduction and survival at higher latitudes (Hicke et al. 2012; IPCC et al. 412 2014; Helfer 2014), pathogen aggressiveness may become increasingly important for P. balsamifera.  413 Here we show that genes introgressed from P. trichocarpa into P. balsamifera were enriched 414 for the leucine-rich repeat protein family (LRR_1, PF00560), which has been associated with innate 415 immunity and sensing of pathogen-associated molecular patterns (Ng & Xavier 2011). Furthermore, 416 these introgressed LRR_1 genes were interspersed by genes coding for macrophage migration 417 inhibitory factors (MIF, PF01187), which in mammals regulate adaptive and innate immunity (Ståldal 418 et al. 2012). It has recently been suggested that MIF genes may have a parallel function in plants, 419 regulating the stress response including innate immunity (Panstruga et al. 2015).  420 In addition, our results suggest that introgression from P. trichocarpa into P. balsamifera 421 may be more recent than introgression in the opposite direction due to the higher levels of 422 admixture found, implying earlier generation hybrids with less backcrossing (despite the similar sizes 423 of introgressed genomic blocks). However, this introgression is more evident in cold environments, 424 contrary to our expectations. This raises the intriguing possibility of climate change reversing the 425 historical direction of introgression. If P. trichocarpa can indeed contribute beneficial disease 426  16  resistance genes, adaptive introgression into P. balsamifera could play crucial roles under changing 427 climatic conditions.  428 Disease resistance genes and structural properties may explain subtelomeric enrichment of 429 introgressed regions  430 The potential sub-telomeric enrichment of introgressed regions in P. trichocarpa is an 431 interesting finding of our study and could be explained by (1) the type of gene families found in the 432 subtelomeres and (2) the unstable structural properties of these regions. In yeast, subtelomeric 433 families are enriched for specific functional categories including response to stress and toxins, 434 metabolism of a broad spectrum of compounds, as well as transporters (Brown et al. 2010). In 435 plants, including maize, barley, and poplar, subtelomeres are often occupied by large clusters of 436 plant resistance genes (Geffroy et al. 2000; Wei et al. 1999; Duplessis et al. 2009). Our study 437 revealed one protein family associated with disease resistance (TIR, PF01582) overrepresented in P. 438 balsamifera introgressed regions and, interestingly, all of the TIR introgressed genes were 439 subtelomeric and arranged in clusters that showed signals of purifying selection (i.e. negative values 440 of Tajima’s D lower than the neutral expectation). Taken together, these results show that 441 subtelomeres are occupied by, and may be enriched for, gene families associated with local 442 adaptation, where interspecific introgression may transfer important adaptive traits.    443 Subtelomeres, often the most variable region of eukaryotic genomes (Winzeler et al. 2003; 444 Brown et al. 2010), are composed of various repeated elements and characterized by increased 445 recombination, duplication, and mutation which may allow evolutionary adaptation and innovation 446 (Rudd et al. 2007; Linardopoulou et al. 2005; Barton et al. 2008). While increased duplication and 447 mutation rates also imply the possibility of falsely calling genotypes as heterozygous in bioinformatic 448 pipelines that rely on mapping sequence reads to a reference genome, this is less likely to be an 449 issue in our study, as our results are based on local ancestries rather than on raw genotype data.  450 In poplar, there is a weak negative correlation between distance to telomeres and levels of 451 recombination (Slavov et al. 2012). A computational analysis in yeast revealed that subtelomeric 452 families are evolving and expanding much faster than families that do not contain subtelomeric 453 genes. Furthermore, non-subtelomeric genes that belong to the same functional categories showed 454 lower variability compared with their subtelomeric counterparts (Brown et al. 2010). These results 455  17  suggest that the high rates of sequence evolution and rapid gene turnover are inherent properties 456 of subtelomeric regions rather than of the functional categories of genes. In Plasmodium falciparum, 457 the subtelomeric location of var genes may favour the increased diversity in antigenicity, an 458 effective system to evade immune systems, due to higher levels of recombination in subtelomeric 459 regions (Rubio et al. 1996). In humans, subtelomere dynamics including recent duplications between 460 the subtelomeres of different chromosomes, have resulted in a striking variation of subtelomerically 461 located OR genes and may contribute to the diversity in olfactory perception (Mefford & Trask 2002; 462 Trask et al. 1998).  463 Overall, these studies show that subtelomeres harbor fast-evolving gene families and are hot 464 spots of recombination and duplications. Our analysis suggests adaptive introgression as an 465 important potential corollary of the extensive sequence variation found in subtelomeric genes, and 466 more fine-scale genomic studies of introgression are needed to evaluate the relative importance of 467 the subtelomeric properties in shaping the architecture of adaptive introgression.    468 Possible protection of the sex-determining regions from interspecific gene flow 469 Sex-determining regions have previously been shown to be protected from interspecific 470 gene flow (Hu & Filatov 2016). Our results are consistent with this, as shown here by the lack of 471 significant signals of introgression in the poplar sex-determining region (SDR) (Geraldes et al. 2015). 472 Previous studies in Populus have consistently mapped the gender determining locus to the proximal 473 telomeric region of chromosome 19 (Gaudet et al. 2008; Yin et al. 2008; Geraldes et al. 2015), which 474 is also in close proximity to the largest NBS disease resistance gene cluster in poplar (Kohler et al. 475 2008). Although subtelomeric regions and genes associated with adaptation could be more prone to 476 be introgressed, our analysis suggests that sexually antagonistic mutations may be impeding 477 introgression in the SDR of chromosome 19. In fact, it has been suggested that suppressed 478 recombination associated with resistance genes may have co-evolved with sexual differentiation 479 and allowed the emergence of an incipient sex chromosome in poplar (Tuskan et al. 2012; Caseys et 480 al. 2015). Geraldes et al. (2015), the first study to fully characterize the SDR in P. trichocarpa, found 481 no evidence of an incipient sex chromosome. Instead, the non-recombining region has remained 482 remarkably small (13 genes over c. 100kb), although it does contain several putative resistance 483 genes (Geraldes et al. 2015).  484  18  Geraldes et al. (2015) also found SNPs associated with sex in five additional chromosomes, 485 likely due to a very poor genome assembly (in both v2.2 and v3.0) of the subtelomeric SDR of 486 chromosome 19. Since the sex locus is fragmented through the genome by poor assembly in the 487 current version of the genome (used in this study), further refinement of the assembly is needed to 488 make firm inferences about introgression patterns near the SDR in Populus.   489 Taken on balance, the results detailed here provide strong support for the hypothesis that 490 hybridization between species is an important source of adaptively significant variation. The 491 asymmetry of this effect between P. balsamifera and P. trichocarpa further indicates that the effects 492 of introgression on adaptation depends strongly on ecological contexts. 493  494 ACKNOWLEDGEMENTS 495 This work was supported by the Genome Canada Large-Scale Applied Research Program (POPCAN, 496 project 168BIO), funds to QCBC and CJD, by a Natural Sciences and Engineering Research Council of 497 Canada Discovery Grant to CJD (RGPIN 36485-12), and by grants from the Swiss National Science 498 Foundation (SNF) to CL. We thank Michael Friedmann (UBC) for assistance with project 499 management; and Daniel Wegmann (U Fribourg) and Camille Christe for assistance and discussions. 500 We also thank Richard Abbott,and three anonymous referees for comments that greatly improved 501 the manuscript. 502  503 REFERENCES 504  505 Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of 506 hybrid zones. Journal of Systematics & Evolution 55, 238-258. 507 Abbott RJ, Albach D, Ansell S et al. (2013) Hybridization and speciation. Journal of Evolutionary  508 Biology 26: 229–246. 509 Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated 510 individuals. Genome Research, 19, 1655-1664. 511  19  Barton AB, Pekosz MR, Kurvathi RS, Kaback DB (2008) Meiotic recombination at the ends of 512 chromosomes in Saccharomyces cerevisiae. Genetics, 179, 1221-1235. 513 Barton NH, Hewitt GM (1985) Analysis of Hybrid Zones. Annual Review of Ecology and Systematics, 514 16, 113-148. 515 Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of 516 subtelomeric gene families in yeasts. Current Biology, 20, 895-903. 517 Buerkle CA, Lexer C (2008) Admixture as the basis for genetic mapping. Trends in Ecology & 518 Evolution, 23, 686-694. 519 Caseys C, Stritt C, Glauser G, Blanchard T, Lexer C (2015) Effects of hybridization and evolutionary 520 constraints on secondary metabolites: The genetic architecture of phenylpropanoids in 521 european Populus species. PLoS ONE, 10, e0128200. 522 Castric, V., Bechsgaard, J., Schierup, M. H., & Vekemans, X. (2008). Repeated adaptive introgression 523 at a gene under multiallelic balancing selection. PLoS Genetics, 4(8), e1000168. 524 Cingolani P, Platts A, Wang LL, et al (2012) A program for annotating and predicting the effects of 525 single nucleotide polymorphisms, SnpEff. Fly, 6, 80-92. 526 Cronk QCB (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytologist, 527 166, 39-48. 528 Currat M, Ruedi M, Petit R, Excoffier L (2008) The hidden side of invasions: Massive introgression by 529 local genes. Evolution, 62, 1908-1920. 530 Danecek P, Auton A, Abecasis G, et al (2011) The variant call format and VCFtools. Bioinformatics, 531 27, 2156-2158. 532 Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature, 533 411, 826-833. 534  20  Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of 535 animals. Annual Review of Ecology and Systematics, 28, 593-619. 536 Duplessis S, Major I, Martin F, Seguin A (2009) Poplar and pathogen interactions: Insights from 537 Populus genome-wide analyses of resistance and defense gene families and gene expression 538 profiling. Critical Reviews in Plant Sciences, 28, 309-334. 539 Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants 540 into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. 541 Finn RD, Coggill P, Eberhardt RY, et al (2016) The Pfam protein families database: towards a more 542 sustainable future. Nucleic Acids Research, 44, 279-285. 543 Gaudet M, Jorge V, Paolucci I, Beritognolo I, Mugnozza GS, Sabatti M (2008) Genetic linkage maps of 544 Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genetics & Genomes, 4, 25-36. 545 Geffroy V, Sevignac M, De Oliveira, Julio C. F., et al (2000) Inheritance of partial resistance against 546 Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci 547 with genes involved in specific resistance. Molecular Plant-Microbe Interactions, 13, 287-296. 548 Geraldes, A., Difazio, S.P., Slavov, G.T. et al. (2013). A 34K SNP genotyping array for Populus 549 trichocarpa: design, application to the study of natural populations and transferability to other 550 Populus species. Molecular Ecology Resources, 13(2), 306-323. 551 Geraldes A, Hefer CA, Capron A, et al (2015) Recent Y chromosome divergence despite ancient origin 552 of dioecy in poplars (Populus). Molecular Ecology, 24, 3243-3256. 553 Geraldes A, Farzaneh N, Grassa CJ, et al (2014) Landscape genomics of Populus trichocarpa: the role 554 of hybridization, limited gene flow, and natural selection in shaping patterns of population 555 structure. Evolution, 68, 3260-3280. 556  21  Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic 557 conservation in a changing climate. Conservation Biology, 30, 33-41. 558 Harrison RG (1990) Hybrid zones: windows on evolutionary proces. In: Oxford Surveys in 559 Evolutionary Biology (eds. Futuyma D, Antonovics J) pp. 69-128 Oxford University Press, New York. 560 Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation 561 and standing variation as sources of adaptive variation. Molecular Ecology, 22, 4606-4618. 562 Helfer S (2014) Rust fungi and global change. New Phytologist, 201, 770-780. 563 Hicke JA, Allen CD, Desai AR, et al (2012) Effects of biotic disturbances on forest carbon cycling in the 564 United States and Canada. Global Change Biology, 18, 7-34. 565 Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape 566 processes: the challenge of landscape pathology. Trends in Ecology & Evolution, 19(8), 446-452. 567 Hu X, Filatov DA (2016) The large-X effect in plants: increased species divergence and reduced gene 568 flow on the Silene X-chromosome. Molecular Ecology, 25, 2609-2619. 569 Huerta-Sanchez E, Jin X, Asan, et al (2014) Altitude adaptation in Tibetans caused by introgression of 570 Denisovan-like DNA. Nature, 512, 194-197. 571 IPCC, Pachauri RK, Meyer LA, eds (2014) Climate Change 2014: Synthesis Report. Contribution of 572 Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 573 Change IPCC, Geneva. 574 Ismail M, Soolanayakanahally R, Ingvarsson P, et al (2012) Comparative nucleotide diversity across 575 North American and European Populus species. Journal of Molecular Evolution, 74, 257-272. 576 Jansson S, Douglas CJ (2007) Populus: A model system for plant biology. Annual Review of Plant 577 Biology, 58, 435-458. 578  22  Keller SR, Soolanayakanahally RY, Guy RD, Silim SN, Olson MS, Tiffin P (2011) Climate-driven local 579 adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). 580 American Journal of Botany, 98, 99-108. 581 Kohler A, Rinaldi C, Duplessis S, et al (2008) Genome-wide identification of NBS resistance genes in 582 Populus trichocarpa. Plant Molecular Biology, 66, 619-636. 583 La Mantia J, Klápště J, El-Kassaby Y, et al (2013) Association analysis 584 identifies Melampsora × columbiana Poplar leaf rust resistance SNPs. PLoS ONE, 8, e78423. 585 Levsen ND, Tiffin P, Olson MS (2012) Pleistocene speciation in the genus Populus (Salicaceae). 586 Systematic Biology, 61, 401-412. 587 Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic 588 variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.). Forest 589 Ecology and Management, 197, 49-64. 590 Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres 591 are hot spots of interchromosomal recombination and segmental duplication. Nature, 437, 94-100. 592 Little EL (1971) Conifers and important hardwoods. In: Atlas of United States trees (ed. U.S. 593 Department of Agriculture Miscellaneous Publication) pp. 1146-1155 U.S. Department of Agriculture 594 Miscellaneous Publication, . 595 Martin N, Bouck A, Arnold M (2006) Detecting adaptive trait introgression between Iris fulva and I. 596 brevicaulis in highly selective field conditions. Genetics, 172, 2481-2489. 597 McKown AD, Guy RD, Klápště J, et al (2013) Geographical and environmental gradients shape 598 phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist, 201, 1263-599 1276. 600  23  Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. 601 Nature reviews. Genetics, 3, 91-102. 602 Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins. Autophagy, 7, 1082-1084. 603 Nielsen R (2005) Molecular signatures of natural selection. Annual Reviews in Genetics, 39, 197-218. 604 Oleksyn J, Modrzýnski J, Tjoelker MG, Zaytkowiak R, Reich PB, Karolewski P (1998) Growth and 605 physiology of Picea abies populations from elevational transects: common garden evidence for 606 altitudinal ecotypes and cold adaptation. Functional Ecology, 12, 573-590. 607 Panstruga R, Baumgarten K, Bernhagen J (2015) Phylogeny and evolution of plant macrophage 608 migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evolutionary Biology, 15, 609 1-16. 610 Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, et al. (2012) Adaptive 611 introgression across species boundaries in Heliconius butterflies. PLoS Genetics, 8, e1002752. 612 Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends in Ecology and Evolution, 24, 613 386-393. 614 Pinosio S, Giacomello S, Faivre-Rampant P, et al (2016) Characterization of the Poplar Pan-Genome 615 by Genome-Wide Identification of Structural Variation. Molecular Biology and Evolution, 33, 2706-616 2719. 617 Purcell S, Neale B, Todd-Brown K, et al (2007) PLINK: a toolset for whole-genome association and 618 population-based linkage analysis. American Journal of Human Genetics, 81, 559-575. 619 Richardson J, Isebrands JG, Ball JB (2014) Ecology and physiology of poplars and willows. In: Poplars 620 and Willows: Trees for Society and the Environment (eds. Isebrands JG, Richardson J) pp. 92-123 621 CABI, Oxfordshire, UK. 622  24  Rieseberg LH, Raymond O, Rosenthal DM, et al (2003) Major Ecological Transitions in Wild 623 Sunflowers Facilitated by Hybridization. Science, 301, 1211. 624 Roshyara NR, Scholz M (2014) fcGENE: A versatile tool for processing and transforming SNP 625 datasets. PLoS ONE, 9, e97589. 626 Rubio JP, Thompson JK, Cowman AF (1996) The var genes of Plasmodium falciparum are located in 627 the subtelomeric region of most chromosomes. The EMBO journal, 15, 4069-4077. 628 Rudd MK, Friedman C, Parghi SS, Linardopoulou EV, Hsu L, Trask BJ (2007) Elevated Rates of Sister 629 Chromatid Exchange at Chromosome Ends. PLoS Genetics, 3, e32. 630 Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene Flow and Local Adaptation in Trees. Annual Review of 631 Ecology, Evolution, and Systematics, 38, 595-619. 632 Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype 633 data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human 634 Genetics, 78, 629-644. 635 Schmickl R, Marburger S, Bray S, Yant L. 2017. Hybrids and horizontal transfer: introgression allows 636 adaptive allele discovery. Journal of Experimental Botany 68, 5453-5470. 637 Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) PopGenIE: The Populus genome 638 integrative explorer. A new tool for exploring the Populus genome. New Phytologist, 182, 1013-639 1025. 640 Slarkin M (1985) Gene Flow in Natural Populations. Annual Review of Ecology and Systematics, 16, 641 393-430. 642 Slavov GT, DiFazio SP, Martin J, et al (2012) Genome resequencing reveals multiscale geographic 643 structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New 644 Phytologist, 196, 713-725. 645  25  Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature, 415, 1022-1024. 646 Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation 647 rate and water use efficiency with latitude through increased photosynthetic capacity and internal 648 conductance in balsam poplar (Populus balsamifera L.). Plant, Cell & Environment, 32, 1821-1832. 649 Stace CA, Preston CD, Pearman DA (2015) Hybrid flora of the British Isles. Bristol: Botanical Society of 650 Britain and Ireland. 651 Ståldal V, Cierlik I, Chen S, et al (2012) The Arabidopsis thaliana transcriptional activator STYLISH1 652 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant 653 Molecular Biology, 78, 545-559. 654 Sturrock RN, Frankel SJ, Brown AV, et al (2011) Climate change and forest diseases. Plant Pathology, 655 60, 133-149. 656 Suarez-Gonzalez A, Hefer CA, Christe C, et al (2016) Genomic and functional approaches reveal a 657 case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black 658 cottonwood). Molecular ecology, 25, 2427-2442. 659 Suarez‐Gonzalez, A., Hefer, C. A., Lexer, C., Douglas, C. J., & Cronk, Q. C. B. (2018). Introgression 660 from Populus balsamifera underlies adaptively significant variation and range boundaries in P. 661 trichocarpa. New Phytologist 217, 416-427. 662  663 Staubach, F., Lorenc, A., Messer, P. W., Tang, K., Petrov, D. A., & Tautz, D. (2012). Genome patterns 664 of selection and introgression of haplotypes in natural populations of the house mouse (Mus 665 musculus). PLoS Genetics, 8(8), e1002891. 666 Trask BJ, Friedman C, Martin-Gallardo A, et al (1998) Members of the olfactory receptor gene family 667 are contained in large blocks of DNA duplicated polymorphically near the ends of human 668 chromosomes. Human Molecular Genetics, 7, 13-26. 669  26  Tuskan GA, DiFazio S, Jansson S, et al (2006) The genome of black cottonwood, Populus trichocarpa 670 (Torr. & Gray). Science, 313, 1596-1604. 671 Tuskan GA, DiFazio S, Faivre-Rampant P, et al (2012) The obscure events contributing to the 672 evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree 673 Genetics & Genomes, 8, 559-571. 674 Twyford AD, Ennos RA (2012) Next-generation hybridization and introgression. Heredity, 108, 179-675 189. 676 Viereck LA, Foote JM (1970) The status of Populus balsamifera and P. trichocarpa in Alaska. 677 Canadian Field-Naturalist, 84, 169-173. 678 Wegmann D, Kessner DE, Veeramah KR, et al (2011) Recombination rates in admixed individuals 679 identified by ancestry-based inference. Nature Genetics, 43, 847-853. 680 Wei F, Gobelman-Werner K, Morroll SM, et al (1999) The Mla (Powdery Mildew) resistance cluster is 681 associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA 682 interval on chromosome 5S (1HS) of barley. Genetics, 153, 1929. 683 Weigel D, Nordborg M (2015) Population genomics for understanding adaptation in wild plant 684 species. Annual Review of Genetics, 49, 315-338. 685 Whitney K, Randell RA , Rieseberg L (2006) Adaptive introgression of herbivore resistance traits in 686 the weedy sunflower Helianthus annuus. The American Naturalist, 167, 794-807. 687 Winzeler EA, Castillo-Davis C, Oshiro G, et al (2003) Genetic Diversity in Yeast Assessed With Whole-688 Genome Oligonucleotide Arrays. Genetics, 163, 79. 689 Xie C, Ying CC, Yanchuk AD, Holowachuk DL (2009) Ecotypic mode of regional differentiation caused 690 by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific 691 Northwest coast. Canadian Journal of Forest Research, 39, 519-525. 692  27  Yin T, DiFazio SP, Gunter LE, et al (2008) Genome structure and emerging evidence of an incipient 693 sex chromosome in Populus. Genome Research, 18, 422-430. 694   695 DATA ACCESSIBILITY 696 All the raw sequencing data and alignment information have been deposited on SRA 697 (PRJNA276056). The list and annotation of all the introgressed genes, and the results from Tajima’s 698 D estimations have been archived in dryad (doi:10.5061/dryad.p82f2). 699  700 AUTHOR CONTRIBUTIONS 701 A.S.-G., C.J.D., Q.C.B.C, and C.L. designed the study. A.S.-G performed the research, analysed data, 702 and wrote the manuscript. C.H. performed S.N.P. calling. C.J.D., Q.C.B.C. and C.L. provided funding. 703 Q.C.B.C, and C.L edited the manuscript and all the authors approved the final version. 704  705 TABLES 706 Table 1. Summary of the Populus balsamifera introgressed regions in admixed P. trichocarpa 707 individuals (italics) and P. trichocarpa introgressed regions in admixed P. balsamifera individuals 708 (bold). The size of the introgressed peaks is represented in kilobases (kb) and number of genes (#). 709 The height of the introgressed peaks is given in terms of the maximum units of standard deviations 710 from the mean within each peak (‘Max. balsa’ & ‘Max. tricho’). Average Tajima’s D (D) was 711 calculated in each introgressed region and compared with the average from windows without 712 introgressed peaks using ANOVA. Average Tajima’s Ds (D) noted were significantly different from 713 the average in windows without introgressed regions. A measure of selection at the amino acid 714 levels is given using alpha. The value is given for those regions where a significant value was 715 recovered. 716   Genomic coordinates Size Height Selection  Chro Start End kb #Genes Maxa balsa Maxa tricho Db balsa Db tricho Alpha balsa Alpha tricho Ch01 47,120,000 47,540,000 420 43 3.88       28    48,000,000 48,380,000 380 23 3.51   -0.72   Ch03 7,380,000 7,740,000 360 22  3.27  0.36    21,040,000 21,620,000 580 95 3.87    0.62 0.59 Ch05 140,000 380,000 240 43 3.64       4,060,000 4,640,000 580 93  3.73  0.39    4,980,000 5,440,000 460 50  3.75       11,580,000 11,820,000 240 17 3.28  -0.92    Ch06 3,540,000 3,700,000 160 22 3.09      Ch07 14,680,000 15,700,000 1,020 145 5.51   -0.33   Ch08 740,000 1,620,000 880 162  4.47 0.47    Ch09 1,380,000 1,760,000 380 22 3.53      Ch10 22,180,000 22,660,000 480 74 3.63   0.44   Ch11 1,940,000 2,120,000 180 25 3.24       17,580,000 17,780,000 200 16 3.68        17,800,000 18,600,000 800 97 4.11  -0.57    Ch12 1,380,000 1,680,000 300 43  3.25     Ch14 12,720,000 13,300,000 580 63 4.33        13,340,000 13,480,000 140 39 3.46      Ch15 0 580,000 580 87 3.72       13,480,000 13,920,000 440 71 3.48      Ch16 11,200,000 11,420,000 220 24  3.31      12,000,000 12,160,000 160 16  3.16      12,320,000 12,980,000 660 93  4.28       13,120,000 13,600,000 480 42  4.68     Ch17 3,080,000 3,900,000 820 98 4.03       9,720,000 10,420,000 700 42 5.17        12,720,000 13,380,000 660 85 4.39       717  29  a The height of the introgressed peaks in terms of units of standard deviations from the mean. ‘Max. 718 balsa’ and ‘Max. tricho’ represent the highest value within the corresponding introgressed peak in P. 719 balsamifera and P. trichocarpa respectively.  720 b Average Tajima’s D (D) significantly different from the average in windows without introgressed 721 regions in pure P. balsamifera (balsa) and P. trichocarpa (tricho). 722  723 FIGURES 724 725 Figure 1. Geographic distribution of admixed (squares) and reference (triangles) individuals used in 726 local ancestry analysis across the contact zones between P. trichocarpa and P. balsamifera. Blue 727 represents pure P. balsamifera. Red represents pure P. trichocarpa. 728 Ranges of P. trichocarpa and P. balsamifera are shown in red and blue, respectively (Little 1971). 729  730  30   731  732 Figure 2. Proportion of admixed ancestry across 19 chromosomes showing unusually high levels of 733 introgression (sliding window analysis: size: 100-kb, step: 20-kb) in some regions. Top: Proportion of 734 P. balsamifera ancestry in admixed P. trichocarpa individuals. Bottom: Proportion of P. trichocarpa 735 ancestry in admixed P. balsamifera individuals. Regions with unusually high levels of introgression – 736 peaks above broken line - have ancestry higher than 3 standard deviations from the weighted mean 737 across the whole genome based on SNP density per window (broken line). Chromosomes in gray did 738 not show unusually high levels of introgression. Putative centromeres are shown by solid gray lines 739 (Pinosio et al 2016). Blue color marks chromosomes with significant introgression from P. 740 balsamifera and red marks chromosomes with introgression from P. trichocarpa 741  31   742 Figure 3. Relationship between levels of admixture and environmental variables. Top: variables 743 associated with moisture. Bottom: variables associated with temperature. Left: P. balsamifera (Pb) 744 levels in admixed P. trichocarpa individuals. Right: P. trichocarpa (Pt) levels in admixed P. 745 balsamifera individuals. 746  747 Figure 4. Relationship between the levels of P. balsamifera introgressed (=admixed) ancestry and 748 distance to the telomeres in admixed P. trichocarpa individuals (Pearson r2 =-0.074, p-value < 10-15).  749  32   750 Figure 5. Chromosome diagrams depicting introgressed regions (arrows) enriched for Pfam terms 751 associated with R proteins. Purple: All genes encoding NBS-LRR domains across four chromosomes. 752 Blue: P. balsamifera introgression into admixed P. trichocarpa individuals. Red: P. trichocarpa 753 introgression into admixed P. balsamifera individuals.  754  755 Figure 6. Average Tajima’s D within each introgressed region (average of 20-kb windows within each 756 of the introgressed blocks)  compared with all non-introgressed windows combined (far left, error 757 bars too small to be visible) in pure P. trichocarpa and P. balsamifera. Red bars are P. trichocarpa 758 introgressed regions in P. balsamifera and blue bars are P. balsamifera introgressed regions in P. 759 trichocarpa that showed average Tajima’s D values significantly different from those in windows 760  33  without introgressed regions. Gray bars show introgressed regions where the average Tajima’s D 761 values were not significantly different from those in windows without introgressed regions. 762  763   1  Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) 1 and balsam poplar (P. balsamifera)  2  3 Adriana Suarez-Gonzalez1, Charles A. Hefer1,2, Christian Lexer3, Quentin C. B. Cronk1* and Carl J. 4 Douglas† 5  6 1Department of Botany, University of British Columbia, Vancouver, Canada 7 2Current address: Biotechnology Platform, Agricultural Research Council, Private Bag X05, 8 Onderstepoort, 0110, South Africa  9 3 Department of Botany and Biodiversity Research, University of Vienna, Austria 10 † Deceased 25 July 2016 11  12 KEYWORDS:  13 Adaptive introgression, local adaptation, admixture, selection, subtelomeric regions  14  15 *Corresponding author: 16 Quentin Cronk 17 Email: quentin.cronk@ubc.ca 18 Running head: Scale and direction of adaptive introgression 19  20  21  22  23  24  25  26  27  2  ABSTRACT 28 Introgression can introduce novel genetic variation at a faster rate than mutation alone, and 29 result in adaptive introgression when adaptive alleles are maintained in the recipient genome over 30 time by natural selection. A previous study from our group demonstrated adaptive introgression 31 from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local 32 ancestry analysis to the whole genome of both parents to provide a comprehensive view of 33 introgression patterns and to identify additional candidate regions for adaptive introgression 34 genome-wide. Populus trichocarpa is a large, fast-growing tree of mild coastal regions of the Pacific 35 Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with 36 intense winter-cold. The species hybridize where they are parapatric. We detected asymmetric 37 patterns of introgression across the whole genome of these two poplar species adapted to 38 contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than 39 vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high 40 levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) 41 compared with admixed P. balsamifera (9 regions). Our analysis also revealed numerous candidate 42 regions for adaptive introgression with strong signals of selection, notably related to disease 43 resistance, and enriched for genes that may play crucial roles in survival and adaptation. 44 Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera 45 introgressed into P. trichocarpa and possible protection of sex-determining regions from 46 interspecific gene flow. 47  48 INTRODUCTION 49 Hybridization, the interbreeding between individuals of different varieties or species, is a 50 widespread natural phenomenon in plants (Ellstrand et al. 1999; Stace et al. 2015) and animals 51 (Dowling & Secor 1997) that has shaped the genomes of many lineages. In natural hybrid zones, 52 back-crossing of early-generation hybrids over subsequent generations can result in introgression, 53 where genetic material from one parental species is incorporated into another species. The 54 permeability of species boundaries to introgression depends on several factors including 55  3  recombination rate and the genomic distribution and number of loci associated with reproductive 56 isolation (Barton & Hewitt 1985; Harrison 1990).  57 Introgression can introduce novel genetic variation, including new gene combinations, at a 58 faster rate than through mutation alone and result in adaptive introgression when adaptive alleles 59 are maintained over time by natural selection (Twyford & Ennos 2012; Slarkin 1985; Rieseberg et al. 60 2003; Abbott et al. 2013; Schmickl et al. 2017). Examples of adaptive introgression in plants and 61 animals include increased herbivore resistance in sunflower (Whitney et al. 2006), flood tolerance in 62 Iris (Martin et al. 2006), mimetic wing patterns in butterflies (Pardo-Diaz et al. 2012), and altitude 63 adaptation in Tibetans (Huerta-Sanchez et al. 2014). Adaptive introgression may be particularly 64 important in rapidly changing environments, where standing genetic variation and mutation alone 65 may only offer limited potential for adaptation (Hedrick 2013; Hamilton & Miller 2015). 66 Natural hybrid zones provide evolutionary laboratories to identify chromosomal regions that 67 introgress significantly more frequently than expected (Lexer et al. 2004; Buerkle & Lexer 2008; 68 Abbott 2017). Forest tree species with extensive natural hybrid zones, large ranges across 69 geographical and climatic clines as well as substantial trait variation (Savolainen et al. 2007; 70 Soolanayakanahally et al. 2009; Keller et al. 2011; McKown et al. 2013) are attractive for the study 71 of adaptive introgression. Populus spp. in particular, have emerged as models for population 72 genomic studies of adaptation (Weigel & Nordborg 2015) due to porous species barriers and a 73 wealth of genomic resources available (Cronk 2005; Jansson & Douglas 2007; Tuskan et al. 2006). 74 Populus trichocarpa and P. balsamifera are sibling poplar species of the section Tacamahaca that 75 diverged in allopatry rather recently and hybridize freely where they overlap (Viereck & Foote 76 1970). Despite their recent divergence [~76 Ka (Levsen et al. 2012); but see (Ismail et al. 2012)] and 77 morphological similarity, these species are ecologically divergent and adapted to strongly 78 contrasting environments. Populus balsamifera is a boreal species distributed from Alaska to 79 Newfoundland, with high frost tolerance and adapted to a very large temperature range (-62˚C to 80 44˚C) as well as to moderate annual precipitation. Populus trichocarpa, on the other hand, is 81 distributed throughout the western US and Canada, from northern California to southern Alaska, 82 and is adapted to relatively humid, moist (riparian or higher precipitation), and milder conditions 83 (Richardson et al. 2014; Geraldes et al. 2014). 84  4  In a previous study, we explored fine-scale introgression patterns within and around target 85 genes in three chromosomes of P. trichocarpa and P. balsamifera to detect candidate regions for 86 adaptive introgression (Suarez-Gonzalez et al. 2016). Our local ancestry analysis revealed a 87 subtelomeric region in chromosome 15 with P. balsamifera ancestry, containing genes associated 88 with higher chlorophyll and leaf nitrogen content. Admixed P. trichocarpa individuals with these 89 particular P. balsamifera alleles may grow and acquire carbon faster than pure P. trichocarpa 90 individuals. This may serve to counteract shorter growth seasons at higher latitudes as has been 91 shown to be physiologically important in poplar (Soolanayakanahally et al. 2009; McKown et al. 92 2013) and spruce (Oleksyn et al. 1998). A more recent study using admixture mapping and 93 phenotypic analyses provided further support for the hypothesis that hybridization between P. 94 trichocarpa and P. balsamifera is an important source of adaptive phenotypic variation that may 95 allow improved survival in new environments (Suarez-Gonzalez et al. 2018). These results, based on 96 functional and phenotypic tests, showed the potential of local ancestry analyses to identify strong 97 candidates for adaptive introgression (Suarez-Gonzalez et al. 2016).  98 Our previous work, together with other documented empirical cases (Martin et al. 2006; 99 Pardo-Diaz et al. 2012; Huerta-Sanchez et al. 2014), indicate the importance of adaptive 100 introgression. However, little is known about the extent and direction of introgression across the 101 entire genome, and the genomic architecture of introgression at a fine genomic scale. Here we 102 expand our local ancestry analysis to the whole genomes of P. trichocarpa and P. balsamifera using 103 a population-wide resequencing approach and include additional admixed individuals to address the 104 following questions: (i) are introgression patterns asymmetric between these two poplar species? 105 (ii) is there enrichment for certain biological terms in the introgressed regions, in particular, those 106 related to disease resistance, given that P. trichocarpa populations may have been under intense 107 selection pressures for adaptation to leaf rust (La Mantia et al. 2013)? and (iii) are certain genomic 108 regions more prone to (e.g. subtelomeric regions) or protected from (e.g. sex-determining regions) 109 interspecific introgression? 110  5  MATERIALS AND METHODS 111 Samples  112 Populus trichocarpa accessions used in this study were collected by the British Columbia 113 Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) (Xie et al. 2009), and planted 114 in a common garden at the University of British Columbia (McKown et al. 2013). These individuals 115 were from 28 “drainages” (i.e., topographic units separated by watershed barriers) spanning 14° in 116 latitude (45.6°–59.6°) from throughout the species range. For P. balsamifera, we used accessions 117 from 46 provenances throughout the species range obtained from the Agriculture and Agri-Food 118 Canada AgCanBaP collection (Soolanayakanahally et al. 2009). For local ancestry analysis in 119 RASPberry (Wegmann et al. 2011), 50 reference individuals (25 P. balsamifera and 25 P. trichocarpa) 120 and 161 admixed individuals (129 P. trichocarpa individuals with P. balsamifera admixture, and 32 P. 121 balsamifera individuals with P. trichocarpa admixture) were selected from the sympatric zone 122 between P. trichocarpa and P. balsamifera as well as from allopatric populations (Figure 1). On the 123 basis of preliminary results, the 129 admixed P. trichocarpa individuals were reduced to 118 for all 124 analyses, as 11 individuals exhibited only trace amounts of admixture (see results). These 211 125 individuals were selected from a collection of 435 P. trichocarpa and 448 P. balsamifera genotypes, 126 using a previous genome-wide admixture analysis based on a genome-wide dataset of 971k SNPs 127 (Figure S1; Table S1, Supporting Information) (Geraldes et. al., in preparation). Additional sample 128 information and data generated in this study are given in Table S1, Supporting Information. 129 Sequencing, read mapping and variant calling  130 Sampled leaves were flash frozen in liquid nitrogen, or silica gel dried and 131 lyophilized.  Between 50 and 100 mg of leaf tissue were ground in a Precellys 24 tissue homogenizer 132 (Bertin Technologies, Montigny-le-Bretonneux, France), and DNA was extracted using a Qiagen 133 DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Protocol modifications include the use of 12uL of 134 RNAse A applied to each sample, and an additional centrifugation for 2 minutes at 20,000g 135 performed after cell lysis to remove tissue debris. All solution volumes were increased by 1.5x in 136 each step of the manufacturer’s protocol. DNA quantification and purity assessment were 137 performed using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and a 138 Qubit fluorometer (Invitrogen, Carlsbad, CA). High quality purified genomic DNA was used to 139  6  prepare multiplexed sequencing libraries according to the Standard Operating Protocols at the 140 Genome Sciences Centre, Vancouver, BC.  Sequences (100bp paired-end reads) were obtained at 141 estimated 30X or 15X coverage of the Nisqually-1 reference genome on an Illumina HiSeq at the 142 Genome Sciences Centre. 143 For local ancestry analysis, SNPs were called across the whole genomes for 211 individuals 144 allowing us to generate a dataset of unprecedented size for a study of this sort. Short reads from the 145 sequencing libraries were independently aligned to the P. trichocarpa version 3 (v3.0) genome using 146 BWA (version 0.6.1-r104) with default parameters. As the two poplar species are very closely related 147 (Levsen, Tiffin & Olson, 2012; Geraldes et al. 2013) it is possible to call SNPs in both species relative 148 to the same reference with high accuracy (Geraldes et al., 2015). We corrected mate pair metadata 149 and marked duplicate molecules using the FixMateInformation and MarkDuplicates methods in the 150 Picard package (http://picard.sourceforge.net). Reads present in areas surrounding InDels were re-151 aligned using the IndelRealigner method from GATK (version v1.5-25-gf46f7d0). Next, we called 152 SNPs and small indels independently using the UnifiedGenotyper method from GATK. SNPs were 153 then filtered to exclude variants within 3bp of any identified variants, having a mapping quality less 154 than 5, and a variant quality less than 30. Each SNP was annotated using SNPeff (Cingolani et al. 155 2012) with version 3 of the P. trichocarpa genome. All raw sequencing data and alignment 156 information have been deposited in SRA (PRJNA276056).  157 Inference of local ancestry 158 We estimated the probabilities for each of the possible ancestral configurations (P. 159 balsamifera, P. trichocarpa or mixed ancestry) in every SNP across the whole genome of 161 160 admixed individuals using RASPberry, a software that implements a reliable Hidden Markov model 161 (HMM) for admixture (Wegmann et al. 2011), following the same pipeline and parameters as in our 162 previous study on adaptive introgression (Suarez-Gonzalez et al. 2016). Briefly, SNPs with missing 163 data in the parental genotypes were removed using Plink 1.07 (Purcell et al. 2007), the parental 164 genotypes (50) were then phased with fastphase (Scheet & Stephens 2006) by creating the input 165 files with FCGENE (Roshyara & Scholz 2014), and ancestries for each admixed individual were 166 estimated using ADMIXTURE (Alexander et al. 2009).  167  7  To determine the ancestral configurations of each SNP in one of the three categories, 168 ancestries were considered for probabilities >95%. The proportion of introgressed ancestry in 169 admixed individuals was calculated, for each SNP, by counting sites with homospecific ancestry as 170 two and sites with mixed (i.e. heterospecific) ancestry as one, as in Suarez-Gonzalez et al. (2016).  171 We detected regions with unusually high levels of introgression (relative to general genome-wide 172 background levels) in admixed individuals using a sliding window approach and a significance cut-off 173 of three standard deviations (SD) from the weighted mean across all the chromosomes based on 174 SNP density per window. We used windows of 100-kb with steps of 20-kb since this window size 175 provided the best compromise between large numbers of windows with missing data (50-kb 176 windows) and low resolution (1-Mb windows) (Suarez-Gonzalez et al. 2016).  177 To determine if levels of introgression were correlated with certain structural features of the 178 genome, we performed a Pearson correlation (calculating coefficient r) between admixed ancestry 179 values and distance to telomeres. We also explored levels of introgression in predicted centromeric 180 regions (Pinosio et al. 2016). 181  Association between climate and introgression 182 To determine if introgression was associated with climate, we compiled 23 climate variables 183 from ClimateNA (Wang 2012) based on 1971–2000 and performed two principal component 184 analyses (PCAs), one for temperature and one for moisture, using the function prcomp in R. Eight 185 variables were associated with moisture and 15 were associated with temperature (Table S2A, 186 Supporting information). As these two sets of variables behave very differently (moisture variables 187 broadly correlated with longitude and temperature with latitude), they were analysed separately for 188 ease of interpretation. Hypothesis testing was performed using Pearson correlations. 189 Enrichment analysis 190 To detect overrepresented biological terms in introgressed regions, in particular those 191 related to disease resistance, we performed enrichment tests for various terms including Gene 192 Ontology (GO) and Protein Family (Pfam) using Popgenie accessed in November 2016 (Sjödin et al. 193 2009). Since NBS-LRRs (nucleotide binding sites and leucine-rich repeat) are the largest class of 194 disease resistance genes and play critical roles in plant defence (Dangl & Jones 2001), we searched 195 for protein families (Pfam) associated with NBS-LRR domains using the keyword search function in 196  8  the Pfam database (Finn et al. 2016). We compared these Pfam codes associated with NBS-LRRs 197 domains with the enriched Pfam codes in introgressed regions. In addition, we performed an 198 enrichment analysis in a P. balsamifera introgressed region showing signals of positive selection. 199 Tests of selection in the introgressed regions from the pure species individuals  200 We estimated Tajima’s D values across all introgressed regions for the 50 pure species 201 individuals, using 20-kb windows in VCFtools v0.1.12b (Danecek et al. 2011). Average Tajima’s D was 202 estimated within each introgressed region and compared with the average from 20-kb windows 203 without introgressed peaks using ANOVA. To detect windows with Tajima’s D values significantly 204 different from neutral expectations, we estimated the top and bottom 5% of the distribution across 205 the whole genome. The average proportion of amino acid substitutions driven by directional 206 selection (alpha; values range between -∞ and 1) was also estimated in pure species individuals for 207 all introgressed regions using Smith and Eyre-Walker’s alpha (Smith & Eyre-Walker 2002), and 208 generating confidence intervals by randomly selecting genes with replacement (bootstrapping) 1000 209 times in R v. 3.2.1 (R Development Core Team, http://www.r-project.org).  210 Levels of introgression in sex-determining regions 211 To determine if sex-associated regions are protected from introgression, we plotted the 212 location of SNPs significantly associated with sex in Populus (Geraldes et al. 2015) with the levels of 213 admixed ancestry from RASPberry across six chromosomes (4, 5, 9, 14, 18, 19). Geraldes et al (2015) 214 mapped the sex-linked region to these six chromosomes and two unmapped scaffolds in version 3.0, 215 likely due to genome misassembly.  216  217 RESULTS 218 Local ancestry in RASPberry vs previous admixture analysis 219 Eleven of the 129 individuals initially considered as admixed P. trichocarpa did not show any 220 P. balsamifera ancestry with RASPberry analysis and were therefore removed from all downstream 221 analyses. These 11 individuals could have been incorrectly classified previously as admixed or have 222 so little P. balsamifera ancestry that it was undetectable using RASPberry (Figure S1; Q values for P. 223 balsamifera ancestry = 0.011-0.003). The remaining 118 admixed P. trichocarpa contained 0.049% to 224 15.184% of P. balsamifera alleles across their genomes according to RASPberry analysis. These 225  9  estimates were in agreement with previous admixture analysis, though RASPberry estimates (mean: 226 0.0559, SD 0.0399) were, for the most part, lower than previous estimates of Q (mean 0.0682, SD: 227 0.0562) based on a different model-based analysis (Alexander et al. 2009). Admixture levels above 228 1% were geographically limited to interior and northern populations of P. trichocarpa (Figure 1). 229 Using introgressed individuals exclusively (P. trichocarpa admixture levels between 6.161% and 230 18.164%) allowed us to detect introgressed blocks against genome-wide expectations for admixture.     231 Across the genomes (1,168,955 SNPs examined) of 118 admixed P. trichocarpa individuals, 232 we detected 19 regions, which included 1107 genes, with unusually high levels of P. balsamifera 233 ancestry (Figure 2, Table 1). These regions included candidate genes for adaptive introgression 234 previously identified by our previous targeted study (Suarez-Gonzalez et al. 2016). The 19 regions, 235 occurring across 11 chromosomes, showed P. balsamifera ancestry peaks with heights (i.e. 236 percentage of P. balsamifera ancestry) ranging from 0.1778 to 0.2733 and widths ranging from 140 237 kb to 1.02 Mb.  238 Of the 32 individuals initially considered as admixed P. balsamifera, 11 were early 239 generation hybrids (P. balsamifera ancestry estimates above 20%) and were not included in further 240 downstream calculations (Figure S1; Supporting Information). Local ancestry analyses in the 241 remaining 21 P. balsamifera admixed individuals revealed nine regions, containing 545 genes, with 242 unusually high levels of P. trichocarpa ancestry, across five chromosomes (Figure 2, Table 1, S1; 243 Supporting information). These introgressed regions showed P. trichocarpa ancestry peaks with 244 heights ranging from 0.3262 to 0.4273 and widths ranging from 160 kb to 880 kb.  245 Introgression patterns are strongly asymmetric  246 In admixed P. trichocarpa, 2.3% of the genome showed unusually high levels of introgression 247 from P. balsamifera (total size of introgressed peaks: 9Mb; genome size: 394.5 Mb; Table 1), while in 248 admixed P. balsamifera, only 1.04% of the genome showed unusually high levels of introgression 249 from P. trichocarpa (total size of introgressed peaks: 4.1Mb; Table 1). Overall levels of genomic 250 admixture were higher in admixed P. balsamifera individuals (mean P. trichocarpa ancestry: 0.1157, 251 SD 0.0666, weighted by SNP density), compared to admixed P. trichocarpa individuals (mean P. 252 balsamifera ancestry 0.0559, SD 0.0399), suggesting the former are earlier generation hybrids.  253  10  The average width of regions with unusually high levels of introgression was slightly larger, 254 though not significantly (p>0.05),  in blocks with P. balsamifera ancestry  within admixed P. 255 trichocarpa individuals (mean 473.68 kb, SD: 252.371) compared to those with P. trichocarpa 256 ancestry within P. balsamifera individuals (mean 455.56 kb; SD: 227.547 (Figure S2; Supporting 257 Information).  258 There was no overlap between regions showing unusually high levels of introgression in P. 259 balsamifera admixed individuals (9) and those in P. trichocarpa admixed individuals (19). 260 Furthermore, the level of introgressed ancestry across the 19 chromosomes differed between 261 admixed P. trichocarpa and admixed P. balsamifera individuals. In the former, the three 262 chromosomes with the highest levels of P. balsamifera ancestry were chromosomes 17, 13 and 9. In 263 the latter, the top three chromosomes with the highest levels of P. trichocarpa ancestry were 12, 5 264 and 16 (Figure S3; Supporting Information).  265 PCA analysis revealed strong associations between levels of P. balsamifera introgression into 266 P. trichocarpa and the first principal component of variables associated with climate (temperature 267 PC1 explained 60% of the variance; Pearson’s r = 0.51, p<0.00001; moisture PC1 explained 63% of 268 the variance; Pearson’s r = 0.23, p<0.01); with increased levels of introgression occurring in colder 269 and drier environments (Figure 3; Table S2B, Supporting information). P. trichocarpa introgression 270 into P. balsamifera also increased in colder climates (Pearson’s r = 0.55, p<0.01), but there was no 271 association with changes in moisture.  272 Subtelomeric enrichment of introgressed regions  273 Overall, regions with unusually high levels of introgression were found at various 274 chromosomal locations, although a weak but highly significant negative correlation was evident 275 between levels of P. balsamifera introgressed ancestry and distance to telomeres (Pearson r2 =-276 0.074, p-value < 10-15, Figure 4). In contrast, there was no correlation between levels of P. 277 trichocarpa introgressed ancestry and distance to the telomeres in admixed P. balsamifera 278 individuals (r2 = -0.002, p-value = 0.734).  279 Levels of introgression in predicted centromeric regions (Pinosio et al. 2016) were well 280 below the significance threshold (i.e. 3SD from the whole genome average) and similar to the 281  11  genomic average (P. trichocarpa ancestry in admixed P. balsamifera individuals: 0.1293; P. 282 balsamifera ancestry in P. trichocarpa individuals: 0.0492; Figure 2).  283 Introgressed regions show enrichment for disease resistance genes  284 Enrichment analyses of biological terms revealed a different set of overrepresented GO and 285 Pfam terms in regions exhibiting unusually high levels of introgression in P. trichocarpa admixed 286 individuals (14 GO and 31 Pfam terms) compared to those in P. balsamifera admixed individuals (14 287 GO and 27 Pfam terms; Table S3; Supporting Information). Of the 58 enriched Pfam terms, two were 288 associated with disease resistance genes: The Toll/interleukin-1 receptor (TIR, PF01582) was 289 enriched in subtelomeric P. balsamifera introgressed regions (6 genes in chromosome 5 and 4 genes 290 in chromosome 7), and the Leucine-rich repeat protein family (LRR_1, PF00560) was enriched in P. 291 trichocarpa introgressed genes (1 gene on chromosome 5, 1 gene on chromosome 8, and 4 genes on 292 chromosome 16) (Figure 5, Table S4; Supporting Information). In chromosome 5, six TIR genes 293 occurred in tandem. In chromosome 7, four TIR genes were interspersed with another type of 294 disease resistance genes encoding NB-ARC domains (PF00931) and showed signals of purifying 295 selection (Figure 6). Genes encoding LRR_1 proteins were located on chromosome 5 (1 gene), 8 (1 296 gene) and chromosome 16 (4 genes). In chromosome 16, the group of LRR_1 genes was 297 interspersed with genes coding macrophage migration inhibitory factors (MIF, PF01187).  298 Only a few common KEGG (1 term) and micro RNA (10 terms) terms were enriched in both P. 299 balsamifera and P. trichocarpa introgressed regions (Table S3; Supporting Information). The P. 300 balsamifera introgressed region in chromosome 3 was enriched for genes that may play crucial roles 301 during response to biotic and abiotic stresses, such as those related to response to oxidative stress 302 (GO:0006979) and peroxidase activity (GO:0004601) (Table S3; Supporting Information).  303 Introgressed regions in pure P. balsamifera and P. trichocarpa are under selection 304 All introgressed regions except for two in chromosome 5 and 16 (Table S5; Supporting 305 Information) contained windows with Tajima’s D values either above or below 5% of the whole 306 genome distribution. Significantly positive Tajima’s D values (i.e., indicating an excess of 307 intermediate frequency alleles that may result from balancing selection) were present in pure P. 308 trichocarpa within three focal regions of special interest to this study (two P. trichocarpa regions 309 identified as introgressed in admixed P. balsamifera and one P. balsamifera region identified as 310  12  introgressed in admixed P. trichocarpa) and in one region in pure P. balsamifera (a region of 311 putative P. trichocarpa origin in admixed P. balsamifera). Significantly negative Tajima’s D  values 312 (indicating an excess of low-frequency polymorphisms relative to expectation possibly resulting 313 from purifying selection) were evident in pure P. trichocarpa in two focal genome regions (two P. 314 balsamifera regions identified as introgressed in admixed P. trichocarpa) and two focal regions in 315 pure P. balsamifera (two P. balsamifera regions in admixed P. trichocarpa) (Table 1, Table S5, 316 Supporting information, Figure 6). Two of these P. balsamifera regions in P. trichocarpa (within 317 chromosomes 7 and 11) and the region showing positive Tajima’s D values (within chromosome 10) 318 were telomeric. We note that unusual Tajima´s D values in focal regions in pure species does not per 319 se allow us to predict balancing or purifying selection in admixed individuals, as any fitness and/or 320 phenotypic effects of introgressed alleles in such individuals is also dependent on their genomic 321 background (Suarez-Gonzalez et al. 2018). 322 In addition, Alpha - a measure of selection at the amino acid level - revealed signals of 323 positive selection in the P. balsamifera introgressed region in chromosome 3 in about 60% of all 324 amino acid substitutions in both P. trichocarpa and P. balsamifera pure individuals (Table S6, 325 Supporting Information).. 326 Are sex-determining regions protected from interspecific introgression? 327 The sex-linked region did not show signals of introgression above the significance threshold (i.e. 3SD 328 from the genomic average). Most SNPs (80%) significantly associated with sex mapped to 329 chromosomes 18 and 19 in the P. trichocarpa genome assembly version 3.0, where no introgressed 330 regions were present (Figure S4). Sex-determining regions in chromosomes 4 and 9 showed admixed 331 ancestry levels below 10%, and in chromosome 5 and chromosome 14, the regions that mapped to 332 sex-determination (5 kb in chromosome 5 and 3.5 kb in chromosome 14) were in close proximity to 333 introgressed regions but did not show admixture levels above the significance threshold (Figure S4).  334  335 DISCUSSION  336 Direction and scale of introgression into P. trichocarpa in relation to environment 337 Our whole genome analysis revealed asymmetric patterns of introgression, with stronger 338 signatures of adaptive introgression from P. balsamifera into P. trichocarpa than in the reverse 339  13  direction. Introgression evident in admixed P. trichocarpa individuals was geographically limited to 340 northwestern Canada and the Canadian Rockies, where P. balsamifera genes associated with 341 adaptation to higher latitudes might allow admixed P. trichocarpa to colonize colder environments 342 as indicated in our previous work (Suarez-Gonzalez et al. 2016). Here, a PCA analysis revealed 343 increased levels of introgression in both colder and drier environments, and a previous landscape 344 genomic analysis identified 21 SNPs in eight regions with unusually high levels of introgression in P. 345 trichocarpa that were strongly correlated with several geoclimate variables including latitude, mean 346 annual temperature and mean coldest temperature (Geraldes et al. 2014). Some correlation of this 347 sort is to be expected because of the difference in the parental niches but it should be noted that 348 admixed individuals make up the majority (or entirety) of northern populations in our P. trichocarpa 349 collection (Geraldes et al. in preparation) and an admixture mapping study revealed strong 350 associations between introgressed regions and adaptive characters that may allow improved 351 survival in new environments (Suarez-Gonzalez et al. 2018). Currat et al. (2008) have argued for an 352 important effect of demography in promoting the introgression of local alleles to invading 353 populations particularly during active invasions and range expansions. However, our species are 354 largely parapatric and separated over much of their range by natural barriers such as the Rocky 355 Mountains. We therefore do not think that an invasion model matches well with our results. 356 Instead, we appear to have gene flow occurring through a hybrid zone, rather than dispersal of pure 357 species deep inside the range of another. Also, the studied Populus species are wind-pollinated and 358 wind-dispersed obligate outcrossers, thus gene flow within each species is expected to be high. This 359 makes it even less likely that introgression between these species is facilitated by demographic 360 processes described for invading species (Currat et al. 2008; Petit & Excoffier 2009). 361 Although introgression from P. balsamifera to P. trichocarpa can be interpreted in adaptive 362 terms, the reverse is less obvious. The type of environments these species are currently occupying 363 does not intuitively suggest that introgression from P. trichocarpa into P. balsamifera is likely to be 364 adaptive. In fact, introgression from P. trichocarpa, a fast-growing tree adapted to mild and coastal 365 climates, to P. balsamifera, a slower-growing stress-tolerant species occupying northern latitudes 366 with extreme temperature ranges, might be maladaptive as it could decrease the stress tolerance of 367 P. balsamifera (Richardson et al. 2014; Geraldes et al. 2014). . 368  14  We uncovered several candidate regions related to adaptive introgression with signals of 369 selection, including subtelomeric regions occupied by disease response genes (see below). These 370 signatures of selection suggest that introgressed regions may be underlying adaptive processes in 371 pure individuals and potentially in hybrids, supporting the hypothesis of adaptive introgression as 372 has been shown in our previous studies (Suarez-Gonzalez et al. 2016; Suarez-Gonzalez et al. 2017). 373 Alternative explanations for these patterns are recent introgression, unidirectional incompatibilities, 374 or increased levels of recombination. Future functional and phenotypic studies could be used to 375 further test if variants acquired from P. balsamifera have indeed accelerated adaptation in P. 376 trichocarpa and resulted in improved survival in colder environments.  377  378 Evidence for the role of selection in introgression 379 We obtained several indications that introgression in this system is not neutral. While none 380 of these indications is conclusive on its own, taken overall they are strongly suggestive of selection. 381 First, certain genome regions are hotspots for introgression. One explanation for this, and perhaps 382 the simplest one in light of our local ancestry results (Fig. 2), is that these regions are under 383 selection and therefore tend to introgress faster. The term “comet alleles” has been used to 384 described similar rapidly introgressed haplotypes in mice (Staubach et al. 2012). 385 Second, we have detected significant enrichment for certain gene ontology terms, which 386 suggests that the strongly introgressed regions are not a random sampling of the genome as might 387 be expected under neutrality. In addition, it is striking that some of the functional categories 388 enriched contain genes that may play crucial roles in survival and adaptation, such as those related 389 to disease resistance (see below). 390 Third, we found signatures of purifying and balancing selection in pure individuals in 391 genomic regions identified as introgressed in admixed samples. Purifying selection in the donor 392 species P. balsamifera suggests that variation at such loci is functionally relevant. The functional 393 importance of such genes in the donor species is exemplified by one protein family associated with 394 disease resistance (TIR, PF01582), that is over-represented in a P. balsamifera introgressed region in 395 chromosome 7, showing signals of purifying selection. Although we cannot be certain that the 396 signals of balancing selection in pure P. trichocarpa also apply to admixed individuals, this finding is 397 consistent with the maintenance of allelic variation (including potentially introgressed variants) by 398  15  selection. As noted elsewhere “… natural selection should favor introgression for alleles at genes 399 evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, 400 or self-incompatibility genes in plants” (Castric et al., 2008). This is unsurprising, as diseases can be 401 important agents of tree mortality (Holdenrieder et al., 2004). Finally, we should note the findings of 402 a previous study that many introgressed regions are in fact associated with adaptively-relevant 403 phenotypes (Suarez-Gonzalez et al., 2018). 404 Implications for adaptation to future climates 405 Changing climate conditions are expected to have a far-reaching impact on forest species 406 (IPCC et al. 2014; Sturrock et al. 2011), especially if warmer temperatures and increased 407 precipitation increase the probability of tree diseases in northern locations. Southern P. trichocarpa 408 populations may have been under intense selection pressures for disease resistance, as suggested 409 by the negative correlation between latitude and leaf rust severity across P. trichocarpa populations 410 from the Pacific Northwest (La Mantia et al. 2013). If changes in climate result in more favorable 411 conditions for pathogen reproduction and survival at higher latitudes (Hicke et al. 2012; IPCC et al. 412 2014; Helfer 2014), pathogen aggressiveness may become increasingly important for P. balsamifera.  413 Here we show that genes introgressed from P. trichocarpa into P. balsamifera were enriched 414 for the leucine-rich repeat protein family (LRR_1, PF00560), which has been associated with innate 415 immunity and sensing of pathogen-associated molecular patterns (Ng & Xavier 2011). Furthermore, 416 these introgressed LRR_1 genes were interspersed by genes coding for macrophage migration 417 inhibitory factors (MIF, PF01187), which in mammals regulate adaptive and innate immunity (Ståldal 418 et al. 2012). It has recently been suggested that MIF genes may have a parallel function in plants, 419 regulating the stress response including innate immunity (Panstruga et al. 2015).  420 In addition, our results suggest that introgression from P. trichocarpa into P. balsamifera 421 may be more recent than introgression in the opposite direction due to the higher levels of 422 admixture found, implying earlier generation hybrids with less backcrossing (despite the similar sizes 423 of introgressed genomic blocks). However, this introgression is more evident in cold environments, 424 contrary to our expectations. This raises the intriguing possibility of climate change reversing the 425 historical direction of introgression. If P. trichocarpa can indeed contribute beneficial disease 426  16  resistance genes, adaptive introgression into P. balsamifera could play crucial roles under changing 427 climatic conditions.  428 Disease resistance genes and structural properties may explain subtelomeric enrichment of 429 introgressed regions  430 The potential sub-telomeric enrichment of introgressed regions in P. trichocarpa is an 431 interesting finding of our study and could be explained by (1) the type of gene families found in the 432 subtelomeres and (2) the unstable structural properties of these regions. In yeast, subtelomeric 433 families are enriched for specific functional categories including response to stress and toxins, 434 metabolism of a broad spectrum of compounds, as well as transporters (Brown et al. 2010). In 435 plants, including maize, barley, and poplar, subtelomeres are often occupied by large clusters of 436 plant resistance genes (Geffroy et al. 2000; Wei et al. 1999; Duplessis et al. 2009). Our study 437 revealed one protein family associated with disease resistance (TIR, PF01582) overrepresented in P. 438 balsamifera introgressed regions and, interestingly, all of the TIR introgressed genes were 439 subtelomeric and arranged in clusters that showed signals of purifying selection (i.e. negative values 440 of Tajima’s D lower than the neutral expectation). Taken together, these results show that 441 subtelomeres are occupied by, and may be enriched for, gene families associated with local 442 adaptation, where interspecific introgression may transfer important adaptive traits.    443 Subtelomeres, often the most variable region of eukaryotic genomes (Winzeler et al. 2003; 444 Brown et al. 2010), are composed of various repeated elements and characterized by increased 445 recombination, duplication, and mutation which may allow evolutionary adaptation and innovation 446 (Rudd et al. 2007; Linardopoulou et al. 2005; Barton et al. 2008). While increased duplication and 447 mutation rates also imply the possibility of falsely calling genotypes as heterozygous in bioinformatic 448 pipelines that rely on mapping sequence reads to a reference genome, this is less likely to be an 449 issue in our study, as our results are based on local ancestries rather than on raw genotype data.  450 In poplar, there is a weak negative correlation between distance to telomeres and levels of 451 recombination (Slavov et al. 2012). A computational analysis in yeast revealed that subtelomeric 452 families are evolving and expanding much faster than families that do not contain subtelomeric 453 genes. Furthermore, non-subtelomeric genes that belong to the same functional categories showed 454 lower variability compared with their subtelomeric counterparts (Brown et al. 2010). These results 455  17  suggest that the high rates of sequence evolution and rapid gene turnover are inherent properties 456 of subtelomeric regions rather than of the functional categories of genes. In Plasmodium falciparum, 457 the subtelomeric location of var genes may favour the increased diversity in antigenicity, an 458 effective system to evade immune systems, due to higher levels of recombination in subtelomeric 459 regions (Rubio et al. 1996). In humans, subtelomere dynamics including recent duplications between 460 the subtelomeres of different chromosomes, have resulted in a striking variation of subtelomerically 461 located OR genes and may contribute to the diversity in olfactory perception (Mefford & Trask 2002; 462 Trask et al. 1998).  463 Overall, these studies show that subtelomeres harbor fast-evolving gene families and are hot 464 spots of recombination and duplications. Our analysis suggests adaptive introgression as an 465 important potential corollary of the extensive sequence variation found in subtelomeric genes, and 466 more fine-scale genomic studies of introgression are needed to evaluate the relative importance of 467 the subtelomeric properties in shaping the architecture of adaptive introgression.    468 Possible protection of the sex-determining regions from interspecific gene flow 469 Sex-determining regions have previously been shown to be protected from interspecific 470 gene flow (Hu & Filatov 2016). Our results are consistent with this, as shown here by the lack of 471 significant signals of introgression in the poplar sex-determining region (SDR) (Geraldes et al. 2015). 472 Previous studies in Populus have consistently mapped the gender determining locus to the proximal 473 telomeric region of chromosome 19 (Gaudet et al. 2008; Yin et al. 2008; Geraldes et al. 2015), which 474 is also in close proximity to the largest NBS disease resistance gene cluster in poplar (Kohler et al. 475 2008). Although subtelomeric regions and genes associated with adaptation could be more prone to 476 be introgressed, our analysis suggests that sexually antagonistic mutations may be impeding 477 introgression in the SDR of chromosome 19. In fact, it has been suggested that suppressed 478 recombination associated with resistance genes may have co-evolved with sexual differentiation 479 and allowed the emergence of an incipient sex chromosome in poplar (Tuskan et al. 2012; Caseys et 480 al. 2015). Geraldes et al. (2015), the first study to fully characterize the SDR in P. trichocarpa, found 481 no evidence of an incipient sex chromosome. Instead, the non-recombining region has remained 482 remarkably small (13 genes over c. 100kb), although it does contain several putative resistance 483 genes (Geraldes et al. 2015).  484  18  Geraldes et al. (2015) also found SNPs associated with sex in five additional chromosomes, 485 likely due to a very poor genome assembly (in both v2.2 and v3.0) of the subtelomeric SDR of 486 chromosome 19. Since the sex locus is fragmented through the genome by poor assembly in the 487 current version of the genome (used in this study), further refinement of the assembly is needed to 488 make firm inferences about introgression patterns near the SDR in Populus.   489 Taken on balance, the results detailed here provide strong support for the hypothesis that 490 hybridization between species is an important source of adaptively significant variation. The 491 asymmetry of this effect between P. balsamifera and P. trichocarpa further indicates that the effects 492 of introgression on adaptation depends strongly on ecological contexts. 493  494 ACKNOWLEDGEMENTS 495 This work was supported by the Genome Canada Large-Scale Applied Research Program (POPCAN, 496 project 168BIO), funds to QCBC and CJD, by a Natural Sciences and Engineering Research Council of 497 Canada Discovery Grant to CJD (RGPIN 36485-12), and by grants from the Swiss National Science 498 Foundation (SNF) to CL. We thank Michael Friedmann (UBC) for assistance with project 499 management; and Daniel Wegmann (U Fribourg) and Camille Christe for assistance and discussions. 500 We also thank Richard Abbott,and three anonymous referees for comments that greatly improved 501 the manuscript. 502  503 REFERENCES 504  505 Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of 506 hybrid zones. Journal of Systematics & Evolution 55, 238-258. 507 Abbott RJ, Albach D, Ansell S et al. (2013) Hybridization and speciation. Journal of Evolutionary  508 Biology 26: 229–246. 509 Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated 510 individuals. Genome Research, 19, 1655-1664. 511  19  Barton AB, Pekosz MR, Kurvathi RS, Kaback DB (2008) Meiotic recombination at the ends of 512 chromosomes in Saccharomyces cerevisiae. Genetics, 179, 1221-1235. 513 Barton NH, Hewitt GM (1985) Analysis of Hybrid Zones. Annual Review of Ecology and Systematics, 514 16, 113-148. 515 Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of 516 subtelomeric gene families in yeasts. Current Biology, 20, 895-903. 517 Buerkle CA, Lexer C (2008) Admixture as the basis for genetic mapping. Trends in Ecology & 518 Evolution, 23, 686-694. 519 Caseys C, Stritt C, Glauser G, Blanchard T, Lexer C (2015) Effects of hybridization and evolutionary 520 constraints on secondary metabolites: The genetic architecture of phenylpropanoids in 521 european Populus species. PLoS ONE, 10, e0128200. 522 Castric, V., Bechsgaard, J., Schierup, M. H., & Vekemans, X. (2008). Repeated adaptive introgression 523 at a gene under multiallelic balancing selection. PLoS Genetics, 4(8), e1000168. 524 Cingolani P, Platts A, Wang LL, et al (2012) A program for annotating and predicting the effects of 525 single nucleotide polymorphisms, SnpEff. Fly, 6, 80-92. 526 Cronk QCB (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytologist, 527 166, 39-48. 528 Currat M, Ruedi M, Petit R, Excoffier L (2008) The hidden side of invasions: Massive introgression by 529 local genes. Evolution, 62, 1908-1920. 530 Danecek P, Auton A, Abecasis G, et al (2011) The variant call format and VCFtools. Bioinformatics, 531 27, 2156-2158. 532 Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature, 533 411, 826-833. 534  20  Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of 535 animals. Annual Review of Ecology and Systematics, 28, 593-619. 536 Duplessis S, Major I, Martin F, Seguin A (2009) Poplar and pathogen interactions: Insights from 537 Populus genome-wide analyses of resistance and defense gene families and gene expression 538 profiling. Critical Reviews in Plant Sciences, 28, 309-334. 539 Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants 540 into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. 541 Finn RD, Coggill P, Eberhardt RY, et al (2016) The Pfam protein families database: towards a more 542 sustainable future. Nucleic Acids Research, 44, 279-285. 543 Gaudet M, Jorge V, Paolucci I, Beritognolo I, Mugnozza GS, Sabatti M (2008) Genetic linkage maps of 544 Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genetics & Genomes, 4, 25-36. 545 Geffroy V, Sevignac M, De Oliveira, Julio C. F., et al (2000) Inheritance of partial resistance against 546 Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci 547 with genes involved in specific resistance. Molecular Plant-Microbe Interactions, 13, 287-296. 548 Geraldes, A., Difazio, S.P., Slavov, G.T. et al. (2013). A 34K SNP genotyping array for Populus 549 trichocarpa: design, application to the study of natural populations and transferability to other 550 Populus species. Molecular Ecology Resources, 13(2), 306-323. 551 Geraldes A, Hefer CA, Capron A, et al (2015) Recent Y chromosome divergence despite ancient origin 552 of dioecy in poplars (Populus). Molecular Ecology, 24, 3243-3256. 553 Geraldes A, Farzaneh N, Grassa CJ, et al (2014) Landscape genomics of Populus trichocarpa: the role 554 of hybridization, limited gene flow, and natural selection in shaping patterns of population 555 structure. Evolution, 68, 3260-3280. 556  21  Hamilton JA, Miller JM (2015) Adaptive introgression as a resource for management and genetic 557 conservation in a changing climate. Conservation Biology, 30, 33-41. 558 Harrison RG (1990) Hybrid zones: windows on evolutionary proces. In: Oxford Surveys in 559 Evolutionary Biology (eds. Futuyma D, Antonovics J) pp. 69-128 Oxford University Press, New York. 560 Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation 561 and standing variation as sources of adaptive variation. Molecular Ecology, 22, 4606-4618. 562 Helfer S (2014) Rust fungi and global change. New Phytologist, 201, 770-780. 563 Hicke JA, Allen CD, Desai AR, et al (2012) Effects of biotic disturbances on forest carbon cycling in the 564 United States and Canada. Global Change Biology, 18, 7-34. 565 Holdenrieder, O., Pautasso, M., Weisberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape 566 processes: the challenge of landscape pathology. Trends in Ecology & Evolution, 19(8), 446-452. 567 Hu X, Filatov DA (2016) The large-X effect in plants: increased species divergence and reduced gene 568 flow on the Silene X-chromosome. Molecular Ecology, 25, 2609-2619. 569 Huerta-Sanchez E, Jin X, Asan, et al (2014) Altitude adaptation in Tibetans caused by introgression of 570 Denisovan-like DNA. Nature, 512, 194-197. 571 IPCC, Pachauri RK, Meyer LA, eds (2014) Climate Change 2014: Synthesis Report. Contribution of 572 Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 573 Change IPCC, Geneva. 574 Ismail M, Soolanayakanahally R, Ingvarsson P, et al (2012) Comparative nucleotide diversity across 575 North American and European Populus species. Journal of Molecular Evolution, 74, 257-272. 576 Jansson S, Douglas CJ (2007) Populus: A model system for plant biology. Annual Review of Plant 577 Biology, 58, 435-458. 578  22  Keller SR, Soolanayakanahally RY, Guy RD, Silim SN, Olson MS, Tiffin P (2011) Climate-driven local 579 adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). 580 American Journal of Botany, 98, 99-108. 581 Kohler A, Rinaldi C, Duplessis S, et al (2008) Genome-wide identification of NBS resistance genes in 582 Populus trichocarpa. Plant Molecular Biology, 66, 619-636. 583 La Mantia J, Klápště J, El-Kassaby Y, et al (2013) Association analysis 584 identifies Melampsora × columbiana Poplar leaf rust resistance SNPs. PLoS ONE, 8, e78423. 585 Levsen ND, Tiffin P, Olson MS (2012) Pleistocene speciation in the genus Populus (Salicaceae). 586 Systematic Biology, 61, 401-412. 587 Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic 588 variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.). Forest 589 Ecology and Management, 197, 49-64. 590 Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres 591 are hot spots of interchromosomal recombination and segmental duplication. Nature, 437, 94-100. 592 Little EL (1971) Conifers and important hardwoods. In: Atlas of United States trees (ed. U.S. 593 Department of Agriculture Miscellaneous Publication) pp. 1146-1155 U.S. Department of Agriculture 594 Miscellaneous Publication, . 595 Martin N, Bouck A, Arnold M (2006) Detecting adaptive trait introgression between Iris fulva and I. 596 brevicaulis in highly selective field conditions. Genetics, 172, 2481-2489. 597 McKown AD, Guy RD, Klápště J, et al (2013) Geographical and environmental gradients shape 598 phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist, 201, 1263-599 1276. 600  23  Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. 601 Nature reviews. Genetics, 3, 91-102. 602 Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins. Autophagy, 7, 1082-1084. 603 Nielsen R (2005) Molecular signatures of natural selection. Annual Reviews in Genetics, 39, 197-218. 604 Oleksyn J, Modrzýnski J, Tjoelker MG, Zaytkowiak R, Reich PB, Karolewski P (1998) Growth and 605 physiology of Picea abies populations from elevational transects: common garden evidence for 606 altitudinal ecotypes and cold adaptation. Functional Ecology, 12, 573-590. 607 Panstruga R, Baumgarten K, Bernhagen J (2015) Phylogeny and evolution of plant macrophage 608 migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evolutionary Biology, 15, 609 1-16. 610 Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, et al. (2012) Adaptive 611 introgression across species boundaries in Heliconius butterflies. PLoS Genetics, 8, e1002752. 612 Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends in Ecology and Evolution, 24, 613 386-393. 614 Pinosio S, Giacomello S, Faivre-Rampant P, et al (2016) Characterization of the Poplar Pan-Genome 615 by Genome-Wide Identification of Structural Variation. Molecular Biology and Evolution, 33, 2706-616 2719. 617 Purcell S, Neale B, Todd-Brown K, et al (2007) PLINK: a toolset for whole-genome association and 618 population-based linkage analysis. American Journal of Human Genetics, 81, 559-575. 619 Richardson J, Isebrands JG, Ball JB (2014) Ecology and physiology of poplars and willows. In: Poplars 620 and Willows: Trees for Society and the Environment (eds. Isebrands JG, Richardson J) pp. 92-123 621 CABI, Oxfordshire, UK. 622  24  Rieseberg LH, Raymond O, Rosenthal DM, et al (2003) Major Ecological Transitions in Wild 623 Sunflowers Facilitated by Hybridization. Science, 301, 1211. 624 Roshyara NR, Scholz M (2014) fcGENE: A versatile tool for processing and transforming SNP 625 datasets. PLoS ONE, 9, e97589. 626 Rubio JP, Thompson JK, Cowman AF (1996) The var genes of Plasmodium falciparum are located in 627 the subtelomeric region of most chromosomes. The EMBO journal, 15, 4069-4077. 628 Rudd MK, Friedman C, Parghi SS, Linardopoulou EV, Hsu L, Trask BJ (2007) Elevated Rates of Sister 629 Chromatid Exchange at Chromosome Ends. PLoS Genetics, 3, e32. 630 Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene Flow and Local Adaptation in Trees. Annual Review of 631 Ecology, Evolution, and Systematics, 38, 595-619. 632 Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype 633 data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human 634 Genetics, 78, 629-644. 635 Schmickl R, Marburger S, Bray S, Yant L. 2017. Hybrids and horizontal transfer: introgression allows 636 adaptive allele discovery. Journal of Experimental Botany 68, 5453-5470. 637 Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) PopGenIE: The Populus genome 638 integrative explorer. A new tool for exploring the Populus genome. New Phytologist, 182, 1013-639 1025. 640 Slarkin M (1985) Gene Flow in Natural Populations. Annual Review of Ecology and Systematics, 16, 641 393-430. 642 Slavov GT, DiFazio SP, Martin J, et al (2012) Genome resequencing reveals multiscale geographic 643 structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New 644 Phytologist, 196, 713-725. 645  25  Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature, 415, 1022-1024. 646 Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation 647 rate and water use efficiency with latitude through increased photosynthetic capacity and internal 648 conductance in balsam poplar (Populus balsamifera L.). Plant, Cell & Environment, 32, 1821-1832. 649 Stace CA, Preston CD, Pearman DA (2015) Hybrid flora of the British Isles. Bristol: Botanical Society of 650 Britain and Ireland. 651 Ståldal V, Cierlik I, Chen S, et al (2012) The Arabidopsis thaliana transcriptional activator STYLISH1 652 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant 653 Molecular Biology, 78, 545-559. 654 Sturrock RN, Frankel SJ, Brown AV, et al (2011) Climate change and forest diseases. Plant Pathology, 655 60, 133-149. 656 Suarez-Gonzalez A, Hefer CA, Christe C, et al (2016) Genomic and functional approaches reveal a 657 case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black 658 cottonwood). Molecular ecology, 25, 2427-2442. 659 Suarez‐Gonzalez, A., Hefer, C. A., Lexer, C., Douglas, C. J., & Cronk, Q. C. B. (2018). Introgression 660 from Populus balsamifera underlies adaptively significant variation and range boundaries in P. 661 trichocarpa. New Phytologist 217, 416-427. 662  663 Staubach, F., Lorenc, A., Messer, P. W., Tang, K., Petrov, D. A., & Tautz, D. (2012). Genome patterns 664 of selection and introgression of haplotypes in natural populations of the house mouse (Mus 665 musculus). PLoS Genetics, 8(8), e1002891. 666 Trask BJ, Friedman C, Martin-Gallardo A, et al (1998) Members of the olfactory receptor gene family 667 are contained in large blocks of DNA duplicated polymorphically near the ends of human 668 chromosomes. Human Molecular Genetics, 7, 13-26. 669  26  Tuskan GA, DiFazio S, Jansson S, et al (2006) The genome of black cottonwood, Populus trichocarpa 670 (Torr. & Gray). Science, 313, 1596-1604. 671 Tuskan GA, DiFazio S, Faivre-Rampant P, et al (2012) The obscure events contributing to the 672 evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree 673 Genetics & Genomes, 8, 559-571. 674 Twyford AD, Ennos RA (2012) Next-generation hybridization and introgression. Heredity, 108, 179-675 189. 676 Viereck LA, Foote JM (1970) The status of Populus balsamifera and P. trichocarpa in Alaska. 677 Canadian Field-Naturalist, 84, 169-173. 678 Wegmann D, Kessner DE, Veeramah KR, et al (2011) Recombination rates in admixed individuals 679 identified by ancestry-based inference. Nature Genetics, 43, 847-853. 680 Wei F, Gobelman-Werner K, Morroll SM, et al (1999) The Mla (Powdery Mildew) resistance cluster is 681 associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA 682 interval on chromosome 5S (1HS) of barley. Genetics, 153, 1929. 683 Weigel D, Nordborg M (2015) Population genomics for understanding adaptation in wild plant 684 species. Annual Review of Genetics, 49, 315-338. 685 Whitney K, Randell RA , Rieseberg L (2006) Adaptive introgression of herbivore resistance traits in 686 the weedy sunflower Helianthus annuus. The American Naturalist, 167, 794-807. 687 Winzeler EA, Castillo-Davis C, Oshiro G, et al (2003) Genetic Diversity in Yeast Assessed With Whole-688 Genome Oligonucleotide Arrays. Genetics, 163, 79. 689 Xie C, Ying CC, Yanchuk AD, Holowachuk DL (2009) Ecotypic mode of regional differentiation caused 690 by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific 691 Northwest coast. Canadian Journal of Forest Research, 39, 519-525. 692  27  Yin T, DiFazio SP, Gunter LE, et al (2008) Genome structure and emerging evidence of an incipient 693 sex chromosome in Populus. Genome Research, 18, 422-430. 694   695 DATA ACCESSIBILITY 696 All the raw sequencing data and alignment information have been deposited on SRA 697 (PRJNA276056). The list and annotation of all the introgressed genes, and the results from Tajima’s 698 D estimations have been archived in dryad (doi:10.5061/dryad.p82f2). 699  700 AUTHOR CONTRIBUTIONS 701 A.S.-G., C.J.D., Q.C.B.C, and C.L. designed the study. A.S.-G performed the research, analysed data, 702 and wrote the manuscript. C.H. performed S.N.P. calling. C.J.D., Q.C.B.C. and C.L. provided funding. 703 Q.C.B.C, and C.L edited the manuscript and all the authors approved the final version. 704  705 TABLES 706 Table 1. Summary of the Populus balsamifera introgressed regions in admixed P. trichocarpa 707 individuals (italics) and P. trichocarpa introgressed regions in admixed P. balsamifera individuals 708 (bold). The size of the introgressed peaks is represented in kilobases (kb) and number of genes (#). 709 The height of the introgressed peaks is given in terms of the maximum units of standard deviations 710 from the mean within each peak (‘Max. balsa’ & ‘Max. tricho’). Average Tajima’s D (D) was 711 calculated in each introgressed region and compared with the average from windows without 712 introgressed peaks using ANOVA. Average Tajima’s Ds (D) noted were significantly different from 713 the average in windows without introgressed regions. A measure of selection at the amino acid 714 levels is given using alpha. The value is given for those regions where a significant value was 715 recovered. 716   Genomic coordinates Size Height Selection  Chro Start End kb #Genes Maxa balsa Maxa tricho Db balsa Db tricho Alpha balsa Alpha tricho Ch01 47,120,000 47,540,000 420 43 3.88       28    48,000,000 48,380,000 380 23 3.51   -0.72   Ch03 7,380,000 7,740,000 360 22  3.27  0.36    21,040,000 21,620,000 580 95 3.87    0.62 0.59 Ch05 140,000 380,000 240 43 3.64       4,060,000 4,640,000 580 93  3.73  0.39    4,980,000 5,440,000 460 50  3.75       11,580,000 11,820,000 240 17 3.28  -0.92    Ch06 3,540,000 3,700,000 160 22 3.09      Ch07 14,680,000 15,700,000 1,020 145 5.51   -0.33   Ch08 740,000 1,620,000 880 162  4.47 0.47    Ch09 1,380,000 1,760,000 380 22 3.53      Ch10 22,180,000 22,660,000 480 74 3.63   0.44   Ch11 1,940,000 2,120,000 180 25 3.24       17,580,000 17,780,000 200 16 3.68        17,800,000 18,600,000 800 97 4.11  -0.57    Ch12 1,380,000 1,680,000 300 43  3.25     Ch14 12,720,000 13,300,000 580 63 4.33        13,340,000 13,480,000 140 39 3.46      Ch15 0 580,000 580 87 3.72       13,480,000 13,920,000 440 71 3.48      Ch16 11,200,000 11,420,000 220 24  3.31      12,000,000 12,160,000 160 16  3.16      12,320,000 12,980,000 660 93  4.28       13,120,000 13,600,000 480 42  4.68     Ch17 3,080,000 3,900,000 820 98 4.03       9,720,000 10,420,000 700 42 5.17        12,720,000 13,380,000 660 85 4.39       717  29  a The height of the introgressed peaks in terms of units of standard deviations from the mean. ‘Max. 718 balsa’ and ‘Max. tricho’ represent the highest value within the corresponding introgressed peak in P. 719 balsamifera and P. trichocarpa respectively.  720 b Average Tajima’s D (D) significantly different from the average in windows without introgressed 721 regions in pure P. balsamifera (balsa) and P. trichocarpa (tricho). 722  723 FIGURES 724 725 Figure 1. Geographic distribution of admixed (squares) and reference (triangles) individuals used in 726 local ancestry analysis across the contact zones between P. trichocarpa and P. balsamifera. Blue 727 represents pure P. balsamifera. Red represents pure P. trichocarpa. 728 Ranges of P. trichocarpa and P. balsamifera are shown in red and blue, respectively (Little 1971). 729  730  30   731  732 Figure 2. Proportion of admixed ancestry across 19 chromosomes showing unusually high levels of 733 introgression (sliding window analysis: size: 100-kb, step: 20-kb) in some regions. Top: Proportion of 734 P. balsamifera ancestry in admixed P. trichocarpa individuals. Bottom: Proportion of P. trichocarpa 735 ancestry in admixed P. balsamifera individuals. Regions with unusually high levels of introgression – 736 peaks above broken line - have ancestry higher than 3 standard deviations from the weighted mean 737 across the whole genome based on SNP density per window (broken line). Chromosomes in gray did 738 not show unusually high levels of introgression. Putative centromeres are shown by solid gray lines 739 (Pinosio et al 2016). Blue color marks chromosomes with significant introgression from P. 740 balsamifera and red marks chromosomes with introgression from P. trichocarpa 741  31   742 Figure 3. Relationship between levels of admixture and environmental variables. Top: variables 743 associated with moisture. Bottom: variables associated with temperature. Left: P. balsamifera (Pb) 744 levels in admixed P. trichocarpa individuals. Right: P. trichocarpa (Pt) levels in admixed P. 745 balsamifera individuals. 746  747 Figure 4. Relationship between the levels of P. balsamifera introgressed (=admixed) ancestry and 748 distance to the telomeres in admixed P. trichocarpa individuals (Pearson r2 =-0.074, p-value < 10-15).  749  32   750 Figure 5. Chromosome diagrams depicting introgressed regions (arrows) enriched for Pfam terms 751 associated with R proteins. Purple: All genes encoding NBS-LRR domains across four chromosomes. 752 Blue: P. balsamifera introgression into admixed P. trichocarpa individuals. Red: P. trichocarpa 753 introgression into admixed P. balsamifera individuals.  754  755 Figure 6. Average Tajima’s D within each introgressed region (average of 20-kb windows within each 756 of the introgressed blocks)  compared with all non-introgressed windows combined (far left, error 757 bars too small to be visible) in pure P. trichocarpa and P. balsamifera. Red bars are P. trichocarpa 758 introgressed regions in P. balsamifera and blue bars are P. balsamifera introgressed regions in P. 759 trichocarpa that showed average Tajima’s D values significantly different from those in windows 760  33  without introgressed regions. Gray bars show introgressed regions where the average Tajima’s D 761 values were not significantly different from those in windows without introgressed regions. 762  763    Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera)   Adriana Suarez-Gonzalez1, Charles A. Hefer1,2, Christian Lexer3, Quentin C. B. Cronk1* and Carl J. Douglas†  1Department of Botany, University of British Columbia, Vancouver, Canada 2Current address: Biotechnology Platform, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa  3 Department of Botany and Biodiversity Research, University of Vienna, Austria † Deceased 25 July 2016  KEYWORDS:  Adaptive introgression, local adaptation, admixture, selection, subtelomeric regions   *Corresponding author: Quentin Cronk Email: quentin.cronk@ubc.ca Running head: Scale and direction of adaptive introgression                 Supporting Figures  List of Supporting Figures  Figure S1. Genome wide ancestry analysis [PCA (A); admixture (B,C)] of Populus balsamifera and P. trichocarpa individuals based on 971K SNPs from 3691 genes in all 19 chromosomes.   Figure S2. Average width of P. balsamifera introgressed blocks in admixed P. trichocarpa individuals (blue) and P. trichocarpa introgressed blocks in admixed P. balsamifera individuals (red).   Figure S3. Average P. balsamifera (A) and P. trichocarpa (B) introgressed ancestry in admixed P. trichocarpa individuals (A) and admixed P. balsamifera individuals (B) in 19 chromosomes.   Figure S4. Correlation between the levels of P. trichocarpa introgressed ancestry and distance to the telomeres (Pearson r2 =-0.0024, p-value = 0.734).   Figure S5. Proportion of introgressed ancestry in admixed individuals across six chromosomes that showed SNPs significantly associated with sex (grey lines) (Geraldes et al. 2016).   A. B.   C.  Figure S1. Genome wide ancestry analysis [PCA (A); admixture (B,C)] of Populus balsamifera and P. trichocarpa individuals based on 971K SNPs from 3691 genes in all 19 chromosomes.  00.050.10.150.20.25Q-balsa RASPberry-balsa00.10.20.30.40.50.61 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Q-balsa RASPberry-balsa  Other species were included in this analysis but are not shown here (i.e. P. deltoides, P. fremontii, P. heterophylla, P. angustifolia, Geraldes et al in preparation). For local ancestry analyses in RASPberry, we selected 50 reference individuals (25 pure P. balsamifera and 25 pure P. trichocarpa) and 161 admixed individuals (129 P. trichocarpa individuals with P. balsamifera admixture, and 32 P. balsamifera individuals with P. trichocarpa admixture) from a collection of 435 P. trichocarpa and 448 P. balsamifera genotypes. In the PCA (A), eigenvector 1 (67.78%) separated P. balsamifera from P. trichocarpa and revealed admixed individuals, while eigenvector 10 (4.9%) separated P. trichocarpa samples along a north-south axis. Additional eigenvectors separated P. balsamifera and P. trichocarpa from other Populus species (Geraldes et al in preparation). Pure and admixed individuals were selected based eigenvector 1 values from the PCA (A), which separated P. balsamifera from P. trichocarpa, and Q values from the admixure analysis (B, C). 25 pure P. trichocarpa (eig1= 0.034 to 0.037; Q-tricho=0.99997), 25 pure P. balsamifera (eig1= -0.039 to -0.035; Q-tricho=0.00001), 129 admixed P. trichocarpa (eig1=0.019 to 0.035; Q-tricho= 0.781821 to 0.999524) and 32 admixed P. balsamifera (eig1= -0.031 to 0.006; Q-tricho= 0.063609 to 0.486094).     Figure S2. Average width of P. balsamifera introgressed blocks in admixed P. trichocarpa individuals (blue) and P. trichocarpa introgressed blocks in admixed P. balsamifera individuals (red).    A.                                              B.  Figure S3. Average P. balsamifera (A) and P. trichocarpa (B) introgressed ancestry in admixed P. trichocarpa individuals (A) and admixed P. balsamifera individuals (B) in 19 chromosomes.      Figure S4. Correlation between the levels of P. trichocarpa introgressed ancestry and distance to the telomeres (Pearson r2 =-0.0024, p-value = 0.734).   Figure S5. Proportion of introgressed ancestry in admixed individuals across six chromosomes that showed SNPs significantly associated with sex (grey lines) (Geraldes et al. 2016). Blue lines correspond to introgressed P. balsamifera ancestry into P. trichocarpa and red lines correspond to introgressed P. trichocarpa ancestry into P. balsamifera. Candidate regions for adaptive introgression – peaks above broken line - have introgressed ancestry higher than 3 standard deviations from the weighted mean across the whole genome based on SNP density per window (broken line).  Supporting Tables  List of Supporting Tables Table S1. List of P. trichocarpa and P. balsamifera accessions used in this study and biogeographical data (latitude, longitude, elevation).   Table S2A. List of environmental variables used in a principal component analysis. Twenty-three climate variables were compiled from ClimateNA (Wang 2012) based on 1971–2000 Table S2B. PCA loadings for the first two components  Table S3A. Summary of biological terms overepresented in introgressed regions.  Table S3B. Detailed enrichment analysis  Table S4.A. Genes associated with NBS-LRRs domains.  Table S4.B. Pfam terms associated with NBS-LRRs domains based on a keyword search of Pfam database.  Table S4.C. P. balsamifera introgressed genes in P. trichocarpa that are associated with enriched PF01582 (in bold) Table S4.D P. trichocarpa introgressed genes in P. balsamifera that are associated with enriched PF00560 (in bold)  Table S5A. ANOVAs comparing the average Tajima’s D values in each introgressed regions with that in windows without signals of unusually high levels of introgression Table S5B. Introgressed regions and windows with Tajima's D values above 95% or below 5% the genome wide distribution  Table S6. Alpha values across all the introgressed regions for the 50 pure species individuals (P. trichocarpa and P. balsamifera).  Table S1. List of P. trichocarpa and P. balsamifera accessions used in this study and biogeographical data (latitude, longitude, elevation). WG: whole genome analysis in RASPberry and type of individuals used; admixed P. trichocarpa (admixedtricho), admixed P. balsamifera (admixedbalsa), reference P. trichocarpa (reftricho) and reference P. balsamifera (refbalsa). Ancestry levels across each of the 19 chromosomes are based on RASPberry analysis. AP individuals are genotypes from Alberta Pacific breeding program, supplied by Dr. Barbara Thomas. They do not belong to the core AgCanBaP collection. Sp: species. Down: removed from downstream analyses.     Accession Sp Location         Drainage Lat Long Elev WG 3ch  AP-31-1006 Pb Muskeg Creek, AB 55.11 114.03 625.00 aPb YES GPR-31-14 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES AP-31-5452 Pb Calling Lake, AB 55.09 113.15 653.00 aPb YES FTM-31-5 Pb Fort McMurray 56.56 -111.36 338.00 aPb YES SRD-31-9 Pb South Reindeer 56.27 -104.23 419.00 aPb YES GPR-31-5 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES DEN-31-13 Pb Denali National Park 63.39 -148.51 594.00 aPb YES GPR-31-10 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-8 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-9 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-3 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-4 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES DEN-31-4 Pb Denali National Park 63.39 -148.51 594.00 aPb YES GPR-31-6 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES AP-31-5451 Pb Poplar Creek Road, AB 56.56 111.32 316.00 aPb YES GPR-31-7 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-12 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES FTM-31-6 Pb Fort McMurray 56.56 -111.36 338.00 aPb YES GPR-31-11 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-13 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES GPR-31-2 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES FTM-31-8 Pb Fort McMurray 56.56 -111.36 338.00 aPb YES WOL-31-6 Pb Wollaston Lake 57.58 -103.93 423.00 aPb YES GPR-31-1 Pb Grande Prairie 54.75 -118.63 769.00 aPb YES AP-31-5454 Pb Marten Hills, AB 55.26 114.31 841.00 aPb YES AP-31-2298 Pb Fort Nelson River, BC 59.11 122.46 266.00 aPb YES DESD-31-22 Pb Dease 59.45 -129.02 674.00 aPb YES WHR-31-11 Pb Whitehorse 60.70 -135.33 770.00 aPb YES TNZA-4-3 Pb Upper Stikine 58.30 -130.47 567.00 aPb YES AP-31-5230 Pb Muskeg Creek, AB 55.24 114.36 630.00 aPb YES AP-31-2446 Pb Muskeg Creek, AB 55.24 114.36 630.00 aPb YES AP-31-1004 Pb Muskeg Creek, AB 55.24 114.36 630.00 aPb YES ALSC-1-5 Pt Alsek 59.62 -137.92 107.00 aPt YES NKND-3-2 Pt Taku 58.93 -133.18 122.00 aPt YES TAKB-3-4 Pt Taku 58.70 -133.40 49.00 aPt YES TATB-1-7 Pt Alsek 59.43 -137.83 34.00 aPt YES TAKB-3-3 Pt Taku 58.70 -133.40 49.00 aPt YES KIMB-16-3 Pt Quesnel 52.93 -121.17 823.00 aPt YES KIMB-16-6 Pt Quesnel 52.93 -121.17 823.00 aPt YES TAKB-3-5 Pt Taku 58.70 -133.40 49.00 aPt YES QBKR-16-4 Pt Quesnel 52.95 -122.87 823.00 aPt YES QLKE-16-2 Pt Quesnel 52.97 -122.32 488.00 aPt YES SHEL-15-1 Pt McGregor 54.03 -122.60 564.00 aPt YES ALSC-1-4 Pt Alsek 59.62 -137.92 107.00 aPt YES QBKR-16-5 Pt Quesnel 52.95 -122.87 823.00 aPt YES TATB-1-4 Pt Alsek 59.43 -137.83 34.00 aPt YES Accession Sp Location    Drainage Lat Long Elev WG 3ch  QBKR-16-3 Pt Quesnel 52.95 -122.87 823.00 aPt YES WFSH-13-6 Pt Stuart 54.60 -124.77 686.00 aPt YES QLKE-16-1 Pt Quesnel 52.97 -122.32 488.00 aPt YES SHEL-15-6 Pt McGregor 54.03 -122.60 564.00 aPt YES QFRS-16-5 Pt Quesnel 53.07 -122.52 472.00 aPt YES HIXN-16-5 Pt Quesnel 53.40 -122.63 518.00 aPt YES SHEL-15-3 Pt McGregor 54.03 -122.60 564.00 aPt YES HIXN-16-1 Pt Quesnel 53.40 -122.63 518.00 aPt YES KIMB-16-5 Pt Quesnel 52.93 -121.17 823.00 aPt YES QFRS-16-3 Pt Quesnel 53.07 -122.52 472.00 aPt YES QLKE-16-3 Pt Quesnel 52.97 -122.32 488.00 aPt YES QFRS-16-4 Pt Quesnel 53.07 -122.52 472.00 aPt YES KIMB-16-1 Pt Quesnel 52.93 -121.17 823.00 aPt YES   SHEL-15-4 Pt McGregor 54.03 -122.60 564.00 aPt YES KIMB-16-4 Pt Quesnel 52.93 -121.17 823.00 aPt No QFRS-16-2 Pt Quesnel 53.07 -122.52 472.00 aPt No SHEL-15-2 Pt McGregor 54.03 -122.60 564.00 aPt No MCGR-15-8 Pt McGregor 54.18 -122.00 579.00 aPt YES MCGR-15-4 Pt McGregor 54.18 -122.00 579.00 aPt No MCGR-15-7 Pt McGregor 54.18 -122.00 579.00 aPt No QAUS-16-1 Pt Quesnel 52.72 -122.47 442.00 aPt No QAUS-16-7 Pt Quesnel 52.72 -122.47 442.00 aPt No QAUS-16-4 Pt Quesnel 52.72 -122.47 442.00 aPt No QAUS-16-3 Pt Quesnel 52.72 -122.47 442.00 aPt YES MCGR-15-6 Pt McGregor 54.18 -122.00 579.00 aPt No STEL-14-1 Pt Nechako 54.03 -124.92 701.00 aPt YES BULG-11-4 Pt Bulkley 54.45 -126.80 579.00 aPt No QFRS-16-1 Pt Quesnel 53.07 -122.52 472.00 aPt No QCTN-16-3 Pt Quesnel 53.03 -122.15 823.00 aPt No WLOW-15-5 Pt McGregor 53.92 -122.28 640.00 aPt YES QCTN-16-1 Pt Quesnel 53.03 -122.15 823.00 aPt No BULF-11-5 Pt Bulkley 54.55 -126.83 561.00 aPt No BULG-11-2 Pt Bulkley 54.45 -126.80 579.00 aPt No BULG-11-5 Pt Bulkley 54.45 -126.80 579.00 aPt No WLOW-15-4 Pt McGregor 53.92 -122.28 640.00 aPt No HAZH-10-5 Pt Skeena 55.22 -127.67 238.00 aPt No BULA-11-4 Pt Bulkley 55.25 -127.50 311.00 aPt YES WLOW-15-1 Pt McGregor 53.92 -122.28 640.00 aPt No ISKC-6-5 Pt Iskut 56.93 -130.33 317.00 aPt No WLOW-15-3 Pt McGregor 53.92 -122.28 640.00 aPt No BULF-11-2 Pt Bulkley 54.55 -126.83 561.00 aPt No STKF-5-1 Pt Lower Stikine 57.65 -131.57 85.00 aPt YES BULF-11-4 Pt Bulkley 54.55 -126.83 561.00 aPt No ISKC-6-3 Pt Iskut 56.93 -130.33 317.00 aPt No TRTB-7-7 Pt Bell-Irving 56.57 -129.82 640.00 aPt No STKE-5-3 Pt Lower Stikine 57.52 -131.78 61.00 aPt No IRVD-7-4 Pt Bell-Irving 56.85 -129.62 677.00 aPt YES STKD-5-1 Pt Lower Stikine 57.33 -131.78 49.00 aPt No TLKH-11-1 Pt Bulkley 54.67 -127.12 567.00 aPt No BULF-11-3 Pt Bulkley 54.55 -126.83 561.00 aPt No ISKC-6-2 Pt Iskut 56.93 -130.33 317.00 aPt No SKNM-10-6 Pt Skeena 54.40 -128.98 43.00 aPt No CDRE-10-1 Pt Skeena 55.02 -128.33 152.00 aPt No HAZH-10-3 Pt Skeena 55.22 -127.67 238.00 aPt No TRTB-7-6 Pt Bell-Irving 56.57 -129.82 640.00 aPt No ISKC-6-1 Pt Iskut 56.93 -130.33 317.00 aPt No HAZH-10-1 Pt Skeena 55.22 -127.67 238.00 aPt No KTSG-10-5 Pt Skeena 55.10 -127.92 213.00 aPt No ISKA-6-5 Pt Iskut 56.70 -131.15 73.00 aPt No TRTB-7-5 Pt Bell-Irving 56.57 -129.82 640.00 aPt No HAZH-10-2 Pt Skeena 55.22 -127.67 238.00 aPt No BULB-11-1 Pt Bulkley 55.12 -127.35 427.00 aPt No STKD-5-3 Pt Lower Stikine 57.33 -131.78 49.00 aPt No ISKA-6-4 Pt Iskut 56.70 -131.15 73.00 aPt No KSPA-9-3 Pt Kispiox 55.77 -128.53 518.00 aPt No STKG-4-4 Pt Upper Stikine 57.95 -129.67 732.00 aPt No CDRE-10-3 Pt Skeena 55.02 -128.33 152.00 aPt No ISKA-6-2 Pt Iskut 56.70 -131.15 73.00 aPt No KTMC-12-2 Pt Kitimat 54.05 -128.68 18.00 aPt No IRVC-7-1 Pt Bell-Irving 56.73 -129.73 579.00 aPt No IRVC-7-6 Pt Bell-Irving 56.73 -129.73 579.00 aPt No ISKA-6-1 Pt Iskut 56.70 -131.15 73.00 aPt No SKNC-10-2 Pt Skeena 54.77 -128.27 122.00 aPt No IRVC-7-5 Pt Bell-Irving 56.73 -129.73 579.00 aPt No NASC-8-5 Pt Nass 55.05 -129.50 24.00 aPt No NASH-8-1 Pt Nass 55.72 -128.82 183.00 aPt No   NASC-8-2 Pt Nass 55.05 -129.50 24.00 aPt No FKRB-6-1 Pt Iskut 56.73 -130.63 280.00 aPt No NASF-8-2 Pt Nass 55.57 -128.78 152.00 aPt No SKNP-10-11 Pt Skeena 54.40 -128.98 43.00 aPt No NASH-8-4 Pt Nass 55.72 -128.82 183.00 aPt No KLNE-20-1 Pt Klinaklini 51.73 -125.57 427.00 aPt No SKNM-10-3 Pt Skeena 54.40 -128.98 43.00 aPt No ZYMJ-10-1 Pt Skeena 54.47 -127.93 305.00 aPt No LILB-26-1 Pt Lillooet 50.62 -123.38 411.00 aPt No NASD-8-2 Pt Nass 55.05 -129.50 24.00 aPt No TAKA-3-3 Pt Taku 58.60 -133.57 31.00 aPt No SKNN-10-3 Pt Skeena 54.40 -128.98 43.00 aPt No SKNQ-10-3 Pt Skeena 54.40 -128.98 43.00 aPt No NHTA-27-3 Pt Fraser 49.97 -121.82 335.00 aPt No SKNC-10-1 Pt Skeena 54.77 -128.27 122.00 aPt No SKNL-10-1 Pt Skeena 54.45 -128.75 61.00 aPt No KLNE-20-4 Pt Klinaklini 51.73 -125.57 427.00 aPt No STHA-21-5 Pt Homathko 50.82 -124.48 239.00 aPt No LILC-26-1 Pt Lillooet 50.62 -123.38 411.00 aPt No STKB-5-4 Pt Lower Stikine 56.93 -131.78 31.00 aPt No SKNP-10-9 Pt Skeena 54.40 -128.98 43.00 aPt No SKNR-10-1 Pt Skeena 54.68 -128.35 244.00 aPt No HOPG-27-5 Pt Fraser 49.12 -122.33 8.00 aPt No SKWF-24-5 Pt Jervis 50.25 -123.93 244.00 aPt No HALS-30-6 Pt Willamette 44.42 -123.33 300.00 aPt No KTMA-12-3 Pt Kitimat 54.25 -128.52 122.00 aPt No WHTE-28-3 Pt Vancouver Island 50.13 -126.05 213.00 aPt No BELC-18-3 Pt Bella Coola river 52.38 -126.60 135.00 aPt No BELA-18-5 Pt Bella Coola river 52.42 -126.17 152.00 aPt No HOMB-21-5 Pt Homathko 50.95 -124.90 37.00 aPt No KLNE-20-3 Pt Klinaklini 51.73 -125.57 427.00 aPt No SLMC-28-2 Pt Vancouver Island 50.28 -125.87 30.00 aPt No SQMC-25-5 Pt Squamish 50.10 -123.37 177.00 aPt No BELA-18-2 Pt Bella Coola river 52.42 -126.17 152.00 aPt No NBON-29-1 Pt Columbia 45.58 -122.00 300.00 aPt No HARB-26-1 Pt Lillooet 50.62 -123.38 411.00 aPt No CHKC-19-4 Pt Chuckwall 51.77 -127.20 79.00 aPt No HOMD-21-1 Pt Homathko 51.23 -124.95 88.00 aPt No DUN-31-13 Pb Dunlop 54.51 -98.35 223.00 rPb YES DUN-31-14 Pb Dunlop 54.51 -98.35 223.00 rPb YES DUN-31-4 Pb Dunlop 54.51 -98.35 223.00 rPb YES FBK-31-11 Pb Fairbanks 64.90 -146.35 248.00 rPb YES FBK-31-6 Pb Fairbanks 64.90 -146.35 248.00 rPb YES GIL-31-1 Pb Gillam 56.35 -94.63 126.00 rPb YES GIL-31-10 Pb Gillam 56.25 -94.36 126.00 rPb YES GYP31-10 Pb Gypsumville 51.77 -98.62 253.00 rPb YES GYP31-13 Pb Gypsumville 51.77 -98.62 253.00 rPb YES GYP31-9 Pb Gypsumville 51.77 -98.62 253.00 rPb YES INU-31-9 Pb Inuvik 68.38 -133.77 7.00 rPb YES LAR-31-12 Pb La Ronge 54.45 -105.33 471.00 rPb YES MEL-31-2 Pb Melville 51.35 -102.62 541.00 rPb YES MIN-31-1 Pb Minnedosa 50.32 -99.85 592.00 rPb YES NWL-31-1 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-10 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-11 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-112 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-12 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-7 Pb Norman Wells 65.16 -126.44 84.00 rPb YES NWL-31-9 Pb Norman Wells 65.23 -126.67 84.00 rPb YES POR-31-6 Pb Portage 49.57 -98.18 283.00 rPb YES WAD-31-1 Pb Wadena 52.37 -104.27 543.00 rPb YES WHR-31-3 Pb Whitehorse 60.70 -135.33 770.00 rPb YES WHR-31-4 Pb White Horse 60.70 -135.33 770.00 rPb YES   ALAA-20-1 Pt Klinaklini 50.98 -126.12 0.00 rPt YES AMER-13-1 Pt Stuart 54.63 -124.97 701.00 rPt YES CHKD-19-4 Pt Chuckwall 51.77 -127.20 79.00 rPt YES CHWJ-27-2 Pt Fraser 49.08 -121.72 280.00 rPt YES CNYH-28-2 Pt Vancouver Island 49.67 -125.07 76.00 rPt YES DENB-17-2 Pt Dean 52.83 -126.70 152.00 rPt YES GLCB-26-3 Pt Lillooet 50.10 -123.00 579.00 rPt YES HOMC-21-1 Pt Homathko 51.23 -124.95 88.00 rPt YES KIMB-16-2 Pt Quesnel 52.93 -121.17 823.00 rPt YES KTMA-12-1 Pt Kitimat 54.25 -128.52 122.00 rPt YES KTMC-12-1 Pt Kitimat 54.05 -128.68 18.00 rPt YES MCHB-19-4 Pt Chuckwall 51.62 -126.58 122.00 rPt YES MCMN-27-3 Pt Fraser 49.18 -122.58 15.00 rPt YES NASH-8-5 Pt Nass 55.72 -128.82 183.00 rPt YES NECA-14-1 Pt Nechako 54.10 -124.43 655.00 rPt YES NECB-14-6 Pt Nechako 53.95 -124.43 671.00 rPt YES PHLC-22-2 Pt Philips 50.60 -125.32 5.00 rPt YES SKND-10-2 Pt Skeena 54.85 -128.33 140.00 rPt YES SKNM-10-1 Pt Skeena 54.40 -128.98 43.00 rPt YES SKNN-10-2 Pt Skeena 54.40 -128.98 43.00 rPt YES SKNP-10-8 Pt Skeena 54.40 -128.98 43.00 rPt YES SQMC-25-3 Pt Squamish 50.10 -123.37 177.00 rPt YES TLKH-11-5 Pt Bulkley 54.67 -127.12 567.00 rPt YES TNZA-4-1 Pt Upper Stikine 58.30 -130.47 567.00 rPt YES WELC-27-3 Pt Fraser 49.67 -121.42 91.00 rPt YES    Accession Sp P. balsamifera ancestry in P. trichocarpa (RASPberry)     ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 average AP-31-1006 Pb 88.84 100.00 82.51 91.58 81.34 87.21 89.81 92.17 100.00 98.74 98.37 92.86 96.56 99.00 97.45 60.93 96.64 96.36 80.65 91.11 GPR-31-14 Pb 90.92 96.86 95.33 98.30 88.91 94.00 93.53 78.78 95.42 92.59 88.57 47.91 100.00 100.00 94.35 60.86 93.97 95.18 90.70 89.27 AP-31-5452 Pb 88.35 90.13 93.54 74.53 85.12 96.74 93.91 89.97 86.97 95.01 100.00 93.89 88.84 73.16 97.75 81.85 79.25 75.54 79.70 87.59 FTM-31-5 Pb 81.25 95.99 92.91 98.34 85.62 93.71 68.94 77.27 90.26 83.03 97.58 85.01 96.65 85.49 94.39 75.13 82.81 75.83 68.79 85.74 SRD-31-9 Pb 83.28 91.22 96.64 98.41 82.34 90.98 97.29 74.85 74.92 89.95 72.77 79.68 93.80 96.02 100.00 59.40 96.00 80.13 89.49 86.69 GPR-31-5 Pb 86.43 81.86 97.42 74.82 87.38 83.53 78.18 87.58 75.04 87.68 95.60 85.95 99.06 90.79 89.85 91.91 94.48 91.01 76.69 87.12 DEN-31-13 Pb 87.80 94.35 89.68 87.35 57.93 77.92 91.66 71.11 70.63 93.56 88.32 71.12 79.73 92.37 92.65 90.84 89.01 97.32 82.53 84.52 GPR-31-10 Pb 91.37 89.81 94.75 82.00 75.67 77.36 85.10 89.77 94.09 90.77 95.28 56.88 98.31 93.63 80.17 79.06 89.91 61.29 83.75 84.68 GPR-31-8 Pb 94.76 82.06 81.01 72.49 91.00 97.54 91.11 86.48 77.16 90.02 97.48 88.28 100.00 83.95 80.28 87.60 79.62 54.96 54.16 83.68 GPR-31-9 Pb 95.57 82.13 80.40 72.23 91.15 97.29 91.14 86.15 76.94 89.91 97.47 88.65 100.00 85.48 80.69 87.47 79.47 53.99 54.07 83.69 GPR-31-3 Pb 85.70 76.35 59.68 95.81 88.14 90.41 73.67 87.20 97.47 88.63 92.41 94.77 95.41 92.94 72.86 82.36 83.19 73.84 84.51 85.02 GPR-31-4 Pb 86.09 76.66 59.78 95.80 88.23 90.69 73.82 87.32 97.48 88.61 92.64 95.04 96.39 92.85 73.52 82.61 80.62 73.94 84.90 85.11 DEN-31-4 Pb 77.74 79.03 59.10 97.32 82.31 79.59 77.89 71.03 72.00 89.72 89.83 65.88 77.43 100.00 81.96 71.36 100.00 97.68 74.09 81.26 GPR-31-6 Pb 85.08 93.05 71.79 94.72 86.17 92.06 87.76 91.23 100.00 100.00 77.74 66.66 100.00 93.15 84.88 70.80 97.87 90.64 96.60 88.43 AP-31-5451 Pb 81.79 93.34 82.88 63.22 75.78 98.77 77.68 62.42 74.66 89.41 83.56 73.72 72.40 98.32 97.65 83.26 81.75 100.00 74.92 82.40 GPR-31-7 Pb 94.20 97.90 83.68 86.45 81.18 94.10 84.66 87.92 90.41 67.08 64.76 88.28 94.52 76.54 92.82 78.49 84.79 58.05 88.82 83.93 GPR-31-12 Pb 88.08 78.64 75.09 80.22 74.15 79.00 87.05 92.52 98.63 66.52 77.75 45.96 100.00 90.51 89.86 63.74 86.85 97.44 60.90 80.68 FTM-31-6 Pb 72.51 86.64 62.85 79.75 88.51 77.61 86.48 80.59 94.81 68.95 92.92 90.98 91.77 64.08 80.93 91.67 85.23 93.32 57.38 81.42 GPR-31-11 Pb 87.41 87.96 80.90 95.92 78.77 61.67 72.12 85.28 80.28 55.80 96.22 79.19 86.07 81.19 82.69 63.92 77.92 78.79 81.74 79.68 GPR-31-13 Pb 74.86 88.86 72.56 93.24 82.34 66.84 78.36 71.65 71.79 77.18 83.31 68.15 84.22 75.28 94.32 83.94 58.99 91.82 61.73 77.87 GPR-31-2 Pb 70.47 94.52 49.11 78.59 71.22 73.51 60.19 65.60 71.28 73.74 76.35 64.23 86.27 92.23 80.24 66.39 40.10 75.56 62.36 71.16 FTM-31-8 Pb 73.79 75.61 62.30 72.25 74.48 73.23 61.52 89.91 77.03 65.78 73.57 90.05 83.92 78.86 78.36 80.70 63.26 67.56 81.00 74.91 WOL-31-6 Pb 62.62 74.78 73.83 63.73 39.25 64.50 73.40 60.45 61.84 58.93 59.28 74.95 72.55 77.00 79.65 62.77 62.94 82.70 76.11 67.44 GPR-31-1 Pb 61.57 63.54 61.68 75.65 52.32 71.50 72.80 82.09 70.00 66.59 69.71 20.10 78.80 94.41 65.02 59.55 96.26 37.99 63.03 66.45 AP-31-5454 Pb 77.88 49.29 41.88 61.42 51.87 63.21 61.29 60.94 53.95 50.89 43.78 57.61 61.18 66.82 57.24 73.34 52.15 81.01 84.33 60.53 AP-31-2298 Pb 49.69 51.68 35.34 36.74 32.26 55.12 48.62 40.93 40.51 43.12 56.93 46.19 36.42 73.91 64.55 42.58 50.80 40.03 29.66 46.06 DESD-31-22 Pb 51.52 46.26 58.57 34.58 34.00 58.49 43.03 31.22 52.39 57.35 64.76 41.30 50.31 59.79 33.23 44.88 58.33 49.19 37.61 47.73 WHR-31-11 Pb 51.61 49.98 52.87 56.01 52.97 52.01 52.45 47.48 53.95 51.35 55.47 50.84 57.57 54.48 51.85 53.22 50.10 47.97 51.47 52.30 TNZA-4-3 Pb 38.83 45.03 48.42 49.28 44.17 57.66 47.67 28.94 61.89 37.62 44.54 33.29 74.58 41.61 31.54 55.63 51.53 33.30 42.68 45.69 AP-31-5230 Pb 48.81 53.68 52.68 33.94 59.12 48.51 51.97 46.45 37.14 48.89 34.90 23.09 37.37 50.08 41.84 35.47 42.12 34.72 40.87 43.25 AP-31-2446 Pb 41.90 44.63 29.15 29.56 33.93 56.78 25.92 20.47 53.70 44.44 51.58 40.89 28.30 54.87 34.44 40.15 27.02 58.49 16.83 38.58 AP-31-1004 Pb 27.70 30.66 22.21 39.86 26.75 29.79 23.45 20.90 18.85 37.77 26.48 49.97 49.98 45.19 51.64 15.69 14.94 32.12 10.86 30.25   ALSC-1-5 Pt 20.59 11.18 16.51 19.61 10.86 10.22 15.99 7.71 17.85 14.98 19.94 8.04 19.99 26.69 12.26 13.40 10.55 3.85 13.32 14.40 NKND-3-2 Pt 13.79 18.52 12.53 19.03 7.90 7.57 10.48 11.29 29.41 4.32 21.41 15.47 26.30 16.21 11.12 10.30 18.54 18.35 15.95 15.18 TAKB-3-4 Pt 17.56 17.70 6.35 8.72 12.86 10.31 4.55 8.96 16.88 6.72 32.37 3.13 23.35 23.42 14.74 13.63 14.82 5.20 4.22 12.92 TATB-1-7 Pt 12.68 12.49 14.75 18.27 16.50 15.91 4.19 4.44 12.12 12.95 27.72 5.75 21.37 17.60 16.58 9.08 21.58 7.94 14.53 14.02 TAKB-3-3 Pt 12.65 13.86 5.66 15.86 9.42 8.86 9.33 7.00 24.59 8.01 10.13 9.78 5.28 17.52 4.19 3.18 12.19 7.84 19.12 10.76 KIMB-16-3 Pt 7.81 15.11 3.34 11.51 9.19 11.31 20.24 5.96 12.61 22.36 10.49 2.52 15.31 15.59 15.67 8.82 13.16 9.32 15.27 11.87 KIMB-16-6 Pt 11.67 5.87 2.13 5.96 2.51 7.96 11.91 2.04 12.84 7.04 11.28 12.60 6.56 16.15 25.10 11.33 23.68 17.85 14.09 10.98 TAKB-3-5 Pt 7.08 10.07 10.54 22.39 10.06 6.09 10.37 3.73 9.07 8.05 11.92 2.68 24.50 6.77 9.62 5.98 29.29 10.59 22.66 11.66 QBKR-16-4 Pt 10.41 23.29 7.04 13.08 12.73 6.84 8.05 6.16 5.12 6.53 20.66 6.13 8.78 19.71 2.00 6.09 9.93 18.39 14.13 10.79 QLKE-16-2 Pt 17.22 10.42 4.82 4.65 10.22 7.74 8.51 1.49 6.38 6.64 15.25 5.66 5.99 11.04 3.20 3.29 8.64 13.54 13.76 8.34 SHEL-15-1 Pt 10.89 3.46 0.80 18.76 13.36 8.13 14.82 4.66 18.21 4.88 8.78 19.19 8.24 15.39 3.75 5.42 8.91 12.11 12.81 10.14 ALSC-1-4 Pt 11.83 9.35 4.76 15.14 3.13 13.24 14.81 5.96 26.26 7.78 12.51 3.09 15.71 4.55 22.36 4.79 24.26 9.05 19.30 11.99 QBKR-16-5 Pt 5.93 3.22 2.15 11.40 18.48 5.08 9.43 8.80 8.78 13.17 7.93 2.57 5.13 11.80 18.71 8.72 19.48 16.86 5.78 9.65 TATB-1-4 Pt 14.78 14.51 5.89 34.97 6.67 15.63 7.40 2.37 4.39 15.88 5.73 3.92 10.56 17.19 13.67 19.41 7.71 8.37 21.14 12.12 QBKR-16-3 Pt 9.24 1.00 9.57 8.31 30.12 8.75 3.52 4.05 14.83 7.89 8.88 18.09 6.97 3.66 4.95 3.86 11.55 21.60 4.70 9.55 WFSH-13-6 Pt 15.68 15.52 6.63 16.86 19.77 10.48 16.21 10.56 15.84 4.43 38.80 4.13 15.86 25.13 4.20 12.05 16.57 10.80 4.37 13.89 QLKE-16-1 Pt 6.94 12.14 3.36 11.82 6.89 5.51 2.70 3.16 16.02 10.54 6.67 15.31 5.45 9.99 5.32 3.82 8.79 18.65 5.57 8.35 SHEL-15-6 Pt 10.21 8.56 3.28 13.92 9.13 6.74 9.00 0.68 9.48 13.29 5.80 14.77 4.73 11.55 15.78 5.44 8.09 8.58 16.48 9.24 QFRS-16-5 Pt 5.15 7.56 5.43 11.56 3.52 5.45 5.51 2.69 16.95 2.53 8.90 17.30 4.11 19.68 9.66 0.99 10.28 8.80 12.50 8.34 HIXN-16-5 Pt 12.42 6.05 9.16 10.69 11.94 8.46 3.39 0.00 16.50 5.43 10.83 5.27 2.66 10.79 9.18 3.69 21.49 7.70 18.53 9.17 SHEL-15-3 Pt 6.89 5.57 10.20 7.22 10.80 8.57 1.46 4.42 24.26 11.34 9.15 7.93 10.93 30.06 7.74 1.87 9.54 7.68 3.40 9.42 HIXN-16-1 Pt 8.04 4.53 7.40 6.14 13.78 7.27 17.86 3.47 10.63 4.57 10.73 17.52 18.81 18.34 5.79 10.96 8.68 19.28 9.59 10.70 KIMB-16-5 Pt 8.03 5.40 2.29 10.00 12.12 4.74 8.12 3.20 19.88 3.81 10.49 10.28 15.73 9.16 14.33 5.42 28.07 6.60 7.62 9.75 QFRS-16-3 Pt 5.32 9.07 6.59 7.79 5.30 7.39 6.94 2.18 15.37 3.02 13.85 3.79 18.28 23.48 3.66 3.66 7.31 14.43 8.41 8.73 QLKE-16-3 Pt 2.64 5.31 5.52 4.80 5.98 5.61 8.02 3.17 4.61 7.87 12.38 11.04 5.07 11.10 4.09 2.66 17.35 2.79 4.37 6.55 QFRS-16-4 Pt 10.56 9.65 3.85 5.53 5.90 6.02 3.45 0.00 11.85 7.92 21.60 3.83 4.56 6.94 4.04 2.29 12.43 18.26 2.42 7.43 KIMB-16-1 Pt 4.98 3.91 8.27 8.46 11.45 4.88 7.62 0.67 13.87 6.11 8.38 3.30 10.25 9.68 11.63 7.63 13.44 4.43 14.84 8.10 SHEL-15-4 Pt 7.52 15.39 4.97 9.82 2.18 2.94 12.69 0.72 8.77 4.14 14.12 9.30 18.70 24.15 8.05 2.82 7.22 7.46 3.88 8.68 KIMB-16-4 Pt 8.92 3.64 4.02 8.71 7.88 3.41 8.43 1.80 12.57 7.16 7.70 2.65 19.20 7.64 7.79 3.81 6.27 5.65 7.79 7.11 QLKE-16-4 Pt 5.53 7.26 5.52 0.00 4.12 5.93 6.32 1.99 8.24 5.41 12.07 36.95 10.58 8.96 2.07 0.00 11.85 8.99 11.09 8.05 QFRS-16-2 Pt 7.06 8.17 3.63 2.75 6.33 5.00 8.40 0.18 26.14 4.37 21.94 5.76 5.32 11.62 3.67 0.00 3.12 17.03 1.38 7.47 SHEL-15-2 Pt 10.02 3.23 9.66 4.62 0.91 9.20 2.24 3.58 29.51 10.75 16.03 5.19 2.93 4.07 2.05 1.53 11.39 10.60 2.71 7.38 MCGR-15-8 Pt 5.26 6.95 8.77 4.56 3.35 7.43 8.49 0.86 10.97 8.40 10.38 6.07 11.22 6.09 7.20 8.75 15.61 3.10 16.91 7.91 MCGR-15-4 Pt 9.30 6.25 7.33 6.10 13.64 3.28 6.79 3.30 16.43 10.12 8.21 30.42 5.68 3.63 4.83 5.96 10.20 5.79 7.42 8.67 MCGR-15-7 Pt 8.23 10.15 3.44 2.79 11.54 5.49 7.10 6.67 14.14 2.98 9.67 3.89 9.78 14.77 5.77 1.99 21.55 4.65 10.92 8.19 QAUS-16-1 Pt 6.49 2.55 4.92 10.58 10.87 4.83 1.36 5.10 3.18 4.31 13.14 12.09 4.93 8.19 5.96 1.65 9.17 2.88 21.09 7.01 QAUS-16-7 Pt 6.80 4.02 2.45 3.80 4.09 2.98 9.76 3.75 18.07 11.30 25.43 5.84 14.11 13.50 2.39 7.20 9.78 2.86 6.13 8.12 QAUS-16-4 Pt 6.04 3.85 5.87 4.44 5.34 9.01 4.40 5.46 11.08 6.01 18.86 5.22 13.83 5.60 5.56 9.05 8.83 2.65 10.35 7.44 QAUS-16-3 Pt 5.90 4.05 1.98 12.97 3.88 8.87 4.26 4.88 7.64 0.44 5.37 9.48 1.38 11.98 7.79 2.87 11.48 18.40 9.52 7.01 MCGR-15-6 Pt 10.51 10.16 2.78 15.00 10.23 3.97 4.93 1.42 18.63 0.00 19.90 9.23 11.48 8.79 6.73 4.70 9.82 9.14 3.84 8.49 STEL-14-1 Pt 10.60 5.67 8.23 6.73 3.11 7.11 5.89 2.77 7.86 8.14 11.74 0.76 22.35 7.23 4.95 18.95 5.25 7.45 14.02 8.36 BULG-11-4 Pt 9.89 5.00 4.84 13.94 8.92 2.46 1.67 3.28 7.72 2.04 15.04 9.95 3.52 18.07 11.79 11.78 12.48 2.58 0.00 7.63 QFRS-16-1 Pt 8.33 6.44 3.05 2.78 7.95 3.88 6.97 2.21 17.42 3.61 9.40 3.09 16.32 20.58 3.56 2.54 14.63 8.31 3.13 7.59 QCTN-16-3 Pt 6.25 7.02 2.49 2.50 9.76 6.32 1.96 1.29 2.06 3.25 3.73 5.29 2.68 17.58 0.75 2.41 11.56 18.02 9.87 6.04 WLOW-15-5 Pt 5.44 9.28 1.55 11.58 1.67 4.38 2.46 1.11 6.30 3.89 6.73 2.48 0.66 2.34 2.90 5.21 10.57 3.52 10.02 4.85 QCTN-16-1 Pt 4.93 4.04 5.93 0.92 5.00 2.28 0.00 1.43 7.14 9.53 6.38 6.88 2.49 8.24 7.07 3.04 6.01 8.69 12.80 5.41 BULF-11-5 Pt 8.67 4.56 4.27 12.90 5.09 5.04 3.24 0.00 7.74 3.00 8.34 2.66 15.15 1.51 0.00 9.37 13.24 7.93 5.29 6.21 BULG-11-2 Pt 8.52 4.97 3.89 0.44 4.84 7.03 3.88 1.63 3.86 5.31 11.44 1.07 5.79 9.37 2.23 9.47 10.50 24.02 3.92 6.43 BULG-11-5 Pt 6.86 4.24 1.68 11.56 3.44 3.60 2.00 1.14 4.10 7.28 4.49 21.47 7.43 7.20 5.11 13.59 20.39 6.61 1.88 7.06 WLOW-15-4 Pt 4.00 3.39 0.70 3.35 13.09 5.69 11.47 1.74 10.57 2.78 10.72 3.34 4.61 8.52 3.26 14.27 9.77 23.04 8.18 7.50 HAZH-10-5 Pt 9.75 4.72 5.24 1.28 2.55 1.44 6.59 2.57 3.26 5.32 7.95 3.99 12.77 7.36 4.80 6.54 0.00 4.30 3.89 4.96 BULA-11-4 Pt 2.02 0.00 3.83 3.83 7.40 0.58 4.83 0.00 7.76 5.29 11.76 13.70 6.57 2.71 6.34 3.91 19.41 0.00 3.35 5.44 WLOW-15-1 Pt 5.56 2.00 3.33 1.44 16.86 1.98 1.59 1.69 6.41 1.89 10.08 2.82 23.94 13.95 7.16 4.39 19.46 8.74 0.00 7.02 ISKC-6-5 Pt 3.00 2.97 2.97 8.07 5.31 2.64 3.02 4.43 5.07 1.15 7.47 2.46 16.83 0.38 0.00 10.69 5.04 0.62 10.51 4.88 WLOW-15-3 Pt 5.06 6.52 4.98 4.87 1.63 5.35 2.43 3.15 4.15 5.63 8.00 4.08 9.47 7.52 2.75 4.52 17.09 24.85 2.01 6.53 BULF-11-2 Pt 5.01 7.12 3.49 8.58 3.05 8.39 0.00 1.06 7.12 1.23 9.83 0.00 1.61 6.12 0.00 0.91 18.66 13.37 15.78 5.86 STKF-5-1 Pt 4.52 8.57 2.33 1.91 6.11 6.56 7.25 4.12 8.89 1.11 9.30 0.00 4.84 0.00 14.42 8.75 4.76 5.72 2.27 5.34 BULF-11-4 Pt 6.11 0.66 1.37 2.00 6.52 4.59 2.37 1.86 7.77 2.25 3.79 1.50 8.86 4.79 1.96 5.68 2.25 8.62 4.51 4.08 ISKC-6-3 Pt 3.35 6.86 5.28 1.28 0.00 0.87 3.80 4.24 2.34 3.05 9.29 2.19 16.74 8.95 3.55 12.22 11.33 13.09 0.00 5.71 TRTB-7-7 Pt 1.85 0.00 0.00 0.00 0.00 4.53 3.33 1.26 0.33 0.66 13.19 0.00 38.52 0.00 17.83 1.97 0.00 3.86 6.42 4.93 STKE-5-3 Pt 4.86 9.98 1.66 1.94 11.84 3.22 3.15 0.00 5.06 2.99 8.49 8.00 1.61 4.14 6.79 6.01 14.59 0.54 6.06 5.31 IRVD-7-4 Pt 4.30 4.37 0.83 0.00 1.44 0.00 0.00 0.00 10.42 0.00 4.54 5.16 7.32 6.92 1.88 3.72 5.41 3.34 7.67 3.54 STKD-5-1 Pt 2.90 0.00 2.51 0.00 7.03 0.93 4.57 2.17 1.43 4.48 2.82 3.14 8.49 3.59 4.11 1.27 3.81 1.11 13.54 3.57   TLKH-11-1 Pt 4.24 3.69 5.17 2.37 13.84 4.21 5.57 2.36 11.21 5.28 1.72 0.89 14.56 5.29 5.35 6.64 17.03 3.26 3.41 6.11 BULF-11-3 Pt 4.47 10.51 2.16 10.49 4.90 5.47 2.09 0.00 8.93 1.06 0.75 0.00 1.18 12.05 2.52 5.19 10.35 1.56 13.12 5.09 ISKC-6-2 Pt 4.03 7.32 3.23 5.58 2.70 2.86 5.42 2.34 1.24 0.00 1.80 1.22 11.98 3.56 8.93 4.04 8.19 6.18 3.22 4.41 SKNM-10-6 Pt 3.12 1.68 1.49 7.19 2.90 3.28 11.06 1.18 3.89 0.00 4.20 0.00 5.64 4.43 1.22 3.11 7.32 1.84 1.09 3.40 CDRE-10-1 Pt 2.59 7.77 0.00 2.10 3.65 3.05 2.53 3.16 6.04 3.27 8.60 5.85 7.59 1.54 1.94 0.00 7.53 2.86 0.00 3.69 HAZH-10-3 Pt 1.64 2.09 2.89 3.27 5.84 0.00 0.00 4.23 6.90 3.04 6.08 3.59 1.09 25.57 7.51 2.70 10.05 0.69 4.82 4.84 TRTB-7-6 Pt 3.50 0.66 1.83 13.95 4.33 0.16 2.48 0.00 3.06 3.62 4.40 1.77 0.00 5.84 0.00 6.85 3.07 0.00 7.08 3.29 ISKC-6-1 Pt 2.20 2.68 0.00 8.39 3.62 1.29 2.47 4.10 6.31 0.61 4.82 2.20 11.02 1.64 5.78 2.98 11.31 3.15 2.40 4.05 HAZH-10-1 Pt 4.89 5.71 2.70 1.93 7.29 1.34 0.00 2.47 12.50 0.00 2.61 0.00 0.00 14.08 4.92 8.01 5.04 2.21 8.39 4.43 KTSG-10-5 Pt 5.66 2.68 3.44 0.00 3.14 4.99 5.13 2.60 0.00 3.10 5.18 9.35 13.67 2.07 6.61 1.21 0.00 3.25 1.75 3.89 ISKA-6-5 Pt 1.37 2.44 1.77 0.00 0.00 0.85 0.00 4.06 0.00 0.00 0.00 1.06 20.23 2.38 1.60 14.51 14.93 0.00 9.12 3.91 TRTB-7-5 Pt 1.61 2.77 3.57 1.25 0.00 0.69 0.00 2.33 3.72 0.00 0.00 0.00 22.12 0.53 7.68 3.57 6.70 0.00 5.47 3.26 HAZH-10-2 Pt 6.88 5.23 2.49 0.57 7.45 3.76 4.02 0.00 10.29 1.26 6.32 0.00 7.21 0.83 8.25 1.21 7.21 11.75 11.72 5.08 BULB-11-1 Pt 4.77 2.33 5.89 0.00 2.07 2.61 0.83 0.00 3.12 1.18 10.17 1.08 5.38 0.00 2.91 4.82 4.20 8.34 0.00 3.14 STKD-5-3 Pt 1.73 2.62 9.94 0.00 0.00 0.83 0.96 0.00 3.54 1.85 5.03 2.22 8.96 0.00 12.53 6.66 8.23 0.00 4.20 3.65 ISKA-6-4 Pt 0.00 0.00 1.08 1.25 3.16 0.48 3.13 2.97 6.84 0.00 3.27 1.20 0.00 0.00 0.97 0.00 6.57 5.51 0.00 1.92 KSPA-9-3 Pt 0.56 0.00 7.97 6.67 2.31 0.00 5.00 1.43 3.42 1.45 1.96 4.52 16.38 0.00 0.00 3.52 3.42 6.03 1.67 3.49 STKG-4-4 Pt 3.81 1.84 1.91 0.77 1.54 0.00 2.93 1.92 0.00 0.00 2.27 2.14 2.62 1.67 5.08 0.00 2.29 8.84 3.30 2.26 CDRE-10-3 Pt 6.05 3.39 7.48 0.00 4.19 0.00 3.70 0.00 8.81 4.18 4.65 0.00 1.15 11.81 5.22 0.00 6.87 1.02 3.61 3.80 ISKA-6-2 Pt 0.35 1.05 3.55 0.00 0.00 0.00 2.22 0.00 0.00 1.50 3.06 3.13 6.03 6.14 0.41 0.00 1.90 0.00 0.00 1.54 KTMC-12-2 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 0.00 0.00 0.64 0.10 IRVC-7-1 Pt 0.74 1.18 0.00 12.10 4.31 0.25 0.74 0.00 0.00 0.86 4.55 8.31 22.83 10.83 1.90 1.25 2.18 0.00 3.68 3.98 IRVC-7-6 Pt 2.82 1.68 3.97 1.03 10.92 2.76 0.00 0.00 11.18 0.00 0.60 0.00 5.00 4.41 0.00 5.57 5.73 2.44 8.57 3.51 ISKA-6-1 Pt 0.70 1.57 3.21 1.15 0.50 2.14 0.00 0.87 6.96 0.00 0.00 2.46 0.49 3.25 0.00 0.00 3.52 0.00 0.00 1.41 SKNC-10-2 Pt 1.71 3.24 0.00 0.00 0.84 1.27 3.08 0.00 0.00 0.00 3.49 7.16 2.05 1.17 0.00 6.78 2.23 0.00 0.00 1.74 IRVC-7-5 Pt 1.14 3.23 5.65 2.18 3.96 1.23 0.00 6.29 1.38 0.00 3.34 3.10 6.78 2.60 2.22 5.03 1.68 5.58 4.40 3.15 NASC-8-5 Pt 2.45 0.00 0.00 0.86 0.99 0.00 3.62 0.00 8.73 1.53 1.67 0.00 0.00 0.00 3.16 0.00 8.00 1.28 3.12 1.86 NASH-8-1 Pt 5.20 4.10 1.45 1.48 2.60 1.84 3.33 0.00 13.83 0.00 0.00 1.23 3.75 2.17 0.00 0.00 2.73 0.00 2.06 2.41 NASC-8-2 Pt 0.46 0.00 1.06 0.00 0.00 0.00 1.25 0.00 1.60 0.00 0.00 0.00 7.07 2.84 0.00 2.57 4.63 0.00 5.56 1.42 FKRB-6-1 Pt 2.41 1.37 1.94 4.31 1.75 0.00 0.00 0.00 1.59 0.00 6.78 1.07 5.49 0.00 0.00 3.41 5.67 1.88 0.00 1.98 NASF-8-2 Pt 0.00 0.00 5.36 0.00 0.00 0.00 8.65 0.00 2.31 0.73 0.00 1.01 0.00 0.00 0.00 2.64 0.93 0.00 1.53 1.22 SKNP-10-11 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.21 1.18 0.00 0.00 0.00 0.00 6.01 0.00 0.00 0.49 NASH-8-4 Pt 2.22 0.92 0.00 0.00 0.79 1.20 6.06 0.00 1.27 0.86 3.90 7.01 0.00 2.66 0.00 2.42 0.00 0.31 3.15 1.72 KLNE-20-1 Pt 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 1.20 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.15 SKNM-10-3 Pt 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.79 0.00 0.00 0.00 0.35 ZYMJ-10-1 Pt 0.00 0.00 0.00 0.00 1.05 0.00 1.88 0.00 0.00 0.00 0.00 0.00 0.00 2.95 1.82 7.40 0.00 10.81 0.00 1.36 LILB-26-1 Pt 0.00 0.00 0.00 0.00 5.23 0.00 0.00 0.00 0.00 0.00 3.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 NASD-8-2 Pt 0.31 0.00 1.07 0.97 0.00 0.00 0.00 1.38 1.72 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 1.78 0.00 0.40 TAKA-3-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SKNN-10-3 Pt 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.37 1.13 0.00 0.00 0.42 SKNQ-10-3 Pt 3.49 0.00 0.00 0.00 0.57 0.00 0.00 0.00 3.79 0.00 2.35 2.46 0.00 0.00 0.00 0.00 1.92 0.00 0.00 0.77 NHTA-27-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.51 1.82 0.00 0.00 0.00 0.00 2.69 0.00 0.00 1.69 0.00 0.62 SKNC-10-1 Pt 2.11 0.84 5.04 1.68 0.00 0.00 5.53 0.00 5.01 0.70 3.77 0.00 7.60 6.11 0.00 0.00 3.25 0.00 0.00 2.19 SKNL-10-1 Pt 0.49 0.00 0.00 0.00 1.32 0.67 5.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 0.00 0.00 0.68 KLNE-20-4 Pt 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.36 0.00 0.00 1.67 0.00 0.00 0.50 STHA-21-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LILC-26-1 Pt 0.00 0.00 0.00 0.00 0.81 0.00 3.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 2.68 0.00 0.00 0.49 STKB-5-4 Pt 4.46 0.83 0.00 15.51 2.25 6.88 0.00 0.00 3.29 0.52 5.93 0.00 6.72 1.60 0.73 0.00 2.03 4.88 2.63 3.07 SKNP-10-9 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.75 0.00 2.10 0.00 0.00 0.26 SKNR-10-1 Pt 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.21 0.00 0.00 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.25 HOPG-27-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SKWF-24-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HALS-30-6 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 KTMA-12-3 Pt 0.56 0.00 0.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.68 0.00 0.21 WHTE-28-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 BELC-18-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 BELA-18-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HOMB-21-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 KLNE-20-3 Pt 0.00 0.00 0.00 1.58 1.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 SLMC-28-2 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 SQMC-25-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BELA-18-2 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NBON-29-1 Pt 1.03 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08   HARB-26-1 Pt 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 CHKC-19-4 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HOMD-21-1 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      Accession Sp P. trichocarpa ancestry in P. balsamifera (RASPberry)     ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 average AP-31-1006 Pb 7.18 0.00 14.54 4.36 12.52 11.61 8.33 6.75 0.00 0.85 1.01 3.30 1.92 0.85 0.00 30.33 2.18 0.00 11.30 6.16 GPR-31-14 Pb 5.85 2.99 1.30 1.07 6.99 3.83 3.54 18.85 3.14 5.76 5.41 33.03 0.00 0.00 2.84 33.56 1.58 4.55 4.62 7.31 AP-31-5452 Pb 8.83 8.39 2.79 19.00 10.74 3.16 2.23 5.14 8.82 1.89 0.00 2.41 9.15 19.82 0.00 12.41 10.66 15.77 14.70 8.21 FTM-31-5 Pb 12.05 2.49 4.22 1.56 12.70 5.00 24.14 16.75 8.82 12.60 2.37 7.55 1.63 8.35 0.44 12.29 8.65 17.50 15.33 9.18 SRD-31-9 Pb 13.05 7.38 2.85 0.00 13.14 7.21 2.02 16.78 18.93 7.40 8.36 12.20 2.55 3.45 0.00 27.03 0.65 14.36 4.83 8.54 GPR-31-5 Pb 10.30 13.62 1.87 19.35 10.99 13.45 14.56 7.65 15.55 7.17 1.76 7.34 0.66 7.51 8.95 4.51 3.76 6.61 10.13 8.72 DEN-31-13 Pb 9.03 5.15 6.62 8.20 32.65 17.70 5.03 26.23 23.23 5.64 8.09 21.70 17.71 4.47 5.37 0.00 1.86 2.47 8.82 11.05 GPR-31-10 Pb 5.31 7.75 4.10 14.77 21.32 18.58 9.13 8.35 3.50 5.06 2.36 36.08 1.65 1.35 14.92 14.49 4.67 32.42 5.84 11.14 GPR-31-8 Pb 2.99 13.99 11.76 19.83 7.90 1.91 5.38 9.92 16.92 8.25 0.00 5.63 0.00 10.14 15.35 8.06 12.80 30.89 37.03 11.51 GPR-31-9 Pb 3.28 14.07 11.06 19.83 7.90 1.86 5.64 9.82 16.62 8.25 0.00 6.08 0.00 10.21 15.72 7.90 12.86 32.87 37.16 11.64 GPR-31-3 Pb 7.71 16.98 33.83 3.85 8.43 7.58 22.26 10.04 0.00 9.33 5.90 3.38 2.09 4.37 17.63 11.39 9.42 16.30 4.58 10.27 GPR-31-4 Pb 7.86 16.90 33.36 3.85 8.41 7.58 22.56 10.01 0.00 9.30 6.13 3.45 1.66 4.28 17.64 11.65 9.42 16.41 4.60 10.27 DEN-31-4 Pb 18.27 15.24 33.52 1.49 10.69 19.28 14.28 22.09 19.11 7.25 9.44 30.65 18.01 0.00 8.23 23.68 0.00 2.16 19.19 14.35 GPR-31-6 Pb 11.18 5.84 22.69 4.06 8.85 4.90 7.37 6.55 0.00 0.00 19.81 28.16 0.00 5.37 11.78 22.83 0.00 4.19 0.00 8.61 AP-31-5451 Pb 13.03 3.61 10.10 27.99 17.47 0.00 18.96 30.26 20.14 6.95 3.43 19.90 20.08 1.25 0.00 9.25 7.71 0.00 14.47 11.82 GPR-31-7 Pb 3.78 1.69 13.10 10.82 14.86 4.18 11.21 7.39 8.93 27.22 25.81 7.78 5.12 18.54 3.64 17.36 9.06 31.11 2.03 11.77 GPR-31-12 Pb 9.79 15.49 15.42 14.90 16.74 17.79 10.42 4.42 1.25 22.09 18.88 36.21 0.00 7.18 7.25 29.41 7.17 1.99 31.41 14.10 FTM-31-6 Pb 21.31 10.72 25.67 14.49 4.70 12.28 10.27 15.65 3.20 22.71 5.25 6.66 4.85 20.34 14.73 4.58 9.60 4.58 26.81 12.55 GPR-31-11 Pb 9.37 11.19 13.94 2.29 18.22 30.98 22.89 9.67 14.61 37.92 2.00 18.64 6.94 11.92 11.15 28.10 17.27 9.85 11.46 15.18 GPR-31-13 Pb 16.60 4.76 21.42 4.89 6.37 24.18 14.80 19.27 15.67 11.45 7.77 18.75 9.06 12.50 3.09 12.91 21.21 4.17 31.55 13.71 GPR-31-2 Pb 22.45 4.00 35.02 17.57 21.88 19.68 32.49 27.49 20.67 18.14 21.91 27.06 11.02 6.81 14.20 25.95 42.20 20.11 30.04 22.04 FTM-31-8 Pb 20.79 18.52 28.11 23.22 17.51 22.59 25.68 7.30 18.35 20.35 20.67 6.63 12.37 14.83 18.89 9.78 26.61 22.18 10.70 18.16 WOL-31-6 Pb 28.02 18.45 16.96 22.69 44.08 27.54 17.79 26.31 21.55 31.04 32.54 15.36 16.81 11.07 16.30 16.95 20.38 8.63 9.71 21.17 GPR-31-1 Pb 30.80 28.92 26.09 13.26 41.41 19.26 24.00 13.07 21.61 28.26 26.12 62.00 15.97 4.83 28.90 32.38 1.50 50.83 23.63 25.94 AP-31-5454 Pb 14.60 38.28 39.86 30.57 36.36 28.23 31.62 25.52 34.83 36.97 43.72 24.92 29.39 20.94 34.10 21.24 31.81 10.94 8.50 28.55 AP-31-2298 Pb 32.09 34.26 40.21 38.03 50.39 29.95 39.52 40.40 36.87 36.91 28.14 34.45 47.87 10.16 22.25 35.59 25.87 40.69 48.80 35.39 DESD-31-22 Pb 36.50 32.24 29.43 44.66 49.60 29.77 34.59 56.59 25.67 27.75 25.41 40.77 30.27 21.85 42.30 40.34 20.08 35.22 36.90 34.73 WHR-31-11 Pb 41.68 45.98 44.96 37.36 43.23 45.54 41.41 46.51 38.17 41.39 38.89 46.88 34.20 37.46 41.53 42.52 40.98 45.37 36.03 41.58 TNZA-4-3 Pb 49.71 42.21 38.48 37.39 41.07 30.61 39.30 53.09 28.45 48.66 47.48 50.25 19.50 44.71 42.09 30.94 26.22 48.52 31.34 39.47 AP-31-5230 Pb 38.21 30.06 29.96 52.70 33.48 41.00 39.69 40.68 52.36 32.11 49.78 62.07 52.18 27.65 43.41 43.22 42.36 55.34 32.33 42.03 AP-31-2446 Pb 45.95 42.29 53.35 58.24 54.16 29.97 62.51 63.37 40.34 46.99 34.39 44.65 61.93 28.33 52.78 45.42 56.07 33.20 61.43 48.18 AP-31-1004 Pb 53.65 49.66 58.64 45.69 62.01 55.08 59.64 64.22 69.05 46.02 54.79 32.29 42.98 35.76 35.71 70.06 66.66 49.65 62.60 53.38 ALSC-1-5 Pt 71.40 80.95 70.69 72.66 75.37 82.93 73.19 84.11 74.44 70.93 71.37 80.13 64.90 60.70 71.95 78.29 74.96 83.21 74.54 74.56 NKND-3-2 Pt 73.68 71.53 75.41 72.50 81.76 83.69 83.11 79.49 62.28 85.26 67.51 73.25 60.41 68.10 71.31 75.59 67.36 72.15 66.18 73.19 TAKB-3-4 Pt 72.57 70.89 87.93 81.94 80.21 83.38 86.68 84.75 68.02 88.47 56.63 95.50 61.16 55.78 78.49 76.67 72.83 84.91 89.47 77.70 TATB-1-7 Pt 77.57 75.07 73.83 69.25 75.59 75.46 93.05 89.08 81.52 83.20 56.43 88.35 66.99 72.43 70.86 78.58 68.45 80.77 67.91 76.02 TAKB-3-3 Pt 77.77 75.82 80.88 78.34 86.86 86.45 83.39 85.19 69.00 87.76 79.26 77.83 80.88 68.53 89.21 86.65 76.19 80.56 62.60 79.64 KIMB-16-3 Pt 85.31 76.56 89.72 74.30 75.57 72.97 70.29 89.07 71.44 67.68 79.86 91.17 68.19 74.00 78.52 80.40 69.84 82.06 58.83 76.62 KIMB-16-6 Pt 80.64 86.79 89.31 86.32 93.86 79.99 81.42 92.23 76.84 89.22 79.72 73.04 86.49 73.68 63.04 72.12 64.08 67.87 75.57 79.59 TAKB-3-5 Pt 86.81 82.57 75.16 71.81 82.40 86.59 76.39 91.31 82.73 84.69 79.14 96.74 69.28 87.59 86.08 78.95 53.12 79.72 62.28 79.65 QBKR-16-4 Pt 81.38 61.87 79.73 73.74 77.46 85.23 81.50 88.20 80.31 83.29 69.31 88.51 81.27 69.28 95.66 87.25 74.83 72.00 76.23 79.32 QLKE-16-2 Pt 69.86 82.00 82.11 89.89 79.69 83.81 82.23 91.84 83.54 85.90 76.29 81.84 85.34 69.35 92.64 92.64 71.34 73.88 72.13 81.38 SHEL-15-1 Pt 76.76 91.24 94.78 71.56 78.60 81.52 77.32 86.86 74.61 86.81 75.43 64.29 78.23 67.89 87.78 89.73 77.65 58.89 73.55 78.61 ALSC-1-4 Pt 81.01 73.50 92.30 78.85 89.24 79.45 71.62 87.51 65.53 79.50 76.28 90.93 76.43 90.20 68.40 93.01 56.82 82.08 66.13 78.88 QBKR-16-5 Pt 84.77 91.13 85.12 77.74 66.28 78.01 81.30 80.40 84.14 69.81 79.85 91.32 88.81 73.79 71.09 78.21 61.74 70.95 77.15 78.51 TATB-1-4 Pt 78.02 75.96 89.55 59.21 85.14 75.47 88.26 88.64 84.53 76.58 90.93 87.90 86.72 74.08 82.25 71.32 73.34 80.96 59.85 79.41 QBKR-16-3 Pt 77.80 93.45 75.39 80.26 58.16 85.19 85.62 87.44 72.53 81.43 78.94 62.78 76.62 80.51 86.56 84.05 74.85 67.45 82.10 78.48 WFSH-13-6 Pt 76.53 81.10 85.22 77.46 73.52 84.14 73.79 83.11 82.09 92.97 55.46 88.32 79.10 59.61 89.10 76.32 73.92 80.41 85.82 78.84 QLKE-16-1 Pt 85.55 83.68 84.99 77.98 80.61 88.48 90.15 91.58 68.53 81.66 80.74 68.27 75.76 67.99 86.91 86.99 76.52 63.52 81.87 80.09 SHEL-15-6 Pt 74.73 81.62 81.15 73.02 78.03 76.42 80.01 95.60 83.73 80.25 80.35 69.99 82.51 72.53 77.89 84.20 76.57 76.83 46.33 77.46 QFRS-16-5 Pt 85.99 85.78 87.11 77.91 91.94 88.11 86.31 94.54 71.58 86.17 78.82 73.31 76.37 58.88 80.01 95.13 72.27 65.77 73.87 80.52 HIXN-16-5 Pt 75.01 79.10 75.06 80.50 77.85 79.58 85.78 88.43 73.23 85.53 76.33 84.49 91.32 73.62 84.33 90.67 64.29 80.29 69.88 79.75 SHEL-15-3 Pt 83.51 86.33 80.26 86.04 80.78 82.62 94.54 85.85 66.76 83.07 83.86 82.60 78.59 57.66 86.63 93.57 74.63 77.81 84.33 81.55 HIXN-16-1 Pt 80.14 87.74 86.30 84.70 78.59 85.64 70.94 91.05 83.03 89.36 70.06 72.12 71.24 68.70 87.96 81.63 79.35 70.71 83.14 80.13 KIMB-16-5 Pt 84.52 89.09 93.44 76.82 79.91 88.26 83.25 90.31 73.18 86.70 80.24 79.10 68.85 76.60 75.34 76.68 49.54 75.35 84.24 79.55 QFRS-16-3 Pt 83.67 81.20 85.12 78.31 83.12 81.33 82.02 91.55 78.23 89.17 69.15 88.66 73.55 59.86 87.53 87.06 74.50 67.07 79.14 80.01 QLKE-16-3 Pt 87.20 84.56 82.65 86.36 79.27 88.73 87.10 89.81 84.03 80.37 65.68 76.76 82.21 81.47 90.15 92.52 54.95 87.76 85.40 82.47 QFRS-16-4 Pt 78.00 83.84 88.57 83.24 87.17 85.67 80.49 100.00 78.16 80.51 58.37 88.33 89.38 82.37 84.09 91.89 64.54 66.12 92.09 82.25 KIMB-16-1 Pt 87.49 88.11 85.45 83.57 81.15 90.48 82.98 96.05 75.95 88.69 84.59 86.50 67.08 79.74 81.73 85.25 79.87 79.59 62.95 82.49 SHEL-15-4 Pt 81.92 75.35 89.09 82.03 92.22 88.44 77.00 95.47 85.05 89.05 72.65 82.95 71.33 61.27 83.60 94.02 79.65 77.13 90.28 82.55 KIMB-16-4 Pt 84.52 86.69 88.39 79.82 82.83 91.05 85.76 93.64 79.95 85.90 78.77 86.89 70.63 81.09 75.72 86.69 88.63 78.85 85.15 83.74   QLKE-16-4 Pt 84.08 83.27 79.33 96.78 81.06 80.38 86.44 91.54 80.00 87.87 68.64 50.46 81.87 80.85 95.40 95.86 73.01 68.39 69.73 80.79 QFRS-16-2 Pt 81.94 83.26 90.44 88.96 84.33 89.46 80.41 91.92 54.16 86.35 68.92 82.50 88.02 70.81 90.62 94.71 78.65 68.68 84.90 82.05 SHEL-15-2 Pt 82.01 90.38 81.28 85.88 93.47 82.94 84.58 93.01 59.72 83.54 73.60 86.89 90.74 87.19 91.36 95.58 81.21 69.71 88.95 84.32 MCGR-15-8 Pt 88.10 83.66 82.96 88.95 90.59 86.75 82.32 94.26 76.25 86.83 78.43 85.33 83.35 78.92 85.75 83.34 74.03 87.37 66.14 83.33 MCGR-15-4 Pt 83.61 88.31 89.57 91.29 80.01 94.44 84.69 90.81 73.86 83.78 86.02 58.86 90.80 85.80 89.04 89.42 80.58 83.99 75.18 84.21 MCGR-15-7 Pt 86.19 84.06 90.55 96.18 77.06 90.38 87.31 90.33 80.57 89.95 80.08 84.20 84.06 67.94 89.17 88.22 63.18 83.14 79.16 83.78 QAUS-16-1 Pt 82.61 90.68 87.37 81.51 79.20 85.52 88.85 87.25 85.88 82.05 71.74 65.77 85.36 77.24 91.97 92.92 65.84 81.86 65.53 81.53 QAUS-16-7 Pt 81.17 89.27 90.88 86.47 89.54 85.02 82.99 89.68 75.58 72.61 63.78 87.69 81.76 79.65 86.92 82.65 81.38 91.62 77.72 82.97 QAUS-16-4 Pt 82.50 86.16 85.57 87.69 82.95 80.92 81.95 82.48 76.54 84.85 62.05 82.74 72.06 80.25 88.28 75.44 76.28 79.81 76.26 80.25 QAUS-16-3 Pt 83.64 89.87 87.79 79.62 86.03 78.58 83.37 86.98 86.71 97.50 76.12 74.33 91.09 65.03 83.31 91.70 74.63 66.03 71.24 81.77 MCGR-15-6 Pt 82.57 81.45 95.42 82.43 82.97 90.29 91.14 91.32 74.41 94.54 70.80 79.57 76.81 80.34 86.43 86.97 77.51 79.82 84.05 83.62 STEL-14-1 Pt 80.16 90.93 81.22 88.87 90.81 88.74 87.87 92.42 85.37 84.17 76.32 94.10 70.12 82.06 89.01 68.32 88.87 84.54 76.05 84.21 BULG-11-4 Pt 85.73 90.20 89.79 81.02 87.53 94.65 87.42 91.23 82.03 92.43 71.14 74.90 86.35 75.61 81.30 79.95 73.91 94.98 91.48 84.82 QFRS-16-1 Pt 77.63 79.92 91.07 88.52 79.33 88.04 77.84 94.60 73.34 86.31 77.07 90.19 74.38 61.27 83.12 86.73 66.42 79.74 86.93 81.18 QCTN-16-3 Pt 84.72 85.50 86.30 89.53 82.78 88.44 88.09 91.76 84.54 86.03 88.53 85.51 88.07 70.48 91.78 86.02 72.41 69.81 76.44 84.04 WLOW-15-5 Pt 86.41 78.44 96.52 84.37 91.31 85.40 90.48 93.91 87.58 88.96 80.89 83.73 96.67 93.24 91.82 86.58 70.66 82.94 71.46 86.39 QCTN-16-1 Pt 88.86 86.14 86.83 92.26 87.78 91.06 100.00 91.67 82.09 83.05 86.83 85.00 93.37 86.41 86.37 77.66 80.28 82.17 62.76 85.82 BULF-11-5 Pt 85.71 88.66 87.70 83.52 88.94 88.10 91.79 95.87 84.12 90.08 80.51 97.11 74.76 93.85 100.00 85.66 78.85 83.05 85.35 87.56 BULG-11-2 Pt 85.07 90.29 88.60 93.75 87.88 82.31 89.76 95.10 87.87 89.56 79.15 92.72 89.03 79.14 96.34 88.33 76.48 66.03 89.99 86.71 BULG-11-5 Pt 87.56 91.78 93.24 81.57 88.94 91.37 94.60 95.23 86.64 87.02 90.68 69.51 79.39 80.69 86.30 80.09 72.45 82.48 87.57 85.64 WLOW-15-4 Pt 87.51 87.31 93.30 90.76 74.34 84.75 78.76 92.67 80.85 92.91 78.54 91.52 89.32 81.98 90.02 75.94 72.77 68.75 73.69 83.46 HAZH-10-5 Pt 84.69 93.07 85.44 96.67 94.62 95.38 87.45 94.58 96.04 88.84 88.69 86.73 79.17 84.62 88.49 90.07 100.00 87.81 93.56 90.31 BULA-11-4 Pt 96.39 100.00 84.00 91.62 91.60 98.90 93.60 100.00 87.20 91.78 83.17 79.59 90.72 92.04 86.23 85.84 71.90 95.80 84.30 89.72 WLOW-15-1 Pt 89.01 94.42 93.09 92.17 70.67 92.68 88.07 94.50 87.66 93.38 78.67 88.81 68.88 73.76 86.11 75.97 64.21 71.54 94.64 84.12 ISKC-6-5 Pt 94.86 94.86 91.80 82.82 91.45 92.34 96.55 90.84 92.41 95.90 84.84 94.50 78.38 91.43 95.54 78.35 83.74 90.74 79.56 89.52 WLOW-15-3 Pt 89.94 89.08 85.94 90.00 92.75 90.17 96.94 94.44 84.59 88.85 80.93 83.68 79.04 86.69 86.05 82.19 67.26 67.72 92.91 85.74 BULF-11-2 Pt 88.95 85.95 90.70 86.72 86.81 86.39 91.53 97.85 87.17 95.03 82.92 95.43 94.59 86.12 100.00 93.29 66.95 78.86 75.77 87.95 STKF-5-1 Pt 92.71 87.57 91.09 94.94 90.68 87.77 92.38 93.08 88.32 94.17 82.33 100.00 90.45 98.13 79.77 85.73 91.76 89.84 94.88 90.82 BULF-11-4 Pt 87.81 93.19 91.64 94.23 86.56 89.44 86.71 96.09 91.12 93.38 89.50 94.69 87.10 88.45 88.70 83.64 91.21 89.01 77.27 89.46 ISKC-6-3 Pt 94.56 89.36 92.51 97.71 98.14 95.74 94.31 90.90 92.39 91.16 86.23 95.40 78.24 87.34 92.92 85.39 76.76 80.17 94.42 90.19 TRTB-7-7 Pt 95.81 100.00 100.00 100.00 99.04 90.80 90.03 93.95 96.24 96.50 83.30 96.97 57.93 98.27 75.94 93.00 100.00 84.56 82.59 91.31 STKE-5-3 Pt 89.46 84.86 91.50 96.92 83.34 92.89 87.88 98.36 91.84 94.91 86.71 78.65 94.46 94.08 89.27 91.79 80.43 93.99 89.19 90.03 IRVD-7-4 Pt 90.45 93.14 92.57 100.00 94.12 100.00 95.88 97.51 84.39 100.00 89.76 89.48 90.31 85.80 92.22 93.79 85.93 93.71 83.68 92.25 STKD-5-1 Pt 94.08 100.00 96.98 97.69 90.21 96.44 92.20 94.46 97.98 93.79 92.17 95.69 90.36 88.33 91.26 94.77 87.21 95.23 71.83 92.67 TLKH-11-1 Pt 90.70 93.69 92.67 94.07 82.61 90.37 91.56 96.22 82.54 89.91 88.45 93.01 81.22 87.48 87.70 82.61 75.46 91.13 89.45 88.47 BULF-11-3 Pt 90.56 83.76 92.48 82.57 88.15 88.00 88.86 100.00 80.58 95.55 93.69 98.07 97.86 74.79 95.02 88.92 78.00 88.23 79.68 88.67 ISKC-6-2 Pt 93.98 87.81 88.77 87.01 92.69 91.64 92.22 94.16 95.81 100.00 93.25 96.50 82.42 94.12 87.13 91.41 83.25 92.40 92.49 91.42 SKNM-10-6 Pt 95.34 95.94 94.97 91.12 95.37 93.37 86.50 96.34 92.55 100.00 93.54 100.00 86.42 92.58 98.30 92.45 88.58 92.11 97.00 93.82 CDRE-10-1 Pt 95.86 85.78 92.94 96.00 93.05 92.97 92.77 90.84 89.73 94.07 82.39 87.31 81.76 97.36 96.62 97.75 86.61 88.18 100.00 91.68 HAZH-10-3 Pt 96.70 93.01 89.65 95.69 87.27 96.62 97.02 89.95 85.51 94.59 88.85 90.53 95.96 62.09 85.44 93.71 83.22 93.92 86.46 89.80 TRTB-7-6 Pt 91.49 98.21 93.14 79.44 88.08 97.49 92.17 98.43 95.79 90.31 87.09 94.84 98.10 86.69 97.24 90.69 93.93 100.00 84.42 92.50 ISKC-6-1 Pt 92.47 94.62 97.53 86.62 92.19 96.16 92.65 92.02 91.02 97.48 88.33 94.55 86.07 92.84 89.01 94.61 77.98 95.26 91.95 91.76 HAZH-10-1 Pt 90.64 88.81 96.41 96.63 90.36 96.51 90.44 96.28 81.14 100.00 86.48 97.02 97.94 79.04 92.45 81.09 92.18 96.40 80.90 91.09 KTSG-10-5 Pt 91.46 95.46 93.59 100.00 96.57 92.13 90.72 94.35 100.00 95.10 92.02 87.54 83.02 97.19 87.18 96.59 92.24 92.66 94.95 93.30 ISKA-6-5 Pt 98.15 95.96 98.00 100.00 100.00 98.65 100.00 90.32 97.29 100.00 100.00 95.32 78.35 89.86 95.49 82.44 72.11 95.44 88.70 93.48 TRTB-7-5 Pt 95.50 96.08 94.57 94.89 100.00 98.13 98.24 95.71 96.09 100.00 100.00 100.00 72.16 93.90 89.38 94.17 87.66 100.00 93.46 94.73 HAZH-10-2 Pt 88.85 89.69 94.29 99.02 88.51 93.68 89.37 98.75 84.00 98.26 87.09 97.60 84.55 92.56 85.55 93.85 85.33 79.03 78.26 89.91 BULB-11-1 Pt 91.62 94.88 90.80 97.80 90.76 94.48 98.25 95.38 94.27 98.54 82.20 98.08 92.59 100.00 95.89 92.73 90.19 84.99 100.00 93.87 STKD-5-3 Pt 93.05 94.72 78.26 100.00 100.00 98.63 96.51 98.68 90.77 96.90 91.08 94.69 85.91 100.00 83.32 88.73 80.78 97.51 85.17 92.35 ISKA-6-4 Pt 99.04 98.85 95.60 98.24 95.29 96.90 95.97 97.01 91.16 100.00 93.83 91.94 97.43 100.00 98.32 100.00 83.03 89.51 96.53 95.72 KSPA-9-3 Pt 99.27 100.00 87.82 89.54 93.65 100.00 91.24 97.99 92.99 97.25 97.37 90.00 80.06 97.89 100.00 86.93 91.50 90.98 98.03 93.82 STKG-4-4 Pt 93.23 97.57 96.49 99.10 95.03 100.00 93.02 97.74 100.00 99.02 90.95 93.54 94.45 96.27 91.49 100.00 92.28 87.94 91.71 95.25 CDRE-10-3 Pt 90.98 92.46 86.73 97.91 94.16 100.00 89.21 100.00 90.25 93.10 92.49 96.96 98.38 82.10 87.02 100.00 89.46 88.60 91.94 92.72 ISKA-6-2 Pt 98.32 98.83 96.20 100.00 100.00 98.09 97.66 100.00 97.69 97.58 90.70 95.59 91.77 92.43 97.17 100.00 94.20 100.00 100.00 97.17 KTMC-12-2 Pt 99.65 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.37 100.00 100.00 100.00 98.33 100.00 96.62 97.22 99.43 IRVC-7-1 Pt 97.31 96.39 100.00 83.92 93.14 96.22 89.13 97.69 100.00 95.94 92.35 88.54 71.05 86.12 96.99 98.65 97.20 100.00 89.97 93.19 IRVC-7-6 Pt 95.15 95.90 94.70 96.37 86.52 95.28 95.26 97.39 82.86 98.41 98.61 94.95 91.75 88.69 97.41 92.00 92.27 93.66 85.48 93.30 ISKA-6-1 Pt 96.24 94.30 93.61 98.51 98.86 94.99 95.13 94.06 89.62 98.52 94.10 90.80 96.90 94.33 100.00 100.00 90.95 100.00 95.35 95.59 SKNC-10-2 Pt 95.08 94.52 100.00 100.00 98.35 97.71 95.37 97.82 100.00 100.00 95.61 90.34 95.15 96.01 97.30 89.70 96.05 96.46 92.88 96.23 IRVC-7-5 Pt 97.15 94.87 86.58 92.53 92.27 98.01 100.00 91.24 97.25 96.98 92.25 96.38 83.08 94.15 94.42 92.94 91.27 91.20 89.76 93.28 NASC-8-5 Pt 97.03 100.00 100.00 98.93 97.66 100.00 93.30 100.00 87.58 97.94 93.12 96.84 100.00 100.00 96.36 100.00 88.23 93.74 93.82 96.55 NASH-8-1 Pt 92.98 93.08 96.92 98.50 95.72 96.62 89.79 100.00 84.60 100.00 100.00 98.04 94.71 94.77 98.02 95.04 89.20 100.00 96.34 95.49 NASC-8-2 Pt 99.37 99.00 98.20 98.68 96.47 98.72 98.17 98.25 97.90 100.00 100.00 100.00 86.29 96.05 100.00 96.21 94.04 98.56 91.73 97.24   FKRB-6-1 Pt 95.13 96.64 96.68 92.15 97.95 100.00 100.00 98.35 98.21 100.00 90.41 97.81 90.31 95.17 100.00 93.51 87.24 92.92 94.08 95.61 NASF-8-2 Pt 100.00 100.00 92.17 100.00 100.00 100.00 85.87 98.35 96.91 98.98 100.00 98.44 96.75 100.00 100.00 94.60 95.98 97.92 90.06 97.16 SKNP-10-11 Pt 99.04 100.00 100.00 100.00 98.11 100.00 97.73 100.00 100.00 100.00 95.55 98.65 100.00 100.00 100.00 98.57 93.27 100.00 100.00 99.00 NASH-8-4 Pt 97.61 96.30 100.00 100.00 93.62 98.10 90.28 97.86 97.14 96.86 90.75 92.67 100.00 95.41 100.00 95.26 96.56 95.35 86.86 95.82 KLNE-20-1 Pt 99.34 100.00 98.09 100.00 100.00 100.00 100.00 100.00 100.00 96.93 100.00 97.98 89.78 100.00 100.00 100.00 100.00 97.50 100.00 98.93 SKNM-10-3 Pt 100.00 100.00 100.00 100.00 95.45 100.00 100.00 100.00 100.00 100.00 97.44 100.00 100.00 100.00 100.00 92.20 100.00 100.00 100.00 99.22 ZYMJ-10-1 Pt 100.00 98.35 98.74 100.00 97.68 100.00 97.51 97.83 100.00 100.00 100.00 100.00 100.00 93.97 97.49 90.56 100.00 84.49 100.00 97.72 LILB-26-1 Pt 100.00 100.00 100.00 100.00 92.60 100.00 100.00 100.00 100.00 100.00 94.60 98.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.25 NASD-8-2 Pt 99.48 100.00 97.74 98.82 96.16 100.00 100.00 98.02 94.82 100.00 100.00 100.00 92.68 100.00 95.55 100.00 95.75 97.33 98.39 98.14 TAKA-3-3 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 SKNN-10-3 Pt 99.43 100.00 100.00 100.00 100.00 100.00 96.41 98.23 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.91 96.51 100.00 100.00 99.03 SKNQ-10-3 Pt 95.47 100.00 100.00 100.00 99.19 100.00 96.42 100.00 95.63 100.00 96.98 94.58 100.00 100.00 97.91 100.00 96.82 100.00 100.00 98.58 NHTA-27-3 Pt 99.37 100.00 100.00 98.60 100.00 100.00 100.00 100.00 92.76 97.46 100.00 100.00 85.64 100.00 93.98 100.00 100.00 97.41 100.00 98.17 SKNC-10-1 Pt 97.08 97.96 93.22 97.07 100.00 100.00 93.31 100.00 92.20 98.80 95.91 94.53 91.32 90.93 97.30 100.00 91.76 100.00 98.18 96.29 SKNL-10-1 Pt 99.31 100.00 100.00 100.00 97.84 99.11 93.54 100.00 100.00 98.58 100.00 100.00 100.00 100.00 100.00 100.00 94.32 100.00 100.00 99.09 KLNE-20-4 Pt 99.42 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.33 100.00 100.00 100.00 100.00 89.82 100.00 97.39 96.47 100.00 100.00 99.02 STHA-21-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 LILC-26-1 Pt 100.00 100.00 100.00 100.00 96.64 100.00 94.44 100.00 100.00 100.00 100.00 97.45 97.48 100.00 96.78 100.00 95.20 100.00 100.00 98.84 STKB-5-4 Pt 92.37 96.08 93.16 79.60 95.16 92.13 98.57 97.90 92.39 96.36 89.17 100.00 93.03 94.30 89.90 100.00 88.50 92.79 90.97 93.28 SKNP-10-9 Pt 98.57 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 100.00 100.00 100.00 100.00 96.84 97.36 96.96 100.00 100.00 99.36 SKNR-10-1 Pt 99.27 98.97 100.00 100.00 98.07 98.42 100.00 100.00 100.00 98.41 100.00 98.49 96.63 100.00 100.00 100.00 100.00 100.00 100.00 99.38 HOPG-27-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 SKWF-24-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 HALS-30-6 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 KTMA-12-3 Pt 99.27 100.00 100.00 100.00 100.00 100.00 94.55 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.10 100.00 100.00 96.33 100.00 99.33 WHTE-28-3 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.11 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.69 BELC-18-3 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.18 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 BELA-18-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 HOMB-21-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 KLNE-20-3 Pt 98.59 100.00 100.00 96.59 95.51 100.00 100.00 100.00 97.67 100.00 97.37 100.00 97.79 100.00 100.00 100.00 100.00 96.83 100.00 98.97 SLMC-28-2 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.05 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.74 SQMC-25-5 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 BELA-18-2 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 NBON-29-1 Pt 98.61 97.56 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.13 100.00 100.00 100.00 100.00 100.00 100.00 99.70 HARB-26-1 Pt 100.00 100.00 100.00 100.00 100.00 100.00 96.74 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.83 CHKC-19-4 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 HOMD-21-1 Pt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00     Accession Sp undetermined (RASPberry) down     ch01 ch02 ch03 ch04 ch05 ch06 ch07 ch08 ch09 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 average   AP-31-1006 Pb 3.97 0.00 2.95 4.05 6.14 1.19 1.86 1.08 0.00 0.41 0.62 3.84 1.52 0.14 2.55 8.74 1.18 3.64 8.06 2.73   GPR-31-14 Pb 3.23 0.14 3.37 0.63 4.10 2.17 2.93 2.37 1.44 1.64 6.02 19.06 0.00 0.00 2.81 5.58 4.44 0.27 4.68 3.41   AP-31-5452 Pb 2.82 1.48 3.67 6.47 4.14 0.10 3.86 4.88 4.21 3.10 0.00 3.70 2.02 7.02 2.25 5.74 10.09 8.69 5.59 4.20   FTM-31-5 Pb 6.70 1.52 2.87 0.11 1.68 1.28 6.91 5.98 0.92 4.38 0.05 7.43 1.72 6.17 5.17 12.58 8.54 6.67 15.88 5.08   SRD-31-9 Pb 3.67 1.40 0.51 1.59 4.52 1.80 0.69 8.37 6.15 2.65 18.87 8.13 3.66 0.53 0.00 13.57 3.35 5.51 5.68 4.77   GPR-31-5 Pb 3.27 4.52 0.71 5.83 1.63 3.01 7.26 4.77 9.41 5.15 2.64 6.71 0.28 1.69 1.20 3.58 1.77 2.37 13.18 4.16   DEN-31-13 Pb 3.17 0.50 3.69 4.45 9.42 4.38 3.31 2.65 6.13 0.80 3.58 7.18 2.57 3.17 1.98 9.16 9.13 0.21 8.65 4.43   GPR-31-10 Pb 3.33 2.44 1.15 3.23 3.01 4.06 5.77 1.88 2.40 4.17 2.37 7.04 0.04 5.02 4.91 6.45 5.42 6.29 10.41 4.18   GPR-31-8 Pb 2.25 3.94 7.24 7.68 1.10 0.56 3.51 3.60 5.92 1.73 2.52 6.09 0.00 5.91 4.37 4.34 7.58 14.15 8.81 4.81   GPR-31-9 Pb 1.15 3.80 8.54 7.94 0.95 0.85 3.23 4.03 6.44 1.84 2.53 5.27 0.00 4.31 3.59 4.63 7.67 13.15 8.77 4.67   GPR-31-3 Pb 6.59 6.67 6.49 0.34 3.43 2.01 4.07 2.76 2.53 2.04 1.69 1.85 2.50 2.69 9.51 6.25 7.40 9.86 10.91 4.72   GPR-31-4 Pb 6.05 6.44 6.86 0.35 3.36 1.73 3.62 2.68 2.52 2.09 1.23 1.51 1.95 2.87 8.84 5.74 9.96 9.65 10.50 4.63   DEN-31-4 Pb 3.99 5.73 7.38 1.19 7.00 1.13 7.83 6.87 8.90 3.03 0.73 3.47 4.57 0.00 9.80 4.96 0.00 0.16 6.72 4.39   GPR-31-6 Pb 3.75 1.11 5.52 1.22 4.99 3.04 4.86 2.22 0.00 0.00 2.46 5.18 0.00 1.48 3.33 6.37 2.13 5.17 3.40 2.96   AP-31-5451 Pb 5.18 3.04 7.01 8.79 6.75 1.23 3.36 7.33 5.20 3.64 13.02 6.38 7.52 0.43 2.35 7.49 10.53 0.00 10.61 5.78   GPR-31-7 Pb 2.02 0.41 3.22 2.74 3.97 1.73 4.13 4.69 0.66 5.70 9.43 3.94 0.36 4.93 3.54 4.15 6.15 10.84 9.15 4.30   GPR-31-12 Pb 2.13 5.87 9.48 4.88 9.11 3.22 2.53 3.06 0.12 11.38 3.37 17.83 0.00 2.32 2.90 6.85 5.98 0.57 7.68 5.23   FTM-31-6 Pb 6.19 2.64 11.48 5.76 6.80 10.11 3.25 3.76 1.99 8.34 1.84 2.36 3.38 15.58 4.34 3.75 5.16 2.10 15.81 6.03   GPR-31-11 Pb 3.21 0.84 5.16 1.78 3.01 7.35 4.99 5.05 5.10 6.27 1.78 2.18 6.99 6.89 6.16 7.98 4.81 11.36 6.79 5.14   GPR-31-13 Pb 8.54 6.37 6.02 1.87 11.29 8.97 6.83 9.08 12.54 11.37 8.91 13.10 6.71 12.23 2.59 3.15 19.80 4.01 6.72 8.43   GPR-31-2 Pb 7.08 1.48 15.87 3.84 6.90 6.81 7.32 6.92 8.04 8.12 1.74 8.71 2.71 0.96 5.55 7.66 17.71 4.33 7.59 6.81 yes FTM-31-8 Pb 5.42 5.87 9.58 4.53 8.01 4.18 12.80 2.79 4.62 13.87 5.76 3.31 3.71 6.31 2.75 9.52 10.12 10.25 8.30 6.93   WOL-31-6 Pb 9.35 6.77 9.21 13.58 16.68 7.96 8.81 13.23 16.61 10.03 8.18 9.69 10.63 11.93 4.05 20.28 16.68 8.67 14.18 11.40 yes GPR-31-1 Pb 7.62 7.54 12.23 11.10 6.26 9.24 3.19 4.84 8.38 5.15 4.17 17.90 5.23 0.76 6.08 8.07 2.24 11.18 13.34 7.61 yes AP-31-5454 Pb 7.52 12.43 18.26 8.01 11.77 8.56 7.09 13.54 11.22 12.14 12.50 17.47 9.43 12.24 8.66 5.42 16.03 8.04 7.18 10.92 yes AP-31-2298 Pb 18.22 14.06 24.45 25.23 17.35 14.93 11.86 18.67 22.62 19.97 14.93 19.36 15.71 15.93 13.20 21.83 23.33 19.28 21.53 18.55 yes DESD-31-22 Pb 11.98 21.49 12.00 20.76 16.40 11.75 22.38 12.20 21.95 14.90 9.84 17.93 19.42 18.36 24.48 14.78 21.59 15.59 25.49 17.54 yes WHR-31-11 Pb 6.71 4.04 2.17 6.63 3.81 2.45 6.15 6.01 7.88 7.26 5.64 2.28 8.23 8.06 6.62 4.26 8.93 6.67 12.50 6.12 yes TNZA-4-3 Pb 11.46 12.75 13.11 13.33 14.77 11.73 13.02 17.97 9.66 13.71 7.99 16.46 5.93 13.68 26.37 13.44 22.25 18.18 25.98 14.83 yes AP-31-5230 Pb 12.99 16.26 17.36 13.36 7.41 10.49 8.35 12.86 10.50 19.00 15.32 14.83 10.45 22.27 14.75 21.32 15.51 9.94 26.80 14.72 yes AP-31-2446 Pb 12.15 13.09 17.50 12.20 11.91 13.25 11.57 16.16 5.97 8.57 14.03 14.46 9.77 16.80 12.78 14.42 16.90 8.31 21.74 13.24 yes AP-31-1004 Pb 18.65 19.67 19.14 14.45 11.24 15.13 16.91 14.88 12.10 16.21 18.72 17.74 7.04 19.05 12.64 14.25 18.40 18.23 26.54 16.37 yes ALSC-1-5 Pt 8.01 7.87 12.80 7.74 13.77 6.85 10.82 8.18 7.72 14.08 8.69 11.83 15.12 12.61 15.79 8.31 14.49 12.94 12.14 11.04   NKND-3-2 Pt 12.52 9.95 12.06 8.47 10.34 8.74 6.41 9.23 8.31 10.42 11.08 11.27 13.29 15.69 17.58 14.10 14.10 9.51 17.87 11.63   TAKB-3-4 Pt 9.87 11.41 5.72 9.34 6.93 6.31 8.77 6.29 15.10 4.81 11.00 1.37 15.49 20.80 6.77 9.69 12.35 9.89 6.31 9.38   TATB-1-7 Pt 9.76 12.43 11.43 12.48 7.91 8.63 2.75 6.48 6.36 3.84 15.86 5.90 11.64 9.97 12.57 12.34 9.97 11.29 17.56 9.96   TAKB-3-3 Pt 9.58 10.32 13.45 5.79 3.73 4.69 7.28 7.81 6.41 4.23 10.61 12.39 13.84 13.94 6.60 10.17 11.62 11.59 18.28 9.60   KIMB-16-3 Pt 6.88 8.33 6.93 14.19 15.25 15.72 9.48 4.97 15.95 9.96 9.65 6.31 16.50 10.41 5.81 10.78 17.01 8.62 25.90 11.51   KIMB-16-6 Pt 7.70 7.33 8.55 7.72 3.63 12.05 6.66 5.73 10.32 3.74 8.99 14.36 6.95 10.17 11.86 16.55 12.24 14.28 10.34 9.43   TAKB-3-5 Pt 6.11 7.35 14.31 5.80 7.55 7.32 13.23 4.96 8.20 7.26 8.94 0.58 6.22 5.64 4.31 15.07 17.59 9.69 15.07 8.69   QBKR-16-4 Pt 8.21 14.84 13.23 13.18 9.80 7.93 10.44 5.64 14.58 10.18 10.03 5.36 9.95 11.01 2.34 6.66 15.23 9.61 9.64 9.89   QLKE-16-2 Pt 12.92 7.58 13.08 5.46 10.08 8.44 9.26 6.67 10.08 7.47 8.46 12.50 8.67 19.61 4.16 4.07 20.02 12.58 14.11 10.27   SHEL-15-1 Pt 12.35 5.29 4.41 9.68 8.04 10.35 7.86 8.47 7.18 8.32 15.79 16.52 13.53 16.72 8.47 4.85 13.45 29.00 13.65 11.26   ALSC-1-4 Pt 7.16 17.15 2.94 6.01 7.63 7.31 13.57 6.54 8.21 12.72 11.21 5.98 7.86 5.25 9.23 2.20 18.92 8.87 14.56 9.12   QBKR-16-5 Pt 9.30 5.64 12.73 10.86 15.25 16.91 9.27 10.80 7.08 17.01 12.21 6.12 6.06 14.41 10.20 13.07 18.78 12.20 17.07 11.84   TATB-1-4 Pt 7.20 9.53 4.56 5.82 8.19 8.89 4.34 8.99 11.07 7.53 3.34 8.18 2.72 8.73 4.09 9.27 18.95 10.68 19.01 8.48   QBKR-16-3 Pt 12.96 5.56 15.04 11.43 11.73 6.06 10.86 8.52 12.63 10.68 12.18 19.13 16.41 15.83 8.49 12.09 13.60 10.96 13.21 11.97   WFSH-13-6 Pt 7.78 3.38 8.15 5.67 6.71 5.38 10.00 6.34 2.07 2.60 5.73 7.56 5.04 15.26 6.70 11.63 9.51 8.79 9.81 7.27   QLKE-16-1 Pt 7.52 4.18 11.65 10.20 12.50 6.01 7.14 5.27 15.44 7.80 12.59 16.42 18.79 22.02 7.77 9.19 14.68 17.83 12.55 11.56   SHEL-15-6 Pt 15.06 9.82 15.56 13.06 12.84 16.84 10.99 3.72 6.79 6.46 13.84 15.24 12.75 15.92 6.33 10.36 15.34 14.59 37.19 13.30   QFRS-16-5 Pt 8.87 6.66 7.46 10.53 4.53 6.44 8.18 2.77 11.48 11.30 12.28 9.39 19.52 21.44 10.34 3.88 17.45 25.43 13.63 11.14   HIXN-16-5 Pt 12.57 14.85 15.78 8.81 10.21 11.96 10.83 11.57 10.27 9.05 12.84 10.24 6.02 15.60 6.48 5.64 14.22 12.01 11.59 11.08   SHEL-15-3 Pt 9.60 8.10 9.54 6.73 8.42 8.80 4.01 9.73 8.98 5.60 6.98 9.48 10.47 12.28 5.63 4.56 15.84 14.51 12.26 9.03   HIXN-16-1 Pt 11.81 7.73 6.30 9.17 7.63 7.09 11.20 5.48 6.34 6.07 19.21 10.36 9.95 12.96 6.25 7.40 11.97 10.01 7.27 9.17   KIMB-16-5 Pt 7.44 5.51 4.27 13.18 7.97 6.99 8.63 6.49 6.94 9.48 9.27 10.62 15.43 14.24 10.33 17.90 22.39 18.06 8.14 10.70   QFRS-16-3 Pt 11.01 9.73 8.30 13.90 11.58 11.28 11.03 6.27 6.40 7.81 17.00 7.55 8.17 16.66 8.81 9.27 18.19 18.51 12.45 11.26   QLKE-16-3 Pt 10.16 10.13 11.83 8.85 14.75 5.66 4.89 7.02 11.36 11.76 21.94 12.20 12.72 7.44 5.76 4.82 27.71 9.45 10.22 10.98   QFRS-16-4 Pt 11.45 6.51 7.59 11.23 6.93 8.32 16.06 0.00 9.99 11.57 20.04 7.84 6.06 10.69 11.86 5.82 23.03 15.63 5.49 10.32   KIMB-16-1 Pt 7.53 7.98 6.28 7.97 7.40 4.63 9.39 3.28 10.18 5.19 7.03 10.20 22.67 10.58 6.64 7.12 6.70 15.98 22.21 9.42   SHEL-15-4 Pt 10.56 9.26 5.95 8.14 5.60 8.62 10.31 3.81 6.18 6.81 13.22 7.75 9.97 14.59 8.35 3.16 13.13 15.41 5.83 8.77   KIMB-16-4 Pt 6.56 9.67 7.58 11.47 9.28 5.54 5.81 4.56 7.48 6.94 13.53 10.45 10.17 11.27 16.48 9.50 5.10 15.50 7.06 9.16     QLKE-16-4 Pt 10.39 9.47 15.15 3.22 14.82 13.69 7.24 6.47 11.76 6.72 19.28 12.58 7.55 10.19 2.53 4.14 15.14 22.62 19.18 11.17   QFRS-16-2 Pt 11.00 8.57 5.93 8.29 9.34 5.53 11.20 7.90 19.70 9.28 9.15 11.73 6.66 17.57 5.72 5.29 18.23 14.29 13.72 10.48   SHEL-15-2 Pt 7.97 6.39 9.06 9.50 5.62 7.86 13.18 3.41 10.77 5.71 10.37 7.92 6.33 8.74 6.58 2.89 7.40 19.69 8.33 8.30   MCGR-15-8 Pt 6.64 9.39 8.27 6.49 6.06 5.82 9.19 4.88 12.78 4.76 11.19 8.60 5.43 14.99 7.05 7.90 10.36 9.53 16.95 8.75   MCGR-15-4 Pt 7.09 5.43 3.10 2.61 6.34 2.28 8.52 5.89 9.72 6.10 5.78 10.71 3.52 10.57 6.14 4.61 9.22 10.23 17.39 7.12   MCGR-15-7 Pt 5.58 5.79 6.01 1.03 11.40 4.13 5.59 2.99 5.29 7.07 10.25 11.91 6.16 17.29 5.05 9.79 15.27 12.21 9.92 8.04   QAUS-16-1 Pt 10.90 6.78 7.71 7.91 9.93 9.65 9.80 7.65 10.94 13.64 15.13 22.14 9.72 14.56 2.08 5.42 24.99 15.26 13.39 11.45   QAUS-16-7 Pt 12.03 6.71 6.67 9.73 6.38 12.00 7.25 6.58 6.34 16.09 10.79 6.47 4.13 6.85 10.68 10.15 8.85 5.52 16.15 8.91   QAUS-16-4 Pt 11.46 9.98 8.57 7.87 11.71 10.07 13.65 12.07 12.38 9.14 19.09 12.04 14.11 14.14 6.17 15.52 14.89 17.54 13.39 12.30   QAUS-16-3 Pt 10.46 6.08 10.24 7.40 10.09 12.56 12.37 8.14 5.66 2.07 18.52 16.19 7.53 22.99 8.90 5.43 13.88 15.57 19.25 11.23   MCGR-15-6 Pt 6.92 8.39 1.80 2.56 6.80 5.74 3.93 7.26 6.96 5.46 9.31 11.20 11.70 10.87 6.84 8.34 12.66 11.03 12.11 7.89   STEL-14-1 Pt 9.24 3.39 10.55 4.40 6.07 4.15 6.24 4.81 6.77 7.68 11.94 5.14 7.53 10.71 6.04 12.74 5.88 8.01 9.93 7.43   BULG-11-4 Pt 4.38 4.80 5.37 5.05 3.55 2.89 10.92 5.48 10.25 5.53 13.82 15.14 10.14 6.32 6.92 8.27 13.62 2.44 8.52 7.55   QFRS-16-1 Pt 14.04 13.64 5.87 8.70 12.72 8.08 15.19 3.20 9.24 10.08 13.53 6.72 9.30 18.16 13.32 10.73 18.95 11.95 9.94 11.23   QCTN-16-3 Pt 9.03 7.47 11.21 7.97 7.47 5.24 9.94 6.95 13.40 10.72 7.74 9.20 9.25 11.93 7.47 11.56 16.03 12.17 13.68 9.92   WLOW-15-5 Pt 8.15 12.28 1.93 4.06 7.02 10.22 7.06 4.98 6.12 7.15 12.38 13.79 2.67 4.41 5.28 8.21 18.77 13.54 18.52 8.76   QCTN-16-1 Pt 6.21 9.82 7.24 6.82 7.22 6.67 0.00 6.90 10.76 7.43 6.79 8.13 4.14 5.35 6.57 19.30 13.72 9.14 24.45 8.77   BULF-11-5 Pt 5.62 6.78 8.03 3.58 5.97 6.86 4.96 4.13 8.13 6.91 11.15 0.22 10.09 4.64 0.00 4.96 7.90 9.02 9.36 6.23   BULG-11-2 Pt 6.41 4.74 7.50 5.81 7.28 10.66 6.36 3.28 8.27 5.12 9.40 6.20 5.19 11.49 1.43 2.20 13.02 9.95 6.09 6.86   BULG-11-5 Pt 5.58 3.98 5.09 6.88 7.63 5.03 3.40 3.63 9.26 5.71 4.83 9.02 13.18 12.11 8.59 6.32 7.17 10.92 10.55 7.31   WLOW-15-4 Pt 8.49 9.30 6.00 5.89 12.57 9.56 9.78 5.58 8.59 4.31 10.74 5.15 6.06 9.50 6.72 9.79 17.46 8.21 18.13 9.04   HAZH-10-5 Pt 5.56 2.21 9.32 2.04 2.84 3.18 5.96 2.85 0.70 5.84 3.36 9.28 8.06 8.03 6.71 3.39 0.00 7.89 2.55 4.72   BULA-11-4 Pt 1.59 0.00 12.17 4.56 1.00 0.52 1.57 0.00 5.04 2.93 5.07 6.72 2.71 5.26 7.43 10.25 8.69 4.20 12.35 4.84   WLOW-15-1 Pt 5.43 3.58 3.58 6.40 12.47 5.35 10.34 3.81 5.92 4.73 11.25 8.37 7.18 12.29 6.73 19.64 16.33 19.73 5.36 8.87   ISKC-6-5 Pt 2.14 2.17 5.23 9.11 3.24 5.02 0.43 4.73 2.52 2.96 7.69 3.04 4.79 8.19 4.46 10.96 11.21 8.64 9.93 5.60   WLOW-15-3 Pt 5.00 4.39 9.08 5.13 5.61 4.48 0.63 2.41 11.27 5.52 11.07 12.24 11.49 5.79 11.20 13.29 15.66 7.44 5.08 7.73   BULF-11-2 Pt 6.03 6.93 5.80 4.71 10.13 5.22 8.47 1.09 5.70 3.75 7.25 4.57 3.79 7.75 0.00 5.79 14.38 7.77 8.45 6.19   STKF-5-1 Pt 2.77 3.87 6.58 3.15 3.21 5.67 0.37 2.80 2.79 4.72 8.37 0.00 4.71 1.87 5.81 5.52 3.48 4.45 2.85 3.84   BULF-11-4 Pt 6.08 6.15 6.99 3.77 6.92 5.97 10.92 2.06 1.11 4.36 6.71 3.81 4.03 6.76 9.34 10.67 6.54 2.37 18.21 6.46   ISKC-6-3 Pt 2.09 3.78 2.21 1.01 1.86 3.39 1.89 4.87 5.26 5.80 4.48 2.41 5.02 3.71 3.53 2.39 11.91 6.73 5.58 4.10   TRTB-7-7 Pt 2.35 0.00 0.00 0.00 0.96 4.68 6.64 4.79 3.43 2.85 3.50 3.03 3.55 1.73 6.23 5.04 0.00 11.59 10.99 3.76   STKE-5-3 Pt 5.68 5.16 6.85 1.15 4.81 3.89 8.98 1.64 3.10 2.10 4.79 13.35 3.93 1.78 3.94 2.20 4.98 5.47 4.75 4.66   IRVD-7-4 Pt 5.25 2.49 6.60 0.00 4.44 0.00 4.12 2.49 5.19 0.00 5.70 5.36 2.38 7.28 5.90 2.49 8.66 2.95 8.64 4.21   STKD-5-1 Pt 3.03 0.00 0.51 2.31 2.76 2.64 3.23 3.37 0.59 1.74 5.01 1.16 1.14 8.08 4.63 3.96 8.99 3.66 14.62 3.76   TLKH-11-1 Pt 5.06 2.62 2.16 3.55 3.54 5.42 2.86 1.43 6.25 4.82 9.83 6.10 4.22 7.22 6.95 10.75 7.51 5.61 7.14 5.42   BULF-11-3 Pt 4.96 5.73 5.36 6.94 6.95 6.52 9.05 0.00 10.50 3.39 5.57 1.93 0.96 13.15 2.46 5.89 11.65 10.21 7.20 6.23   ISKC-6-2 Pt 1.99 4.86 8.00 7.41 4.61 5.50 2.36 3.51 2.96 0.00 4.95 2.28 5.60 2.32 3.94 4.56 8.56 1.42 4.29 4.16   SKNM-10-6 Pt 1.53 2.39 3.54 1.69 1.73 3.34 2.44 2.48 3.56 0.00 2.25 0.00 7.94 2.98 0.48 4.44 4.10 6.05 1.90 2.78   CDRE-10-1 Pt 1.56 6.46 7.06 1.90 3.30 3.99 4.70 5.99 4.23 2.66 9.01 6.84 10.66 1.10 1.44 2.25 5.86 8.96 0.00 4.63   HAZH-10-3 Pt 1.67 4.90 7.45 1.04 6.88 3.38 2.98 5.81 7.59 2.38 5.08 5.88 2.95 12.34 7.05 3.59 6.73 5.39 8.72 5.36   TRTB-7-6 Pt 5.00 1.13 5.03 6.61 7.59 2.36 5.35 1.57 1.15 6.08 8.51 3.39 1.90 7.47 2.76 2.46 3.00 0.00 8.49 4.20   ISKC-6-1 Pt 5.33 2.70 2.47 4.99 4.18 2.55 4.88 3.88 2.67 1.91 6.85 3.25 2.90 5.52 5.21 2.42 10.70 1.59 5.65 4.19   HAZH-10-1 Pt 4.47 5.48 0.89 1.44 2.35 2.15 9.56 1.26 6.36 0.00 10.91 2.98 2.06 6.88 2.63 10.90 2.77 1.39 10.71 4.48   KTSG-10-5 Pt 2.88 1.86 2.97 0.00 0.28 2.88 4.15 3.06 0.00 1.80 2.79 3.10 3.31 0.75 6.21 2.20 7.76 4.08 3.31 2.81   ISKA-6-5 Pt 0.48 1.59 0.23 0.00 0.00 0.50 0.00 5.63 2.71 0.00 0.00 3.61 1.42 7.76 2.91 3.06 12.96 4.56 2.18 2.61   TRTB-7-5 Pt 2.88 1.15 1.86 3.87 0.00 1.18 1.76 1.96 0.19 0.00 0.00 0.00 5.73 5.58 2.95 2.27 5.64 0.00 1.07 2.00   HAZH-10-2 Pt 4.27 5.08 3.22 0.41 4.03 2.56 6.60 1.25 5.71 0.48 6.59 2.40 8.24 6.61 6.20 4.94 7.46 9.22 10.02 5.02   BULB-11-1 Pt 3.61 2.79 3.31 2.20 7.18 2.91 0.92 4.62 2.61 0.28 7.63 0.84 2.03 0.00 1.20 2.45 5.61 6.67 0.00 2.99   STKD-5-3 Pt 5.22 2.66 11.80 0.00 0.00 0.54 2.53 1.32 5.69 1.25 3.89 3.09 5.13 0.00 4.15 4.61 11.00 2.49 10.63 4.00   ISKA-6-4 Pt 0.96 1.15 3.33 0.51 1.55 2.63 0.90 0.02 2.00 0.00 2.91 6.87 2.57 0.00 0.71 0.00 10.39 4.98 3.47 2.37   KSPA-9-3 Pt 0.17 0.00 4.21 3.79 4.04 0.00 3.76 0.58 3.59 1.29 0.66 5.47 3.56 2.11 0.00 9.55 5.08 2.98 0.30 2.69   STKG-4-4 Pt 2.96 0.59 1.61 0.13 3.43 0.00 4.05 0.34 0.00 0.98 6.78 4.32 2.94 2.06 3.43 0.00 5.43 3.22 4.99 2.49   CDRE-10-3 Pt 2.97 4.15 5.79 2.09 1.64 0.00 7.08 0.00 0.94 2.72 2.85 3.04 0.47 6.08 7.76 0.00 3.67 10.37 4.45 3.48   ISKA-6-2 Pt 1.33 0.12 0.24 0.00 0.00 1.91 0.12 0.00 2.31 0.92 6.24 1.29 2.20 1.43 2.42 0.00 3.90 0.00 0.00 1.29   KTMC-12-2 Pt 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.63 0.00 0.00 0.00 0.35 0.00 3.38 2.15 0.47   IRVC-7-1 Pt 1.96 2.43 0.00 3.98 2.55 3.53 10.13 2.31 0.00 3.20 3.10 3.15 6.13 3.04 1.11 0.10 0.62 0.00 6.35 2.83   IRVC-7-6 Pt 2.03 2.42 1.33 2.60 2.55 1.96 4.74 2.61 5.96 1.59 0.80 5.05 3.25 6.90 2.59 2.44 1.99 3.89 5.95 3.19   ISKA-6-1 Pt 3.06 4.13 3.18 0.34 0.64 2.87 4.87 5.07 3.41 1.48 5.90 6.74 2.60 2.42 0.00 0.00 5.53 0.00 4.65 2.99   SKNC-10-2 Pt 3.20 2.25 0.00 0.00 0.82 1.03 1.56 2.18 0.00 0.00 0.90 2.50 2.81 2.82 2.70 3.52 1.72 3.54 7.12 2.04   IRVC-7-5 Pt 1.71 1.90 7.77 5.29 3.77 0.76 0.00 2.48 1.37 3.02 4.41 0.52 10.14 3.25 3.36 2.03 7.05 3.22 5.84 3.57   NASC-8-5 Pt 0.52 0.00 0.00 0.21 1.35 0.00 3.08 0.00 3.70 0.53 5.21 3.16 0.00 0.00 0.48 0.00 3.77 4.99 3.06 1.58   NASH-8-1 Pt 1.82 2.81 1.63 0.02 1.68 1.54 6.88 0.00 1.57 0.00 0.00 0.73 1.54 3.07 1.98 4.96 8.08 0.00 1.60 2.10   NASC-8-2 Pt 0.17 1.00 0.75 1.32 3.53 1.28 0.59 1.75 0.50 0.00 0.00 0.00 6.64 1.10 0.00 1.21 1.34 1.44 2.71 1.33     FKRB-6-1 Pt 2.45 1.99 1.38 3.54 0.29 0.00 0.00 1.65 0.20 0.00 2.81 1.12 4.21 4.83 0.00 3.08 7.09 5.20 5.92 2.41   NASF-8-2 Pt 0.00 0.00 2.47 0.00 0.00 0.00 5.48 1.65 0.79 0.30 0.00 0.56 3.25 0.00 0.00 2.76 3.09 2.08 8.41 1.62   SKNP-10-11 Pt 0.96 0.00 0.00 0.00 1.89 0.00 2.27 0.00 0.00 0.00 2.24 0.17 0.00 0.00 0.00 1.43 0.72 0.00 0.00 0.51   NASH-8-4 Pt 0.18 2.78 0.00 0.00 5.59 0.70 3.66 2.14 1.58 2.28 5.35 0.33 0.00 1.93 0.00 2.32 3.44 4.33 9.98 2.45   KLNE-20-1 Pt 0.40 0.00 1.91 0.00 0.00 0.00 0.00 0.00 0.00 2.36 0.00 0.82 9.52 0.00 0.00 0.00 0.00 2.50 0.00 0.92   SKNM-10-3 Pt 0.00 0.00 0.00 0.00 3.66 0.00 0.00 0.00 0.00 0.00 2.56 0.00 0.00 0.00 0.00 2.01 0.00 0.00 0.00 0.43   ZYMJ-10-1 Pt 0.00 1.65 1.26 0.00 1.27 0.00 0.61 2.17 0.00 0.00 0.00 0.00 0.00 3.08 0.70 2.04 0.00 4.70 0.00 0.92   LILB-26-1 Pt 0.00 0.00 0.00 0.00 2.18 0.00 0.00 0.00 0.00 0.00 1.45 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27   NASD-8-2 Pt 0.21 0.00 1.18 0.22 3.84 0.00 0.00 0.60 3.45 0.00 0.00 0.00 6.92 0.00 4.45 0.00 4.25 0.89 1.61 1.45   TAKA-3-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes SKNN-10-3 Pt 0.06 0.00 0.00 0.00 0.00 0.00 3.59 1.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.73 2.35 0.00 0.00 0.55   SKNQ-10-3 Pt 1.04 0.00 0.00 0.00 0.24 0.00 3.58 0.00 0.59 0.00 0.66 2.96 0.00 0.00 2.09 0.00 1.26 0.00 0.00 0.65   NHTA-27-3 Pt 0.63 0.00 0.00 1.40 0.00 0.00 0.00 0.00 1.73 0.72 0.00 0.00 14.36 0.00 3.34 0.00 0.00 0.89 0.00 1.21   SKNC-10-1 Pt 0.81 1.19 1.74 1.25 0.00 0.00 1.16 0.00 2.79 0.50 0.32 5.47 1.08 2.96 2.70 0.00 5.00 0.00 1.82 1.52   SKNL-10-1 Pt 0.20 0.00 0.00 0.00 0.83 0.22 1.00 0.00 0.00 1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.24   KLNE-20-4 Pt 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.67 0.00 0.00 0.00 0.00 2.82 0.00 2.61 1.85 0.00 0.00 0.48   STHA-21-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes LILC-26-1 Pt 0.00 0.00 0.00 0.00 2.55 0.00 1.91 0.00 0.00 0.00 0.00 2.55 2.52 0.00 1.01 0.00 2.12 0.00 0.00 0.67   STKB-5-4 Pt 3.17 3.08 6.84 4.89 2.59 0.98 1.43 2.10 4.32 3.13 4.90 0.00 0.25 4.10 9.37 0.00 9.47 2.33 6.40 3.65   SKNP-10-9 Pt 1.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96 0.00 0.00 0.00 0.00 0.41 2.64 0.94 0.00 0.00 0.39   SKNR-10-1 Pt 0.17 1.03 0.00 0.00 1.93 1.58 0.00 0.00 0.00 0.38 0.00 1.51 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.37   HOPG-27-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes SKWF-24-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes HALS-30-6 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes KTMA-12-3 Pt 0.17 0.00 0.00 0.00 0.00 0.00 3.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.90 0.00 0.00 1.99 0.00 0.46   WHTE-28-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18   BELC-18-3 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05   BELA-18-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes HOMB-21-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes KLNE-20-3 Pt 1.41 0.00 0.00 1.84 2.56 0.00 0.00 0.00 2.33 0.00 2.63 0.00 2.21 0.00 0.00 0.00 0.00 3.17 0.00 0.85   SLMC-28-2 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16   SQMC-25-5 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes BELA-18-2 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes NBON-29-1 Pt 0.35 1.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.87 0.00 0.00 0.00 0.00 0.00 0.00 0.22   HARB-26-1 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01   CHKC-19-4 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes HOMD-21-1 Pt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 yes                Table S2A. List of environmental variables used in a principal component analysis. Twenty-three climate variables were compiled from ClimateNA (Wang 2012) based on 1971–2000  Type of variable Abbreviation Variable temperature MAT mean annual temperature (°C) temperature MWMT  mean warmest month temperature (°C)   temperature MCMT   mean coldest month temperature (°C) temperature TD temperature difference between MWMT and MCMT or continentality (°C) temperature DD<0 degree-days below 0°C chilling degree-days temperature DD>5 degree-days above 5°C growing degree-days temperature DD<18 degree-days below 18°C heating degree-days temperature DD>18 degree-days above 18°C cooling degree-days temperature NFFD the number of frost-free days temperature FFP frost-free period temperature bFFP the day of the year on which FFP begins temperature eFFP the day of the year on which FFP ends temperature EMT extreme minimum temperature over 30 years temperature EXT extreme maximum temperature over 30 years temperature MAR mean annual solar radiation (MJ m-2 d-1) moisture MAP mean annual precipitation (mm) moisture MSP May to September precipitation (mm) moisture AHM   annual heat-moisture index (MAT+10)/(MAP/1000)) moisture SHM  summer heat-moisture index ((MWMT)/(MSP/1000)) moisture PAS precipitation as snow (mm) between August in previous year and July in current year moisture Eref Hargreaves reference evaporation (mm) moisture CMD Hargreaves climatic moisture deficit (mm) moisture RH mean annual relative humidity (%)         Table S2B. PCA loadings for the first two components moisture PC1 PC2 MAP -0.39269 -0.35546 MSP -0.38694 -0.0251 AHM 0.382677 -0.01575 SHM 0.376325 -0.12414 PAS -0.36882 -0.12294 Eref 0.136751 -0.76023 CMD 0.371099 -0.39909 RH -0.33996 -0.32407                    temperature PC1 PC2 MAT -0.3183 0.065932 MWMT -0.07998 -0.47366 MCMT -0.29624 0.210516 TD 0.259123 -0.30149 DD_0 0.290106 -0.18464 DD5 -0.23596 -0.34168 DD_18 0.317559 -0.07289 DD18 -0.13371 -0.41386 NFFD -0.32464 0.003832 FFP -0.30639 -0.06768 bFFP 0.270903 0.164082 eFFP -0.31207 0.019236 EMT -0.31199 0.132292 EXT -0.06235 -0.45989 MAR -0.08695 -0.21855   Supporting Table S3A. Summary of biological terms overepresented in introgressed regions. Balsa in tricho represents P. balsamifera introgressed regions in P. trichocarpa. Tricho in balsa represents P. trichocarpa introgressed regions in P. balsamifera. Terms in purple are overlapping terms in P. trichocarpa and P.balsamifera introgressed regions (only KEGG and microRNA)      balsa in tricho tricho in balsa Overlapping terms GO - Biological process 1 13 0 GO - Molecular function 13 0 0 GO - Cellular component 0 1 0 Pfam 31 27 0 KEGG 4 3 K00430 Micro RNA 29 23 ptc-miR1444;ptc-miR168;ptc-miR172;ptc-miR3627;ptc-miR482;ptc-miR6421;ptc-miR6429;ptc-miR7820;ptc-miR7831;ptc-miR828 ChipSeq 2 0 0    Supporting Table S3B. Detailed enrichment analysis  balsa in tricho (all introgressed regions)  balsa in tricho (region in chromosome 3 only)   tricho in balsa (all introgressed regions) GO - Biological process (1)        GO - Biological process (1)         GO - Biological process (13)       GO id Pval (corrected) Statistics Description  GO id Pval (corrected) Statistics Description   GO id Pval (corrected) Statistics Description GO:0055114 3.27E-02 79/390 | 2019/14903 oxidation-reduction process   GO:0006979 1.86E-04 6/35 | 141/14903 response to oxidative stress    GO:0030003 3.56E-02 2/180 | 5/14903 cellular cation homeostasis            GO:0050801 3.56E-02 2/180 | 5/14903 ion homeostasis            GO:0048878 3.56E-02 2/180 | 5/14903 chemical homeostasis            GO:0006879 3.56E-02 2/180 | 5/14903 cellular iron ion homeostasis            GO:0055065 3.56E-02 2/180 | 5/14903 metal ion homeostasis            GO:0055072 3.56E-02 2/180 | 5/14903 iron ion homeostasis            GO:0055076 3.56E-02 2/180 | 5/14903 transition metal ion homeostasis            GO:0055080 3.56E-02 2/180 | 5/14903 cation homeostasis            GO:0055082 3.56E-02 2/180 | 5/14903 cellular chemical homeostasis            GO:0046916 3.56E-02 2/180 | 5/14903 cellular transition metal ion homeostasis            GO:0006873 3.56E-02 2/180 | 5/14903 cellular ion homeostasis            GO:0006875 3.56E-02 2/180 | 5/14903 cellular metal ion homeostasis            GO:0000041 4.91E-02 4/180 | 45/14903 transition metal ion transport                GO - Molecular function (13)        GO - Molecular function (12)         GO - Molecular function (0)       GO id Pval (corrected) Statistics Description  GO id Pval (corrected) Statistics Description   GO id Pval (corrected) Statistics Description GO:0008762 5.70E-09 30/524 | 89/19622 UDP-N-acetylmuramate dehydrogenase activity   GO:0010277 6.48E-05 3/46 | 11/19622 chlorophyllide a oxygenase [overall] activity       GO:0016614 9.37E-09 37/524 | 392/19622 oxidoreductase activity, acting on CH-OH group of donors   GO:0004601 7.58E-05 6/46 | 154/19622 peroxidase activity       GO:0016616 1.18E-08 36/524 | 372/19622 oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor   GO:0016684 7.58E-05 6/46 | 154/19622 oxidoreductase activity, acting on peroxide as acceptor       GO:0050660 1.71E-08 33/524 | 213/19622 flavin adenine dinucleotide binding   GO:0016209 1.36E-04 6/46 | 192/19622 antioxidant activity       GO:0050662 3.23E-07 40/524 | 536/19622 coenzyme binding   GO:0051537 1.90E-04 3/46 | 18/19622 2 iron, 2 sulfur cluster binding       GO:0048037 3.61E-05 43/524 | 715/19622 cofactor binding   GO:0016703 2.57E-04 3/46 | 21/19622 oxidoreductase activity, acting on         single donors with incorporation of molecular oxygen, incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases) GO:0051082 1.64E-04 12/524 | 88/19622 unfolded protein binding   GO:0016701 5.31E-03 3/46 | 60/19622 oxidoreductase activity, acting on single donors with incorporation of molecular oxygen       GO:0005488 6.46E-03 369/524 | 12290/19622 binding   GO:0051536 9.62E-03 3/46 | 83/19622 iron-sulfur cluster binding       GO:0004345 3.24E-02 3/524 | 8/19622 glucose-6-phosphate dehydrogenase activity   GO:0051540 9.62E-03 3/46 | 83/19622 metal cluster binding       GO:0097159 3.51E-02 242/524 | 7714/19622 organic cyclic compound binding   GO:0004497 1.00E-02 3/46 | 78/19622 monooxygenase activity       GO:1901363 3.86E-02 242/524 | 7712/19622 heterocyclic compound binding   GO:0020037 2.30E-02 6/46 | 596/19622 heme binding       GO:0004650 4.24E-02 8/524 | 83/19622 polygalacturonase activity   GO:0046906 2.38E-02 6/46 | 611/19622 tetrapyrrole binding       GO:0036094 4.98E-02 147/524 | 4422/19622 small molecule binding                             GO - Cellular component (0)         GO - Cellular component (0)         GO - Cellular component (1)       GO id Pval (corrected) Statistics Description   GO id Pval (corrected) Statistics Description   GO id Pval (corrected) Statistics Description             GO:0031012 5.24E-03 5/61 | 46/6017 extracellular matrix                 Pfam (31)         Pfam (8)         Pfam (27)       pfam id Pval (corrected) Statistics Description   pfam id Pval (corrected) Statistics Description   pfam id Pval (corrected) Statistics Description PF00013 3.51E-03 7/758 | 48/29014 KH domain   PF00141 3.80E-06 6/64 | 127/29014 Peroxidase   PF00005 6.43E-02 6/370 | 172/29014 ABC transporter PF00107 8.71E-02 6/758 | 83/29014 Zinc-binding dehydrogenase   PF00355 2.81E-05 3/64 | 16/29014 Rieske [2Fe-2S] domain   PF00139 5.04E-02 2/370 | 15/29014 Legume lectin domain PF00118 3.25E-02 5/758 | 40/29014 TCP-1/cpn60 chaperonin family   PF03018 3.18E-04 3/64 | 40/29014 Dirigent-like protein   PF00190 7.99E-02 4/370 | 92/29014 Cupin PF00141 6.01E-03 11/758 | 127/29014 Peroxidase   PF04819 6.50E-04 2/64 | 11/29014 Family of unknown function (DUF716)   PF00210 9.49E-03 2/370 | 5/29014 Ferritin-like domain PF00173 8.96E-02 3/758 | 24/29014 Cytochrome b5-like Heme/Steroid binding domain   PF04398 4.84E-03 2/64 | 33/29014 Protein of unknown function, DUF538   PF00400 5.81E-02 9/370 | 312/29014 WD domain, G-beta repeat PF00295 1.41E-02 8/758 | 83/29014 Glycosyl hydrolases family 28   PF00013 8.44E-03 2/64 | 48/29014 KH domain   PF00413 3.77E-04 5/370 | 24/29014 Matrixin PF00319 8.41E-02 7/758 | 102/29014 SRF-type transcription factor (DNA-binding and   PF00069 7.80E-02 6/64 | 1236/29014 Protein kinase domain   PF00534 6.33E-02 3/370 | 47/29014 Glycosyl transferases group 1   dimerisation domain) PF00320 8.42E-02 4/758 | 39/29014 GATA zinc finger   PF00847 9.74E-02 2/64 | 209/29014 AP2 domain   PF00560 9.57E-02 6/370 | 691/29014 Leucine Rich Repeat PF00355 5.06E-02 3/758 | 16/29014 Rieske [2Fe-2S] domain         PF00561 5.24E-02 5/370 | 116/29014 alpha/beta hydrolase fold PF00479 6.89E-02 2/758 | 7/29014 Glucose-6-phosphate dehydrogenase, NAD binding domain         PF00696 4.01E-02 2/370 | 13/29014 Amino acid kinase family PF00566 3.53E-02 4/758 | 26/29014 TBC domain         PF00782 1.27E-02 3/370 | 21/29014 Dual specificity phosphatase, catalytic domain PF00646 8.59E-02 12/758 | 228/29014 F-box domain         PF00933 1.61E-02 3/370 | 24/29014 Glycosyl hydrolase family 3 N terminal domain PF00856 4.76E-02 5/758 | 46/29014 SET domain         PF01048 6.72E-03 3/370 | 16/29014 Phosphorylase superfamily PF00996 1.39E-02 3/758 | 9/29014 GDP dissociation inhibitor         PF01187 2.61E-04 4/370 | 12/29014 Macrophage migration inhibitory factor (MIF) PF01138 9.34E-02 2/758 | 10/29014 3' exoribonuclease family, domain 1         PF01871 7.02E-03 2/370 | 4/29014 AMMECR1 PF01344 5.74E-02 4/758 | 32/29014 Kelch motif         PF02330 3.41E-02 2/370 | 11/29014 Mitochondrial glycoprotein PF01453 5.46E-05 8/758 | 34/29014 D-mannose binding lectin         PF02338 8.04E-02 2/370 | 22/29014 OTU-like cysteine protease PF01490 8.59E-02 6/758 | 82/29014 Transmembrane amino acid transporter protein         PF02630 9.02E-03 2/370 | 4/29014 SCO1/SenC PF01556 6.01E-08 8/758 | 15/29014 DnaJ C terminal region         PF03005 2.51E-03 6/370 | 63/29014 Arabidopsis proteins of unknown function PF01565 1.21E-09 29/758 | 88/29014 FAD binding domain         PF03227 2.16E-03 3/370 | 9/29014 Gamma interferon inducible lysosomal thiol reductase (GILT) PF01582 4.52E-03 10/758 | 51/29014 TIR domain         PF03810 3.03E-02 2/370 | 11/29014 Importin-beta N-terminal domain PF01900 3.73E-04 3/758 | 3/29014 Rpp14/Pop5 family         PF04525 2.33E-10 11/370 | 31/29014 Protein of unknown function (DUF567) PF01946 8.45E-02 2/758 | 9/29014 Thi4 family         PF04791 1.05E-02 2/370 | 4/29014 LMBR1-like membrane protein PF02458 2.69E-03 13/758 | 149/29014 Transferase family         PF05097 3.00E-02 2/370 | 10/29014 Protein of unknown function (DUF688) PF02519 4.74E-02 8/758 | 105/29014 Auxin responsive protein         PF05340 3.21E-02 2/370 | 11/29014 Protein of unknown function (DUF740) PF04178 9.66E-02 2/758 | 10/29014 Got1/Sft2-like family         PF06963 7.89E-03 2/370 | 4/29014 Ferroportin1 (FPN1) PF04654 5.56E-02 2/758 | 6/29014 Protein of unknown function, DUF599         PF07107 1.19E-02 2/370 | 6/29014 Wound-induced protein WI12 PF04739 7.25E-02 2/758 | 7/29014 5'-AMP-activated protein kinase beta subunit, interation domain             PF04862 9.04E-02 2/758 | 10/29014 Protein of unknown function, DUF642             PF07891 8.60E-02 2/758 | 8/29014 Protein of unknown function (DUF1666)             PF09735 2.47E-06 5/758 | 6/29014 Membrane-associated apoptosis protein                             KEGG (4)         KEGG (1)         KEGG (3)         kegg id Pval (corrected) Statistics Description   kegg id Pval (corrected) Statistics Description   kegg id Pval (corrected) Statistics Description K08070 1.11E-03 4/154 | 11/5582 2-alkenal reductase [EC:1.3.1.74]   K00430 1.72E-05 4/15 | 62/5582 peroxidase [EC:1.11.1.7]   K00001 7.53E-04 3/74 | 10/5582 alcohol dehydrogenase [EC:1.1.1.1] K03537 2.65E-03 2/154 | 2/5582 ribonuclease P/MRP protein subunit POP5 [EC:3.1.26.5]         K14293 1.53E-03 2/74 | 4/5582 importin subunit beta-1 K00430 1.61E-02 6/154 | 62/5582 peroxidase [EC:1.11.1.7]         K00430 8.89E-03 4/74 | 62/5582 peroxidase [EC:1.11.1.7] K01897 7.29E-02 2/154 | 12/5582 long-chain acyl-CoA synthetase [EC:6.2.1.3]                             Micro RNA (29)         Micro RNA (5)         Micro RNA (23)       miRNA id Pval (corrected) Statistics Description   miRNA id Pval (corrected) Statistics Description   miRNA id Pval (corrected) Statistics Description ptc-miR1444 5.84E-01 1/44 | 37/2200 Translation   ptc-miR1444 8.21E-02 1/4 | 37/2200 Translation   ptc-miR1444 3.93E-01 1/23 | 37/2200 Translation ptc-miR1448 3.95E-01 1/44 | 14/2200 Cleavage   ptc-miR169 9.97E-02 1/4 | 57/2200 Cleavage   ptc-miR159 4.05E-01 1/23 | 36/2200 Cleavage ptc-miR160 4.87E-01 2/44 | 39/2200 Cleavage   ptc-miR6462 1.01E-01 1/4 | 34/2200 Translation   ptc-miR168 2.90E-01 1/23 | 17/2200 Translation ptc-miR162 5.22E-01 1/44 | 6/2200 Translation   ptc-miR6421 1.38E-01 1/4 | 31/2200 Cleavage   ptc-miR169 4.98E-01 1/23 | 57/2200 Cleavage ptc-miR164 4.44E-01 1/44 | 17/2200 Cleavage   ptc-miR168 1.53E-01 1/4 | 17/2200 Translation   ptc-miR172 3.89E-01 1/23 | 32/2200 Cleavage ptc-miR168 4.24E-01 1/44 | 17/2200 Translation         ptc-miR3627 2.84E-01 1/23 | 18/2200 Cleavage ptc-miR172 5.32E-01 2/44 | 32/2200 Cleavage         ptc-miR475 4.81E-01 1/23 | 51/2200 Cleavage ptc-miR3627 4.26E-01 1/44 | 18/2200 Cleavage         ptc-miR477 4.94E-01 1/23 | 60/2200 Cleavage ptc-miR390 5.89E-01 1/44 | 32/2200 Cleavage         ptc-miR482 1.00E+00 1/23 | 100/2200 Translation ptc-miR473 4.92E-01 2/44 | 35/2200 Cleavage         ptc-miR6421 4.02E-01 1/23 | 31/2200 Cleavage ptc-miR482 5.76E-01 3/44 | 100/2200 Translation         ptc-miR6423 3.06E-01 1/23 | 15/2200 Cleavage ptc-miR6421 1.82E-01 3/44 | 31/2200 Cleavage         ptc-miR6428 3.42E-01 1/23 | 12/2200 Cleavage ptc-miR6429 4.19E-01 1/44 | 10/2200 Cleavage         ptc-miR6429 3.28E-01 1/23 | 10/2200 Cleavage ptc-miR6430 4.36E-01 1/44 | 13/2200 Cleavage         ptc-miR6435 4.64E-01 1/23 | 8/2200 Cleavage ptc-miR6440 2.60E-02 3/44 | 10/2200 Translation         ptc-miR6438 2.92E-01 1/23 | 20/2200 Translation ptc-miR6448 4.39E-01 1/44 | 14/2200 Translation         ptc-miR6471 2.98E-01 1/23 | 16/2200 Cleavage ptc-miR6459 5.71E-01 1/44 | 34/2200 Cleavage         ptc-miR7820 4.16E-01 1/23 | 9/2200 Cleavage ptc-miR6460 4.51E-01 1/44 | 10/2200 Cleavage         ptc-miR7826 3.27E-01 1/23 | 13/2200 Cleavage ptc-miR6462 5.92E-01 1/44 | 34/2200 Translation         ptc-miR7831 3.16E-01 1/23 | 14/2200 Cleavage ptc-miR6466 5.47E-01 1/44 | 26/2200 Cleavage         ptc-miR7836 1.03E-01 2/23 | 10/2200 Translation ptc-miR6468 3.74E-01 2/44 | 22/2200 Cleavage         ptc-miR7837 5.14E-02 2/23 | 10/2200 Translation ptc-miR7819 3.45E-01 2/44 | 19/2200 Translation         ptc-miR7838 3.47E-01 1/23 | 9/2200 Cleavage   ptc-miR7820 4.85E-01 1/44 | 9/2200 Cleavage         ptc-miR828 2.08E-01 2/23 | 25/2200 Cleavage ptc-miR7821 4.26E-01 1/44 | 11/2200 Cleavage             ptc-miR7830 1.37E-01 2/44 | 9/2200 Cleavage             ptc-miR7831 4.16E-01 1/44 | 14/2200 Cleavage             ptc-miR7839 4.32E-01 1/44 | 12/2200 Cleavage             ptc-miR7840 5.31E-01 1/44 | 8/2200 Cleavage             ptc-miR828 2.02E-01 3/44 | 25/2200 Cleavage                            ChipSeq (2)        ChipSeq (0)         ChipSeq (0)       chipSeq id Pval (corrected) Statistics Description  chipSeq id Pval (corrected) Statistics Description   chipSeq id Pval (corrected) Statistics Description chip_BLR 2.15E-07 77/1107 | 4925/41335 popBELLRINGER            chip_REV 8.35E-02 23/1107 | 551/41335 popREVOLUTA                                TS4.A. Genes associated with NBS-LRRs domains. The gene search was conducted in Popgenie using the Pfam terms in Table S3B  Transcript_Name GeneNames Chrom atg_id Potri.001G028700.1 Potri.001G028700 Chr01  Potri.001G066500.1 Potri.001G066500 Chr01  Potri.001G066600.1 Potri.001G066600 Chr01  Potri.001G066600.2 Potri.001G066600 Chr01  Potri.001G363200.1 Potri.001G363200 Chr01  Potri.001G363400.1 Potri.001G363400 Chr01  Potri.001G403800.1 Potri.001G403800 Chr01  Potri.003G014200.1 Potri.003G014200 Chr03  Potri.003G014200.2 Potri.003G014200 Chr03  Potri.003G084200.1 Potri.003G084200 Chr03  Potri.003G198900.1 Potri.003G198900 Chr03  Potri.003G199100.1 Potri.003G199100 Chr03  Potri.003G199400.1 Potri.003G199400 Chr03  Potri.003G199400.2 Potri.003G199400 Chr03  Potri.003G200100.1 Potri.003G200100 Chr03  Potri.003G200100.2 Potri.003G200100 Chr03  Potri.004G038200.1 Potri.004G038200 Chr04  Potri.004G088500.1 Potri.004G088500 Chr04  Potri.004G230000.1 Potri.004G230000 Chr04  Potri.004G230000.2 Potri.004G230000 Chr04  Potri.005G003900.1 Potri.005G003900 Chr05  Potri.005G004000.1 Potri.005G004000 Chr05  Potri.005G004100.1 Potri.005G004100 Chr05  Potri.005G004200.1 Potri.005G004200 Chr05  Potri.005G004400.1 Potri.005G004400 Chr05  Potri.005G004500.1 Potri.005G004500 Chr05  Potri.005G030300.1 Potri.005G030300 Chr05  Potri.005G030700.1 Potri.005G030700 Chr05  Potri.005G031200.1 Potri.005G031200 Chr05  Potri.005G031600.1 Potri.005G031600 Chr05  Potri.005G032000.1 Potri.005G032000 Chr05 AT4G16990.1 Potri.005G062700.1 Potri.005G062700 Chr05 AT4G16990.2 Potri.005G062700.2 Potri.005G062700 Chr05 AT4G16990.2 Potri.005G206400.1 Potri.005G206400 Chr05  Potri.006G269600.1 Potri.006G269600 Chr06  Potri.006G269900.1 Potri.006G269900 Chr06  Potri.006G270000.1 Potri.006G270000 Chr06  Potri.007G099700.1 Potri.007G099700 Chr07  Potri.007G142500.1 Potri.007G142500 Chr07  Potri.007G143000.1 Potri.007G143000 Chr07  Potri.007G143100.1 Potri.007G143100 Chr07  Potri.007G143100.2 Potri.007G143100 Chr07  Potri.007G143100.3 Potri.007G143100 Chr07  Potri.007G143300.1 Potri.007G143300 Chr07  Potri.008G220200.1 Potri.008G220200 Chr08  Potri.008G220200.2 Potri.008G220200 Chr08  Potri.011G008500.1 Potri.011G008500 Chr11  Potri.011G008600.1 Potri.011G008600 Chr11  Potri.011G008700.1 Potri.011G008700 Chr11  Potri.011G008800.1 Potri.011G008800 Chr11  Potri.011G009400.1 Potri.011G009400 Chr11  Potri.011G011600.1 Potri.011G011600 Chr11  Potri.011G012000.1 Potri.011G012000 Chr11  Potri.011G012500.1 Potri.011G012500 Chr11  Potri.011G012900.1 Potri.011G012900 Chr11  Potri.011G013100.1 Potri.011G013100 Chr11  Potri.011G013200.1 Potri.011G013200 Chr11  Potri.011G013400.1 Potri.011G013400 Chr11  Potri.011G013500.1 Potri.011G013500 Chr11  Transcript_Name GeneNames Chromosome_Name genelist_atg_id Potri.011G013700.1 Potri.011G013700 Chr11  Potri.011G013700.2 Potri.011G013700 Chr11  Potri.011G013700.3 Potri.011G013700 Chr11  Potri.011G013800.1 Potri.011G013800 Chr11  Potri.011G013900.1 Potri.011G013900 Chr11  Potri.011G014100.1 Potri.011G014100 Chr11  Potri.011G014100.2 Potri.011G014100 Chr11  Potri.011G014500.1 Potri.011G014500 Chr11  Potri.011G014900.1 Potri.011G014900 Chr11  Potri.011G015100.1 Potri.011G015100 Chr11  Potri.011G015400.1 Potri.011G015400 Chr11  Potri.011G015400.2 Potri.011G015400 Chr11  Potri.011G046800.1 Potri.011G046800 Chr11  Potri.011G060400.1 Potri.011G060400 Chr11  Potri.011G060400.2 Potri.011G060400 Chr11  Potri.011G060600.1 Potri.011G060600 Chr11  Potri.011G123100.1 Potri.011G123100 Chr11  Potri.012G053200.1 Potri.012G053200 Chr12  Potri.012G135700.1 Potri.012G135700 Chr12  Potri.013G037300.1 Potri.013G037300 Chr13  Potri.013G096900.1 Potri.013G096900 Chr13  Potri.013G097000.1 Potri.013G097000 Chr13  Potri.013G097300.1 Potri.013G097300 Chr13  Potri.013G097300.2 Potri.013G097300 Chr13  Potri.013G097300.3 Potri.013G097300 Chr13  Potri.013G097600.1 Potri.013G097600 Chr13  Potri.013G097800.1 Potri.013G097800 Chr13  Potri.013G097900.1 Potri.013G097900 Chr13  Potri.013G098000.1 Potri.013G098000 Chr13    Potri.013G098100.1 Potri.013G098100 Chr13  Potri.013G098500.1 Potri.013G098500 Chr13  Potri.013G098500.2 Potri.013G098500 Chr13  Potri.013G098600.1 Potri.013G098600 Chr13  Potri.013G098600.2 Potri.013G098600 Chr13  Potri.013G099000.1 Potri.013G099000 Chr13 AT4G16890.1 Potri.014G063200.1 Potri.014G063200 Chr14  Potri.014G063300.1 Potri.014G063300 Chr14  Potri.014G063300.2 Potri.014G063300 Chr14  Potri.014G063300.3 Potri.014G063300 Chr14  Potri.014G063500.1 Potri.014G063500 Chr14  Potri.014G063600.1 Potri.014G063600 Chr14  Potri.014G063900.1 Potri.014G063900 Chr14  Potri.014G064100.1 Potri.014G064100 Chr14  Potri.014G064300.1 Potri.014G064300 Chr14  Potri.014G064500.1 Potri.014G064500 Chr14  Potri.014G064800.1 Potri.014G064800 Chr14  Potri.014G064800.2 Potri.014G064800 Chr14  Potri.014G064800.3 Potri.014G064800 Chr14  Potri.014G064800.4 Potri.014G064800 Chr14  Potri.014G064800.5 Potri.014G064800 Chr14  Potri.015G043500.1 Potri.015G043500 Chr15  Potri.015G043500.2 Potri.015G043500 Chr15  Potri.015G043600.1 Potri.015G043600 Chr15  Potri.015G043600.2 Potri.015G043600 Chr15  Potri.016G090600.1 Potri.016G090600 Chr16  Potri.017G010800.1 Potri.017G010800 Chr17  Potri.017G011800.1 Potri.017G011800 Chr17  Potri.017G011800.2 Potri.017G011800 Chr17  Potri.017G011800.3 Potri.017G011800 Chr17  Transcript_Name GeneNames Chromosome_Name genelist_atg_id Potri.017G102900.1 Potri.017G102900 Chr17  Potri.017G102900.2 Potri.017G102900 Chr17  Potri.017G103100.1 Potri.017G103100 Chr17  Potri.017G103100.2 Potri.017G103100 Chr17  Potri.017G103300.1 Potri.017G103300 Chr17  Potri.017G103300.2 Potri.017G103300 Chr17  Potri.017G103300.3 Potri.017G103300 Chr17  Potri.017G103500.1 Potri.017G103500 Chr17  Potri.017G103500.2 Potri.017G103500 Chr17  Potri.017G103800.1 Potri.017G103800 Chr17  Potri.017G104100.1 Potri.017G104100 Chr17  Potri.017G104300.1 Potri.017G104300 Chr17  Potri.017G104300.2 Potri.017G104300 Chr17  Potri.017G104700.1 Potri.017G104700 Chr17  Potri.017G105000.1 Potri.017G105000 Chr17  Potri.017G105000.2 Potri.017G105000 Chr17  Potri.017G105100.1 Potri.017G105100 Chr17  Potri.017G105200.1 Potri.017G105200 Chr17  Potri.017G105300.1 Potri.017G105300 Chr17  Potri.017G105300.2 Potri.017G105300 Chr17  Potri.017G105500.1 Potri.017G105500 Chr17  Potri.017G105500.2 Potri.017G105500 Chr17  Potri.017G105500.3 Potri.017G105500 Chr17  Potri.019G001600.1 Potri.019G001600 Chr19  Potri.019G001700.1 Potri.019G001700 Chr19  Potri.019G002500.1 Potri.019G002500 Chr19  Potri.019G002600.1 Potri.019G002600 Chr19  Potri.019G046000.1 Potri.019G046000 Chr19  Potri.019G052000.1 Potri.019G052000 Chr19  Potri.019G068200.1 Potri.019G068200 Chr19  Potri.019G068300.1 Potri.019G068300 Chr19  Potri.019G069200.1 Potri.019G069200 Chr19  Potri.019G069200.2 Potri.019G069200 Chr19  Potri.019G069500.1 Potri.019G069500 Chr19  Potri.019G069500.2 Potri.019G069500 Chr19  Potri.019G069600.1 Potri.019G069600 Chr19  Potri.019G069800.1 Potri.019G069800 Chr19  Potri.019G069900.1 Potri.019G069900 Chr19  Potri.019G070300.1 Potri.019G070300 Chr19  Potri.019G070500.1 Potri.019G070500 Chr19  Potri.019G070600.1 Potri.019G070600 Chr19  Potri.019G070700.1 Potri.019G070700 Chr19  Potri.019G095900.1 Potri.019G095900 Chr19  Potri.019G097100.1 Potri.019G097100 Chr19  Potri.019G097300.1 Potri.019G097300 Chr19 AT4G16860.1 Potri.019G097500.1 Potri.019G097500 Chr19  Potri.019G097800.1 Potri.019G097800 Chr19  Potri.019G097800.2 Potri.019G097800 Chr19  Potri.019G098500.1 Potri.019G098500 Chr19  Potri.019G098600.1 Potri.019G098600 Chr19 AT4G16860.1 Potri.019G098800.1 Potri.019G098800 Chr19 AT4G16860.1 Potri.019G098900.1 Potri.019G098900 Chr19  Potri.019G112600.1 Potri.019G112600 Chr19  Potri.019G112700.1 Potri.019G112700 Chr19 AT4G16860.1 Potri.019G113500.1 Potri.019G113500 Chr19 AT4G16860.1 Potri.019G114100.1 Potri.019G114100 Chr19 AT4G16860.1 Potri.019G114500.1 Potri.019G114500 Chr19 AT4G16860.1 Potri.019G114800.1 Potri.019G114800 Chr19  Potri.019G114800.2 Potri.019G114800 Chr19  Potri.T001500.1 Potri.T001500 scaffold_20  Potri.T001700.1 Potri.T001700 scaffold_20  Potri.T002100.1 Potri.T002100 scaffold_20  Potri.T002400.1 Potri.T002400 scaffold_20  Potri.T002500.1 Potri.T002500 scaffold_20  Potri.T002900.1 Potri.T002900 scaffold_20  Potri.T002900.2 Potri.T002900 scaffold_20  Potri.T002900.3 Potri.T002900 scaffold_20  Potri.T003000.1 Potri.T003000 scaffold_20  Potri.T003000.2 Potri.T003000 scaffold_20  Potri.T004500.1 Potri.T004500 scaffold_20  Potri.T004900.1 Potri.T004900 scaffold_20  Potri.T005100.1 Potri.T005100 scaffold_20  Potri.T005200.1 Potri.T005200 scaffold_20  Potri.T005400.1 Potri.T005400 scaffold_20  Potri.T005500.1 Potri.T005500 scaffold_20  Potri.T005600.1 Potri.T005600 scaffold_20  Potri.T010500.1 Potri.T010500 scaffold_25  Potri.T011800.1 Potri.T011800 scaffold_25  Potri.T037600.1 Potri.T037600 scaffold_38  Potri.T037900.1 Potri.T037900 scaffold_38  Potri.T038300.1 Potri.T038300 scaffold_38  Potri.T038500.1 Potri.T038500 scaffold_38  Potri.T038600.1 Potri.T038600 scaffold_38  Potri.T038900.1 Potri.T038900 scaffold_38  Potri.T039100.1 Potri.T039100 scaffold_38  Potri.T039200.1 Potri.T039200 scaffold_38  Potri.T039300.1 Potri.T039300 scaffold_38  Potri.T039600.1 Potri.T039600 scaffold_38  Potri.T039900.1 Potri.T039900 scaffold_38  Potri.T040100.1 Potri.T040100 scaffold_38  Potri.T047500.1 Potri.T047500 scaffold_47  Potri.T047500.2 Potri.T047500 scaffold_47  Potri.T047600.1 Potri.T047600 scaffold_47  Potri.T047700.1 Potri.T047700 scaffold_47  Potri.T047900.1 Potri.T047900 scaffold_47  Potri.T048800.1 Potri.T048800 scaffold_47  Potri.T049400.1 Potri.T049400 scaffold_47  Potri.T049700.1 Potri.T049700 scaffold_47  Potri.T050100.1 Potri.T050100 scaffold_47  Potri.T050200.1 Potri.T050200 scaffold_47 AT4G16990.2 Potri.T067500.1 Potri.T067500 scaffold_73  Potri.T067700.1 Potri.T067700 scaffold_73  Potri.T068600.1 Potri.T068600 scaffold_73  Potri.T068800.1 Potri.T068800 scaffold_73  Potri.T069200.1 Potri.T069200 scaffold_73  Potri.T069200.2 Potri.T069200 scaffold_73  Potri.T069500.1 Potri.T069500 scaffold_73  Potri.T073600.1 Potri.T073600 scaffold_80  Potri.T073600.2 Potri.T073600 scaffold_80  Potri.T073700.1 Potri.T073700 scaffold_80  Potri.T073800.1 Potri.T073800 scaffold_80  Potri.T073900.1 Potri.T073900 scaffold_80  Potri.T074000.1 Potri.T074000 scaffold_80  Potri.T074100.1 Potri.T074100 scaffold_80  Potri.T074100.2 Potri.T074100 scaffold_80  Potri.T074200.1 Potri.T074200 scaffold_80  Potri.T074300.1 Potri.T074300 scaffold_80  Potri.T077000.1 Potri.T077000 scaffold_85  Potri.T077000.2 Potri.T077000 scaffold_85  Potri.T077100.1 Potri.T077100 scaffold_85  Potri.T077100.2 Potri.T077100 scaffold_85  Potri.T077100.3 Potri.T077100 scaffold_85  Potri.T077100.4 Potri.T077100 scaffold_85  Potri.T077100.5 Potri.T077100 scaffold_85  Potri.T077400.1 Potri.T077400 scaffold_85  Potri.T077500.1 Potri.T077500 scaffold_85  Potri.T077600.1 Potri.T077600 scaffold_85  Potri.T077600.2 Potri.T077600 scaffold_85  Potri.T112200.1 Potri.T112200 scaffold_174  Potri.T112700.1 Potri.T112700 scaffold_175  Potri.T112700.2 Potri.T112700 scaffold_175  Potri.T127700.1 Potri.T127700 scaffold_232  Potri.T127900.1 Potri.T127900 scaffold_232  Potri.T128100.1 Potri.T128100 scaffold_232  Potri.T128200.1 Potri.T128200 scaffold_232  Potri.T129000.1 Potri.T129000 scaffold_238  Potri.T129200.1 Potri.T129200 scaffold_238  Potri.T129200.2 Potri.T129200 scaffold_238  Potri.T129300.1 Potri.T129300 scaffold_238  Potri.T129400.1 Potri.T129400 scaffold_238  Potri.T154100.1 Potri.T154100 scaffold_607  Potri.T154200.1 Potri.T154200 scaffold_607  Potri.T161100.1 Potri.T161100 scaffold_746  Potri.T165200.1 Potri.T165200 scaffold_833  Potri.001G003200.1 Potri.001G003200 Chr01 AT4G04220.1 Potri.001G017500.1 Potri.001G017500 Chr01  Potri.001G025400.1 Potri.001G025400 Chr01  Potri.001G027500.1 Potri.001G027500 Chr01  Potri.001G042500.1 Potri.001G042500 Chr01  Potri.001G043800.1 Potri.001G043800 Chr01  Potri.001G052500.1 Potri.001G052500 Chr01  Potri.001G053400.1 Potri.001G053400 Chr01  Potri.001G053400.2 Potri.001G053400 Chr01  Potri.001G061600.1 Potri.001G061600 Chr01  Potri.001G061700.1 Potri.001G061700 Chr01 AT1G71830.1 Potri.001G063300.1 Potri.001G063300 Chr01 AT1G74190.1 Potri.001G063300.2 Potri.001G063300 Chr01 AT1G74190.1 Potri.001G063300.3 Potri.001G063300 Chr01 AT1G74180.1   Potri.001G063300.4 Potri.001G063300 Chr01 AT1G74190.1 Potri.001G063300.5 Potri.001G063300 Chr01 AT1G74190.1 Potri.001G063700.1 Potri.001G063700 Chr01 AT5G49290.1 Potri.001G063900.1 Potri.001G063900 Chr01 AT1G54470.2 Potri.001G064100.1 Potri.001G064100 Chr01 AT1G54470.2 Potri.001G064100.2 Potri.001G064100 Chr01 AT1G74170.1 Potri.001G064400.1 Potri.001G064400 Chr01  Potri.001G064500.1 Potri.001G064500 Chr01 AT1G74180.1 Potri.001G064600.1 Potri.001G064600 Chr01 AT1G54470.2 Potri.001G064600.2 Potri.001G064600 Chr01 AT1G74170.1 Potri.001G064600.3 Potri.001G064600 Chr01 AT1G74170.1 Potri.001G064600.4 Potri.001G064600 Chr01 AT1G74170.1 Potri.001G064900.1 Potri.001G064900 Chr01 AT1G74190.1 Potri.001G065300.1 Potri.001G065300 Chr01 AT5G49290.1 Potri.001G065300.2 Potri.001G065300 Chr01 AT5G49290.1 Potri.001G065300.3 Potri.001G065300 Chr01 AT5G49290.1 Potri.001G065300.4 Potri.001G065300 Chr01 AT5G49290.1 Potri.001G066500.2 Potri.001G066500 Chr01  Potri.001G073600.1 Potri.001G073600 Chr01 AT4G20270.1 Potri.001G075000.1 Potri.001G075000 Chr01 AT4G20140.1 Potri.001G082900.1 Potri.001G082900 Chr01  Potri.001G082900.2 Potri.001G082900 Chr01  Potri.001G082900.3 Potri.001G082900 Chr01  Potri.001G095200.1 Potri.001G095200 Chr01  Potri.001G106600.1 Potri.001G106600 Chr01  Potri.001G106600.2 Potri.001G106600 Chr01  Potri.001G114500.1 Potri.001G114500 Chr01  Potri.001G117800.1 Potri.001G117800 Chr01  Potri.001G126100.1 Potri.001G126100 Chr01 AT5G61480.1 Potri.001G128400.1 Potri.001G128400 Chr01 AT1G45616.1 Potri.001G129000.1 Potri.001G129000 Chr01 AT1G31420.2 Potri.001G144100.1 Potri.001G144100 Chr01 AT4G35470.1 Potri.001G147700.1 Potri.001G147700 Chr01  Potri.001G147700.2 Potri.001G147700 Chr01  Potri.001G161000.1 Potri.001G161000 Chr01  Potri.001G161600.1 Potri.001G161600 Chr01 AT1G53730.1 Potri.001G166300.1 Potri.001G166300 Chr01  Potri.001G202100.1 Potri.001G202100 Chr01 AT1G80080.1 Potri.001G206700.1 Potri.001G206700 Chr01 AT4G33430.1 Potri.001G206700.2 Potri.001G206700 Chr01 AT4G33430.1 Potri.001G217700.1 Potri.001G217700 Chr01  Potri.001G217700.2 Potri.001G217700 Chr01 AT1G66150.1 Potri.001G219500.1 Potri.001G219500 Chr01  Potri.001G261600.1 Potri.001G261600 Chr01  Potri.001G262700.1 Potri.001G262700 Chr01  Potri.001G262800.1 Potri.001G262800 Chr01  Potri.001G269800.1 Potri.001G269800 Chr01  Potri.001G277000.1 Potri.001G277000 Chr01  Potri.001G280200.1 Potri.001G280200 Chr01  Potri.001G280500.1 Potri.001G280500 Chr01  Potri.001G280500.2 Potri.001G280500 Chr01  Potri.001G280500.3 Potri.001G280500 Chr01  Potri.001G296500.1 Potri.001G296500 Chr01  Potri.001G296500.2 Potri.001G296500 Chr01  Potri.001G300700.1 Potri.001G300700 Chr01  Potri.001G301400.1 Potri.001G301400 Chr01  Potri.001G306000.1 Potri.001G306000 Chr01  Potri.001G306000.2 Potri.001G306000 Chr01  Potri.001G307300.1 Potri.001G307300 Chr01  Potri.001G308600.1 Potri.001G308600 Chr01  Potri.001G308600.2 Potri.001G308600 Chr01  Potri.001G310700.1 Potri.001G310700 Chr01 AT2G02220.1 Potri.001G349900.1 Potri.001G349900 Chr01  Potri.001G363300.1 Potri.001G363300 Chr01  Potri.001G384700.1 Potri.001G384700 Chr01  Potri.001G385200.1 Potri.001G385200 Chr01  Potri.001G385200.2 Potri.001G385200 Chr01  Potri.001G385200.3 Potri.001G385200 Chr01  Potri.001G385300.1 Potri.001G385300 Chr01  Potri.001G385300.2 Potri.001G385300 Chr01  Potri.001G385400.1 Potri.001G385400 Chr01  Potri.001G385900.1 Potri.001G385900 Chr01  Potri.001G385900.2 Potri.001G385900 Chr01  Potri.001G386300.1 Potri.001G386300 Chr01  Potri.001G386300.2 Potri.001G386300 Chr01  Potri.001G386300.3 Potri.001G386300 Chr01  Potri.001G386500.1 Potri.001G386500 Chr01  Potri.001G389100.1 Potri.001G389100 Chr01 AT1G45616.1 Potri.001G398500.1 Potri.001G398500 Chr01 AT5G53890.1 Potri.001G400500.1 Potri.001G400500 Chr01 AT3G05660.1 Potri.001G404800.1 Potri.001G404800 Chr01  Potri.001G404800.2 Potri.001G404800 Chr01  Potri.001G404900.1 Potri.001G404900 Chr01  Potri.001G405100.2 Potri.001G405100 Chr01  Potri.001G428800.1 Potri.001G428800 Chr01 AT4G26090.1 Potri.001G430500.1 Potri.001G430500 Chr01  Potri.001G437600.1 Potri.001G437600 Chr01 AT2G33060.1 Potri.001G437700.1 Potri.001G437700 Chr01 AT1G47890.1 Potri.001G437800.1 Potri.001G437800 Chr01 AT2G32660.1 Potri.001G438000.1 Potri.001G438000 Chr01 AT2G33080.1 Potri.001G465800.1 Potri.001G465800 Chr01  Potri.001G465800.2 Potri.001G465800 Chr01  Potri.001G467300.1 Potri.001G467300 Chr01  Potri.001G472900.1 Potri.001G472900 Chr01 AT1G55610.1 Potri.002G007900.1 Potri.002G007900 Chr02  Potri.002G008000.1 Potri.002G008000 Chr02  Potri.002G008100.1 Potri.002G008100 Chr02  Potri.002G008400.1 Potri.002G008400 Chr02  Potri.002G008500.1 Potri.002G008500 Chr02 AT3G25560.3 Potri.002G019900.1 Potri.002G019900 Chr02 AT1G75820.1 Potri.002G027400.1 Potri.002G027400 Chr02  Potri.002G052900.1 Potri.002G052900 Chr02 AT3G63130.1 Potri.002G052900.2 Potri.002G052900 Chr02 AT3G63130.1 Potri.002G052900.3 Potri.002G052900 Chr02 AT3G63130.1 Potri.002G056100.1 Potri.002G056100 Chr02  Potri.002G056100.2 Potri.002G056100 Chr02  Potri.002G063300.1 Potri.002G063300 Chr02  Potri.002G070900.1 Potri.002G070900 Chr02  Potri.002G095700.1 Potri.002G095700 Chr02  Potri.002G097800.1 Potri.002G097800 Chr02  Potri.002G106800.1 Potri.002G106800 Chr02 AT1G09970.1 Potri.002G111700.1 Potri.002G111700 Chr02  Potri.002G147000.1 Potri.002G147000 Chr02  Potri.002G233600.1 Potri.002G233600 Chr02  Potri.002G240000.1 Potri.002G240000 Chr02 AT5G48380.1 Potri.002G240000.2 Potri.002G240000 Chr02 AT5G48380.1 Potri.002G242700.1 Potri.002G242700 Chr02  Potri.002G251700.1 Potri.002G251700 Chr02 AT3G24660.1 Potri.002G256500.1 Potri.002G256500 Chr02  Potri.002G258000.1 Potri.002G258000 Chr02  Potri.002G258100.1 Potri.002G258100 Chr02 AT5G44700.1 Potri.002G258200.1 Potri.002G258200 Chr02  Potri.002G258400.1 Potri.002G258400 Chr02  Potri.002G258500.1 Potri.002G258500 Chr02  Potri.002G260100.1 Potri.002G260100 Chr02  Potri.002G260100.2 Potri.002G260100 Chr02  Potri.002G260100.3 Potri.002G260100 Chr02  Potri.002G260100.4 Potri.002G260100 Chr02  Potri.002G260100.5 Potri.002G260100 Chr02  Potri.002G260100.6 Potri.002G260100 Chr02  Potri.002G260100.7 Potri.002G260100 Chr02  Potri.003G012800.1 Potri.003G012800 Chr03 AT1G74190.1 Potri.003G013200.1 Potri.003G013200 Chr03 AT1G74190.1 Potri.003G013200.2 Potri.003G013200 Chr03 AT1G07390.3 Potri.003G013700.1 Potri.003G013700 Chr03 AT1G74190.1 Potri.003G020600.1 Potri.003G020600 Chr03  Potri.003G023000.1 Potri.003G023000 Chr03 AT4G33430.1 Potri.003G025100.1 Potri.003G025100 Chr03 AT1G07390.3 Potri.003G025700.1 Potri.003G025700 Chr03  Potri.003G025800.1 Potri.003G025800 Chr03  Potri.003G025900.1 Potri.003G025900 Chr03  Potri.003G026300.1 Potri.003G026300 Chr03  Potri.003G027200.1 Potri.003G027200 Chr03 AT1G07390.1 Potri.003G027600.1 Potri.003G027600 Chr03 AT2G25470.1 Potri.003G027700.1 Potri.003G027700 Chr03 AT1G07390.3 Potri.003G028200.1 Potri.003G028200 Chr03 AT1G58190.2 Potri.003G028700.1 Potri.003G028700 Chr03 AT1G07390.1 Potri.003G029200.1 Potri.003G029200 Chr03 AT1G07390.2 Potri.003G029400.1 Potri.003G029400 Chr03 AT2G25470.1 Potri.003G029400.2 Potri.003G029400 Chr03 AT1G07390.1 Potri.003G029400.3 Potri.003G029400 Chr03 AT1G07390.3 Potri.003G029400.4 Potri.003G029400 Chr03 AT1G07390.3 Potri.003G029400.5 Potri.003G029400 Chr03 AT1G07390.2 Potri.003G029400.6 Potri.003G029400 Chr03 AT1G07390.2 Potri.003G029400.7 Potri.003G029400 Chr03 AT1G07390.2 Potri.003G041400.1 Potri.003G041400 Chr03 AT2G25470.1 Potri.003G041400.2 Potri.003G041400 Chr03 AT1G74170.1 Potri.003G041600.1 Potri.003G041600 Chr03 AT2G25470.1 Potri.003G041700.1 Potri.003G041700 Chr03 AT1G54470.2 Potri.003G041900.1 Potri.003G041900 Chr03 AT2G25470.1 Potri.003G042500.1 Potri.003G042500 Chr03 AT1G58190.2 Potri.003G046400.1 Potri.003G046400 Chr03  Potri.003G046400.2 Potri.003G046400 Chr03  Potri.003G046400.3 Potri.003G046400 Chr03  Potri.003G068800.1 Potri.003G068800 Chr03  Potri.003G073700.1 Potri.003G073700 Chr03 AT1G53730.1 Potri.003G073700.2 Potri.003G073700 Chr03 AT1G53730.1 Potri.003G073700.3 Potri.003G073700 Chr03 AT1G53730.2 Potri.003G073700.4 Potri.003G073700 Chr03 AT1G53730.1 Potri.003G073700.5 Potri.003G073700 Chr03 AT1G53730.2 Potri.003G074000.1 Potri.003G074000 Chr03  Potri.003G090100.1 Potri.003G090100 Chr03 AT4G35470.1 Potri.003G090100.2 Potri.003G090100 Chr03 AT4G35470.1 Potri.003G098900.1 Potri.003G098900 Chr03 AT3G07040.1 Potri.003G101000.1 Potri.003G101000 Chr03  Potri.003G101000.2 Potri.003G101000 Chr03  Potri.003G105000.1 Potri.003G105000 Chr03 AT1G31420.2 Potri.003G105000.2 Potri.003G105000 Chr03 AT1G31420.2 Potri.003G105000.3 Potri.003G105000 Chr03 AT1G31420.2 Potri.003G107600.1 Potri.003G107600 Chr03 AT5G61480.1 Potri.003G108200.1 Potri.003G108200 Chr03  Potri.003G117500.1 Potri.003G117500 Chr03  Potri.003G124800.1 Potri.003G124800 Chr03  Potri.003G136100.1 Potri.003G136100 Chr03  Potri.003G136100.2 Potri.003G136100 Chr03  Potri.003G136100.3 Potri.003G136100 Chr03  Potri.003G136100.4 Potri.003G136100 Chr03  Potri.003G148000.1 Potri.003G148000 Chr03  Potri.003G148000.2 Potri.003G148000 Chr03    Potri.003G148000.3 Potri.003G148000 Chr03  Potri.003G149900.1 Potri.003G149900 Chr03  Potri.003G150000.1 Potri.003G150000 Chr03  Potri.003G150000.2 Potri.003G150000 Chr03  Potri.003G150100.1 Potri.003G150100 Chr03  Potri.003G156200.1 Potri.003G156200 Chr03 AT4G20140.1 Potri.003G157300.1 Potri.003G157300 Chr03 AT4G20270.1 Potri.003G157300.2 Potri.003G157300 Chr03 AT4G20270.1 Potri.003G166200.1 Potri.003G166200 Chr03  Potri.003G166200.2 Potri.003G166200 Chr03  Potri.003G166200.3 Potri.003G166200 Chr03  Potri.003G174900.1 Potri.003G174900 Chr03  Potri.003G175700.1 Potri.003G175700 Chr03  Potri.003G184100.1 Potri.003G184100 Chr03  Potri.003G196800.1 Potri.003G196800 Chr03  Potri.003G201800.1 Potri.003G201800 Chr03  Potri.003G201800.2 Potri.003G201800 Chr03  Potri.003G201800.3 Potri.003G201800 Chr03  Potri.003G207000.1 Potri.003G207000 Chr03  Potri.004G001000.1 Potri.004G001000 Chr04  Potri.004G005400.1 Potri.004G005400 Chr04 AT4G22130.1 Potri.004G005400.2 Potri.004G005400 Chr04 AT4G22130.1 Potri.004G018700.3 Potri.004G018700 Chr04  Potri.004G037000.1 Potri.004G037000 Chr04 AT4G03390.1 Potri.004G037000.2 Potri.004G037000 Chr04 AT4G03390.1 Potri.004G047300.1 Potri.004G047300 Chr04 AT1G28340.1 Potri.004G047300.3 Potri.004G047300 Chr04 AT1G28340.1 Potri.004G047300.4 Potri.004G047300 Chr04 AT1G28340.1 Potri.004G049100.1 Potri.004G049100 Chr04 AT1G28440.1 Potri.004G049100.2 Potri.004G049100 Chr04 AT1G28440.1 Potri.004G058100.1 Potri.004G058100 Chr04 AT4G18640.1 Potri.004G058500.1 Potri.004G058500 Chr04 AT5G45800.1 Potri.004G059100.1 Potri.004G059100 Chr04  Potri.004G059100.2 Potri.004G059100 Chr04  Potri.004G059500.1 Potri.004G059500 Chr04 AT4G18760.1 Potri.004G060100.1 Potri.004G060100 Chr04  Potri.004G060200.1 Potri.004G060200 Chr04 AT1G07390.2 Potri.004G063200.1 Potri.004G063200 Chr04 AT1G29750.2 Potri.004G063200.2 Potri.004G063200 Chr04 AT1G29750.2 Potri.004G063200.3 Potri.004G063200 Chr04 AT1G29750.2 Potri.004G063200.4 Potri.004G063200 Chr04 AT1G29750.2 Potri.004G063200.5 Potri.004G063200 Chr04 AT1G29750.2 Potri.004G063500.1 Potri.004G063500 Chr04 AT1G29750.2 Potri.004G063500.2 Potri.004G063500 Chr04 AT1G29750.2 Potri.004G065400.1 Potri.004G065400 Chr04 AT5G46330.1 Potri.004G068300.1 Potri.004G068300 Chr04  Potri.004G081700.1 Potri.004G081700 Chr04  Potri.004G084000.1 Potri.004G084000 Chr04 AT1G66150.1 Potri.004G086100.1 Potri.004G086100 Chr04 AT1G48480.1 Potri.004G095700.1 Potri.004G095700 Chr04  Potri.004G095700.2 Potri.004G095700 Chr04  Potri.004G108200.1 Potri.004G108200 Chr04 AT5G16000.1 Potri.004G108200.2 Potri.004G108200 Chr04 AT5G16000.1 Potri.004G120500.1 Potri.004G120500 Chr04 AT3G02130.1 Potri.004G130700.1 Potri.004G130700 Chr04 AT2G26330.1 Potri.004G135500.1 Potri.004G135500 Chr04  Potri.004G135500.2 Potri.004G135500 Chr04  Potri.004G146400.1 Potri.004G146400 Chr04  Potri.004G155100.1 Potri.004G155100 Chr04  Potri.004G155100.2 Potri.004G155100 Chr04  Potri.004G170300.1 Potri.004G170300 Chr04  Potri.004G170400.1 Potri.004G170400 Chr04  Potri.004G197500.1 Potri.004G197500 Chr04  Potri.004G197500.2 Potri.004G197500 Chr04  Potri.004G197800.1 Potri.004G197800 Chr04  Potri.004G198000.1 Potri.004G198000 Chr04  Potri.004G198500.1 Potri.004G198500 Chr04 AT3G44480.1 Potri.004G198700.1 Potri.004G198700 Chr04  Potri.004G199200.1 Potri.004G199200 Chr04  Potri.004G199200.2 Potri.004G199200 Chr04  Potri.004G223900.1 Potri.004G223900 Chr04 AT5G65700.1 Potri.004G231200.1 Potri.004G231200 Chr04  Potri.004G231200.2 Potri.004G231200 Chr04  Potri.004G231200.3 Potri.004G231200 Chr04  Potri.004G231400.1 Potri.004G231400 Chr04  Potri.004G231400.2 Potri.004G231400 Chr04  Potri.004G231500.1 Potri.004G231500 Chr04  Potri.004G231500.2 Potri.004G231500 Chr04  Potri.004G231500.3 Potri.004G231500 Chr04  Potri.004G231500.4 Potri.004G231500 Chr04  Potri.004G231600.1 Potri.004G231600 Chr04  Potri.004G231600.2 Potri.004G231600 Chr04  Potri.004G231700.1 Potri.004G231700 Chr04  Potri.004G231700.2 Potri.004G231700 Chr04  Potri.004G231900.1 Potri.004G231900 Chr04  Potri.004G232300.1 Potri.004G232300 Chr04  Potri.004G232400.1 Potri.004G232400 Chr04  Potri.004G232500.1 Potri.004G232500 Chr04  Potri.005G006700.1 Potri.005G006700 Chr05 AT1G07390.3 Potri.005G007600.1 Potri.005G007600 Chr05 AT1G58190.2 Potri.005G007900.1 Potri.005G007900 Chr05 AT1G07390.3 Potri.005G008600.1 Potri.005G008600 Chr05 AT1G74190.1 Potri.005G008800.1 Potri.005G008800 Chr05 AT1G07390.3 Potri.005G008900.1 Potri.005G008900 Chr05 AT1G58190.2 Potri.005G008900.2 Potri.005G008900 Chr05 AT1G58190.2 Potri.005G009300.1 Potri.005G009300 Chr05 AT1G07390.1 Potri.005G009700.1 Potri.005G009700 Chr05 AT1G74190.1 Potri.005G009800.1 Potri.005G009800 Chr05 AT1G58190.2 Potri.005G011600.1 Potri.005G011600 Chr05 AT1G74190.1 Potri.005G012100.1 Potri.005G012100 Chr05 AT1G58190.2 Potri.005G013100.1 Potri.005G013100 Chr05 AT2G25470.1 Potri.005G013100.2 Potri.005G013100 Chr05 AT1G74190.1 Potri.005G013100.3 Potri.005G013100 Chr05 AT1G74190.1 Potri.005G013200.1 Potri.005G013200 Chr05 AT1G74180.1 Potri.005G013400.1 Potri.005G013400 Chr05 AT1G74190.1 Potri.005G013700.1 Potri.005G013700 Chr05 AT5G53890.1 Potri.005G013800.1 Potri.005G013800 Chr05 AT1G74190.1 Potri.005G013900.1 Potri.005G013900 Chr05 AT4G20140.1 Potri.005G015700.1 Potri.005G015700 Chr05 AT1G74190.1 Potri.005G015800.1 Potri.005G015800 Chr05 AT1G54470.2 Potri.005G015900.1 Potri.005G015900 Chr05 AT5G49290.1 Potri.005G016100.1 Potri.005G016100 Chr05 AT1G74190.1 Potri.005G016200.1 Potri.005G016200 Chr05 AT1G07390.1 Potri.005G016800.1 Potri.005G016800 Chr05 AT1G74190.1 Potri.005G016900.1 Potri.005G016900 Chr05 AT4G20140.1 Potri.005G030400.1 Potri.005G030400 Chr05  Potri.005G030500.1 Potri.005G030500 Chr05  Potri.005G030600.1 Potri.005G030600 Chr05  Potri.005G030800.1 Potri.005G030800 Chr05  Potri.005G031300.1 Potri.005G031300 Chr05  Potri.005G031700.1 Potri.005G031700 Chr05  Potri.005G031900.1 Potri.005G031900 Chr05  Potri.005G034700.1 Potri.005G034700 Chr05 AT3G07040.1 Potri.005G035400.1 Potri.005G035400 Chr05 AT3G07040.1 Potri.005G037400.1 Potri.005G037400 Chr05  Potri.005G049200.1 Potri.005G049200 Chr05  Potri.005G049600.1 Potri.005G049600 Chr05  Potri.005G074200.1 Potri.005G074200 Chr05  Potri.005G074200.2 Potri.005G074200 Chr05  Potri.005G074200.3 Potri.005G074200 Chr05  Potri.005G080000.1 Potri.005G080000 Chr05  Potri.005G083000.1 Potri.005G083000 Chr05  Potri.005G083300.1 Potri.005G083300 Chr05 AT1G71830.1 Potri.005G086500.1 Potri.005G086500 Chr05 AT4G39400.1 Potri.005G098600.1 Potri.005G098600 Chr05 AT4G35470.1 Potri.005G098600.2 Potri.005G098600 Chr05 AT4G35470.1 Potri.005G117700.1 Potri.005G117700 Chr05 AT5G46330.1 Potri.005G117800.1 Potri.005G117800 Chr05  Potri.005G119800.1 Potri.005G119800 Chr05 AT3G50950.1 Potri.005G124700.1 Potri.005G124700 Chr05  Potri.005G124700.2 Potri.005G124700 Chr05  Potri.005G124700.3 Potri.005G124700 Chr05  Potri.005G124700.4 Potri.005G124700 Chr05  Potri.005G141200.1 Potri.005G141200 Chr05  Potri.005G142300.1 Potri.005G142300 Chr05  Potri.005G164000.1 Potri.005G164000 Chr05  Potri.005G188700.1 Potri.005G188700 Chr05  Potri.005G198000.1 Potri.005G198000 Chr05  Potri.005G227600.1 Potri.005G227600 Chr05 AT4G28560.1 Potri.005G234400.1 Potri.005G234400 Chr05  Potri.005G235100.1 Potri.005G235100 Chr05  Potri.005G241500.1 Potri.005G241500 Chr05 AT1G75820.1 Potri.005G241500.2 Potri.005G241500 Chr05 AT1G75820.1 Potri.006G014000.1 Potri.006G014000 Chr06  Potri.006G014000.2 Potri.006G014000 Chr06  Potri.006G046400.1 Potri.006G046400 Chr06 AT3G28890.1 Potri.006G051700.1 Potri.006G051700 Chr06  Potri.006G056600.1 Potri.006G056600 Chr06  Potri.006G057500.1 Potri.006G057500 Chr06  Potri.006G057500.2 Potri.006G057500 Chr06  Potri.006G057500.3 Potri.006G057500 Chr06  Potri.006G058500.1 Potri.006G058500 Chr06 AT5G06860.1 Potri.006G058600.1 Potri.006G058600 Chr06 AT5G06860.1 Potri.006G061000.1 Potri.006G061000 Chr06 AT2G25470.1 Potri.006G061200.1 Potri.006G061200 Chr06 AT2G25470.1 Potri.006G061300.1 Potri.006G061300 Chr06 AT2G25470.1 Potri.006G061300.2 Potri.006G061300 Chr06 AT1G74190.1 Potri.006G061700.4 Potri.006G061700 Chr06  Potri.006G072700.1 Potri.006G072700 Chr06 AT2G19330.1 Potri.006G073900.1 Potri.006G073900 Chr06  Potri.006G078600.1 Potri.006G078600 Chr06  Potri.006G081200.1 Potri.006G081200 Chr06 AT1G62440.1 Potri.006G099000.1 Potri.006G099000 Chr06  Potri.006G099100.1 Potri.006G099100 Chr06  Potri.006G104300.1 Potri.006G104300 Chr06 AT3G51740.1 Potri.006G108600.1 Potri.006G108600 Chr06  Potri.006G111100.1 Potri.006G111100 Chr06  Potri.006G111100.2 Potri.006G111100 Chr06  Potri.006G114400.1 Potri.006G114400 Chr06  Potri.006G114400.2 Potri.006G114400 Chr06  Potri.006G117200.1 Potri.006G117200 Chr06  Potri.006G132100.1 Potri.006G132100 Chr06  Potri.006G139700.1 Potri.006G139700 Chr06  Potri.006G147100.1 Potri.006G147100 Chr06 AT4G26090.1 Potri.006G152800.1 Potri.006G152800 Chr06  Potri.006G152800.2 Potri.006G152800 Chr06  Potri.006G152800.3 Potri.006G152800 Chr06  Potri.006G163900.1 Potri.006G163900 Chr06  Potri.006G163900.2 Potri.006G163900 Chr06    Potri.006G163900.3 Potri.006G163900 Chr06  Potri.006G179400.1 Potri.006G179400 Chr06  Potri.006G181200.1 Potri.006G181200 Chr06  Potri.006G185100.1 Potri.006G185100 Chr06  Potri.006G189000.1 Potri.006G189000 Chr06  Potri.006G190700.1 Potri.006G190700 Chr06 AT5G06820.1 Potri.006G203500.1 Potri.006G203500 Chr06  Potri.006G203500.2 Potri.006G203500 Chr06  Potri.006G220100.1 Potri.006G220100 Chr06 AT2G26330.1 Potri.006G235500.1 Potri.006G235500 Chr06  Potri.006G235800.1 Potri.006G235800 Chr06  Potri.006G237400.1 Potri.006G237400 Chr06  Potri.006G237400.2 Potri.006G237400 Chr06  Potri.006G237400.3 Potri.006G237400 Chr06  Potri.006G245600.1 Potri.006G245600 Chr06  Potri.006G255100.1 Potri.006G255100 Chr06  Potri.006G255100.2 Potri.006G255100 Chr06  Potri.006G261900.1 Potri.006G261900 Chr06  Potri.006G271600.1 Potri.006G271600 Chr06  Potri.006G271800.1 Potri.006G271800 Chr06  Potri.006G272100.1 Potri.006G272100 Chr06  Potri.006G273000.1 Potri.006G273000 Chr06  Potri.006G273900.1 Potri.006G273900 Chr06  Potri.006G274000.1 Potri.006G274000 Chr06  Potri.006G274400.1 Potri.006G274400 Chr06  Potri.006G275800.1 Potri.006G275800 Chr06  Potri.007G001000.1 Potri.007G001000 Chr07  Potri.007G002000.1 Potri.007G002000 Chr07  Potri.007G002600.1 Potri.007G002600 Chr07 AT1G78980.1 Potri.007G002600.2 Potri.007G002600 Chr07 AT1G78980.1 Potri.007G004700.1 Potri.007G004700 Chr07  Potri.007G004700.2 Potri.007G004700 Chr07  Potri.007G007500.1 Potri.007G007500 Chr07 AT3G49750.1 Potri.007G009200.1 Potri.007G009200 Chr07 AT5G65700.1 Potri.007G014700.1 Potri.007G014700 Chr07  Potri.007G016700.1 Potri.007G016700 Chr07 AT5G46330.1 Potri.007G016800.1 Potri.007G016800 Chr07  Potri.007G027500.1 Potri.007G027500 Chr07  Potri.007G027500.2 Potri.007G027500 Chr07  Potri.007G027500.3 Potri.007G027500 Chr07  Potri.007G038700.1 Potri.007G038700 Chr07  Potri.007G038900.1 Potri.007G038900 Chr07  Potri.007G046900.1 Potri.007G046900 Chr07  Potri.007G046900.2 Potri.007G046900 Chr07  Potri.007G048800.1 Potri.007G048800 Chr07  Potri.007G048800.2 Potri.007G048800 Chr07  Potri.007G065000.1 Potri.007G065000 Chr07 AT4G35470.1 Potri.007G065000.2 Potri.007G065000 Chr07 AT4G35470.1 Potri.007G065000.3 Potri.007G065000 Chr07 AT4G35470.1 Potri.007G067900.1 Potri.007G067900 Chr07  Potri.007G067900.2 Potri.007G067900 Chr07  Potri.007G078100.1 Potri.007G078100 Chr07 AT4G39400.1 Potri.007G082300.1 Potri.007G082300 Chr07 AT1G34210.1 Potri.007G082300.2 Potri.007G082300 Chr07 AT1G34210.1 Potri.007G082400.1 Potri.007G082400 Chr07 AT1G71830.1 Potri.007G082400.2 Potri.007G082400 Chr07 AT4G33430.1 Potri.007G082800.1 Potri.007G082800 Chr07  Potri.007G094500.1 Potri.007G094500 Chr07  Potri.007G094500.2 Potri.007G094500 Chr07  Potri.007G094500.3 Potri.007G094500 Chr07  Potri.007G094500.4 Potri.007G094500 Chr07  Potri.007G099700.2 Potri.007G099700 Chr07  Potri.007G130000.1 Potri.007G130000 Chr07  Potri.007G135400.1 Potri.007G135400 Chr07 AT1G28440.1 Potri.007G139200.1 Potri.007G139200 Chr07  Potri.007G142600.1 Potri.007G142600 Chr07  Potri.007G143200.1 Potri.007G143200 Chr07  Potri.008G007600.1 Potri.008G007600 Chr08 AT1G73080.1 Potri.008G009300.1 Potri.008G009300 Chr08 AT1G73080.1 Potri.008G014300.1 Potri.008G014300 Chr08  Potri.008G014300.2 Potri.008G014300 Chr08  Potri.008G014300.3 Potri.008G014300 Chr08  Potri.008G014300.4 Potri.008G014300 Chr08  Potri.008G033700.1 Potri.008G033700 Chr08  Potri.008G033900.1 Potri.008G033900 Chr08  Potri.008G033900.2 Potri.008G033900 Chr08  Potri.008G034000.1 Potri.008G034000 Chr08  Potri.008G034000.2 Potri.008G034000 Chr08  Potri.008G093400.1 Potri.008G093400 Chr08  Potri.008G093400.2 Potri.008G093400 Chr08  Potri.008G096400.1 Potri.008G096400 Chr08 AT3G02130.1 Potri.008G110300.1 Potri.008G110300 Chr08 AT3G25560.1 Potri.008G110300.2 Potri.008G110300 Chr08 AT3G25560.1 Potri.008G114700.1 Potri.008G114700 Chr08  Potri.008G124300.1 Potri.008G124300 Chr08  Potri.008G125600.1 Potri.008G125600 Chr08  Potri.008G137800.1 Potri.008G137800 Chr08 AT1G66150.1 Potri.008G140500.1 Potri.008G140500 Chr08 AT2G01950.1 Potri.008G144700.1 Potri.008G144700 Chr08 AT2G02220.1 Potri.008G150200.1 Potri.008G150200 Chr08  Potri.008G150200.2 Potri.008G150200 Chr08  Potri.008G150200.3 Potri.008G150200 Chr08  Potri.008G150200.4 Potri.008G150200 Chr08  Potri.008G156400.1 Potri.008G156400 Chr08 AT1G62440.1 Potri.008G158600.1 Potri.008G158600 Chr08  Potri.008G176200.1 Potri.008G176200 Chr08  Potri.008G176900.1 Potri.008G176900 Chr08  Potri.008G176900.2 Potri.008G176900 Chr08  Potri.008G181200.1 Potri.008G181200 Chr08  Potri.008G181200.2 Potri.008G181200 Chr08  Potri.008G188800.1 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.2 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.3 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.4 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.5 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.7 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G188800.8 Potri.008G188800 Chr08 AT1G60800.1 Potri.008G211800.1 Potri.008G211800 Chr08 AT2G42800.1 Potri.009G018800.1 Potri.009G018800 Chr09  Potri.009G018800.2 Potri.009G018800 Chr09  Potri.009G064300.1 Potri.009G064300 Chr09  Potri.009G081000.1 Potri.009G081000 Chr09  Potri.009G081800.1 Potri.009G081800 Chr09 AT1G09970.1 Potri.009G090700.1 Potri.009G090700 Chr09  Potri.009G090700.2 Potri.009G090700 Chr09  Potri.009G097100.1 Potri.009G097100 Chr09  Potri.009G102300.1 Potri.009G102300 Chr09  Potri.009G108100.1 Potri.009G108100 Chr09  Potri.009G112000.1 Potri.009G112000 Chr09 AT1G45616.1 Potri.009G112000.2 Potri.009G112000 Chr09 AT1G45616.1 Potri.009G116300.1 Potri.009G116300 Chr09  Potri.009G116300.2 Potri.009G116300 Chr09  Potri.009G116300.3 Potri.009G116300 Chr09  Potri.010G009400.1 Potri.010G009400 Chr10 AT4G13810.2 Potri.010G009500.1 Potri.010G009500 Chr10 AT3G28890.1 Potri.010G010100.1 Potri.010G010100 Chr10 AT2G33060.1 Potri.010G040200.1 Potri.010G040200 Chr10 AT4G20140.1 Potri.010G043200.1 Potri.010G043200 Chr10 AT1G60800.1 Potri.010G043200.2 Potri.010G043200 Chr10 AT1G60800.1 Potri.010G043200.3 Potri.010G043200 Chr10 AT1G60800.1 Potri.010G043200.4 Potri.010G043200 Chr10 AT1G60800.1 Potri.010G043200.5 Potri.010G043200 Chr10 AT1G60800.1 Potri.010G046500.1 Potri.010G046500 Chr10 AT1G12970.1 Potri.010G046500.2 Potri.010G046500 Chr10 AT1G12970.1 Potri.010G052800.1 Potri.010G052800 Chr10  Potri.010G052800.2 Potri.010G052800 Chr10  Potri.010G052800.3 Potri.010G052800 Chr10  Potri.010G058200.1 Potri.010G058200 Chr10  Potri.010G058900.1 Potri.010G058900 Chr10 AT2G01950.1 Potri.010G081400.1 Potri.010G081400 Chr10  Potri.010G081400.2 Potri.010G081400 Chr10  Potri.010G083100.1 Potri.010G083100 Chr10  Potri.010G090800.1 Potri.010G090800 Chr10  Potri.010G090800.2 Potri.010G090800 Chr10  Potri.010G097700.1 Potri.010G097700 Chr10 AT2G02220.1 Potri.010G101100.1 Potri.010G101100 Chr10 AT2G01950.1 Potri.010G103000.1 Potri.010G103000 Chr10 AT1G66150.1 Potri.010G105800.1 Potri.010G105800 Chr10  Potri.010G106900.1 Potri.010G106900 Chr10  Potri.010G107000.1 Potri.010G107000 Chr10  Potri.010G120100.1 Potri.010G120100 Chr10  Potri.010G121700.1 Potri.010G121700 Chr10  Potri.010G129300.1 Potri.010G129300 Chr10  Potri.010G129300.2 Potri.010G129300 Chr10  Potri.010G129300.3 Potri.010G129300 Chr10  Potri.010G134100.1 Potri.010G134100 Chr10 AT3G25560.2 Potri.010G134100.2 Potri.010G134100 Chr10 AT3G25560.1 Potri.010G134100.3 Potri.010G134100 Chr10 AT3G25560.1 Potri.010G155000.1 Potri.010G155000 Chr10  Potri.010G155100.1 Potri.010G155100 Chr10  Potri.010G155100.2 Potri.010G155100 Chr10  Potri.010G155200.1 Potri.010G155200 Chr10  Potri.010G155200.2 Potri.010G155200 Chr10  Potri.010G155200.3 Potri.010G155200 Chr10  Potri.010G155600.1 Potri.010G155600 Chr10  Potri.010G160700.1 Potri.010G160700 Chr10  Potri.010G160700.2 Potri.010G160700 Chr10  Potri.010G160700.3 Potri.010G160700 Chr10  Potri.010G160700.4 Potri.010G160700 Chr10  Potri.010G160700.5 Potri.010G160700 Chr10  Potri.010G160700.6 Potri.010G160700 Chr10  Potri.010G160700.7 Potri.010G160700 Chr10  Potri.010G183400.1 Potri.010G183400 Chr10 AT3G51740.1 Potri.010G228200.1 Potri.010G228200 Chr10  Potri.010G228300.1 Potri.010G228300 Chr10  Potri.010G251200.1 Potri.010G251200 Chr10  Potri.011G005700.1 Potri.011G005700 Chr11  Potri.011G005700.2 Potri.011G005700 Chr11  Potri.011G005900.1 Potri.011G005900 Chr11  Potri.011G008200.1 Potri.011G008200 Chr11  Potri.011G008400.1 Potri.011G008400 Chr11  Potri.011G009400.2 Potri.011G009400 Chr11  Potri.011G010500.1 Potri.011G010500 Chr11 AT4G22130.1 Potri.011G010500.2 Potri.011G010500 Chr11 AT4G22130.1 Potri.011G010500.3 Potri.011G010500 Chr11 AT4G22130.1 Potri.011G010500.4 Potri.011G010500 Chr11 AT4G22130.1 Potri.011G012400.1 Potri.011G012400 Chr11  Potri.011G012700.1 Potri.011G012700 Chr11  Potri.011G014600.1 Potri.011G014600 Chr11    Potri.011G015000.1 Potri.011G015000 Chr11  Potri.011G021300.1 Potri.011G021300 Chr11  Potri.011G021400.1 Potri.011G021400 Chr11 AT3G05660.1 Potri.011G023500.1 Potri.011G023500 Chr11  Potri.011G041000.1 Potri.011G041000 Chr11  Potri.011G054500.1 Potri.011G054500 Chr11 AT1G45616.1 Potri.011G055000.1 Potri.011G055000 Chr11 AT3G28890.1 Potri.011G055200.1 Potri.011G055200 Chr11 AT5G27060.1 Potri.011G056800.1 Potri.011G056800 Chr11 AT1G28340.1 Potri.011G056800.2 Potri.011G056800 Chr11 AT1G28340.1 Potri.011G058100.1 Potri.011G058100 Chr11 AT1G28440.1 Potri.011G058100.2 Potri.011G058100 Chr11 AT1G28440.1 Potri.011G058100.3 Potri.011G058100 Chr11 AT1G28440.1 Potri.011G067400.1 Potri.011G067400 Chr11  Potri.011G067400.2 Potri.011G067400 Chr11 AT4G18640.1 Potri.011G067900.1 Potri.011G067900 Chr11 AT5G45800.1 Potri.011G068500.1 Potri.011G068500 Chr11  Potri.011G068700.1 Potri.011G068700 Chr11  Potri.011G068700.2 Potri.011G068700 Chr11  Potri.011G069500.1 Potri.011G069500 Chr11 AT4G18760.1 Potri.011G072300.1 Potri.011G072300 Chr11 AT1G29750.2 Potri.011G072500.1 Potri.011G072500 Chr11 AT1G29750.2 Potri.011G072700.1 Potri.011G072700 Chr11  Potri.011G073100.1 Potri.011G073100 Chr11  Potri.011G073200.1 Potri.011G073200 Chr11  Potri.011G073400.1 Potri.011G073400 Chr11  Potri.011G073600.1 Potri.011G073600 Chr11  Potri.011G088000.1 Potri.011G088000 Chr11  Potri.011G102700.1 Potri.011G102700 Chr11  Potri.011G102800.1 Potri.011G102800 Chr11  Potri.011G102900.1 Potri.011G102900 Chr11  Potri.011G102900.2 Potri.011G102900 Chr11  Potri.011G103000.1 Potri.011G103000 Chr11  Potri.011G104600.1 Potri.011G104600 Chr11 AT2G15080.1 Potri.011G104700.1 Potri.011G104700 Chr11 AT3G28890.1 Potri.011G104900.1 Potri.011G104900 Chr11 AT1G71400.1 Potri.011G105000.1 Potri.011G105000 Chr11 AT1G47890.1 Potri.011G105100.1 Potri.011G105100 Chr11 AT1G71400.1 Potri.011G106400.1 Potri.011G106400 Chr11  Potri.011G108400.1 Potri.011G108400 Chr11 AT1G71400.1 Potri.011G116900.1 Potri.011G116900 Chr11 AT5G53890.1 Potri.011G121700.1 Potri.011G121700 Chr11  Potri.011G121700.2 Potri.011G121700 Chr11  Potri.011G121700.3 Potri.011G121700 Chr11  Potri.011G124000.1 Potri.011G124000 Chr11  Potri.011G124400.1 Potri.011G124400 Chr11  Potri.011G129800.1 Potri.011G129800 Chr11 AT3G50950.1 Potri.011G139700.1 Potri.011G139700 Chr11  Potri.011G140900.1 Potri.011G140900 Chr11  Potri.011G141000.1 Potri.011G141000 Chr11  Potri.011G141100.1 Potri.011G141100 Chr11 AT2G33060.1 Potri.011G162100.1 Potri.011G162100 Chr11 AT4G13920.1 Potri.011G163700.1 Potri.011G163700 Chr11  Potri.011G163700.2 Potri.011G163700 Chr11  Potri.011G164800.1 Potri.011G164800 Chr11  Potri.011G169600.1 Potri.011G169600 Chr11 AT1G55610.1 Potri.012G005600.1 Potri.012G005600 Chr12 AT3G28890.1 Potri.012G005700.1 Potri.012G005700 Chr12 AT3G11010.1 Potri.012G005700.2 Potri.012G005700 Chr12 AT3G11010.1 Potri.012G007800.1 Potri.012G007800 Chr12 AT3G11080.1 Potri.012G007900.1 Potri.012G007900 Chr12 AT2G33060.1 Potri.012G007900.2 Potri.012G007900 Chr12 AT2G33060.1 Potri.012G008100.1 Potri.012G008100 Chr12 AT3G11010.1 Potri.012G008300.1 Potri.012G008300 Chr12 AT4G13810.2 Potri.012G008500.1 Potri.012G008500 Chr12 AT3G11010.1 Potri.012G008700.1 Potri.012G008700 Chr12 AT3G28890.1 Potri.012G009200.1 Potri.012G009200 Chr12 AT3G05660.1 Potri.012G009400.1 Potri.012G009400 Chr12 AT2G33060.1 Potri.012G009600.1 Potri.012G009600 Chr12 AT2G33060.1 Potri.012G009900.1 Potri.012G009900 Chr12 AT1G45616.1 Potri.012G010100.1 Potri.012G010100 Chr12 AT2G33060.1 Potri.012G010300.1 Potri.012G010300 Chr12 AT3G05660.1 Potri.012G010500.1 Potri.012G010500 Chr12 AT3G28890.1 Potri.012G010600.1 Potri.012G010600 Chr12 AT3G05660.1 Potri.012G020600.1 Potri.012G020600 Chr12 AT1G71400.1 Potri.012G022800.1 Potri.012G022800 Chr12 AT1G73080.1 Potri.012G025100.1 Potri.012G025100 Chr12 AT1G45616.1 Potri.012G025300.1 Potri.012G025300 Chr12 AT2G33060.1 Potri.012G025400.1 Potri.012G025400 Chr12 AT1G45616.1 Potri.012G025700.1 Potri.012G025700 Chr12 AT4G13810.2 Potri.012G026000.1 Potri.012G026000 Chr12 AT1G71400.1 Potri.012G026600.1 Potri.012G026600 Chr12 AT3G28890.1 Potri.012G026800.1 Potri.012G026800 Chr12 AT3G25020.1 Potri.012G026900.1 Potri.012G026900 Chr12 AT4G13810.1 Potri.012G027200.1 Potri.012G027200 Chr12 AT2G33060.1 Potri.012G027400.1 Potri.012G027400 Chr12 AT3G11080.1 Potri.012G027600.1 Potri.012G027600 Chr12 AT1G45616.1 Potri.012G028000.1 Potri.012G028000 Chr12 AT3G28890.1 Potri.012G028500.1 Potri.012G028500 Chr12 AT1G71400.1 Potri.012G028600.1 Potri.012G028600 Chr12 AT1G47890.1 Potri.012G028700.1 Potri.012G028700 Chr12 AT1G45616.1 Potri.012G028800.1 Potri.012G028800 Chr12 AT4G20140.1 Potri.012G029000.1 Potri.012G029000 Chr12 AT3G28890.1 Potri.012G032400.1 Potri.012G032400 Chr12  Potri.012G033200.1 Potri.012G033200 Chr12  Potri.012G033200.2 Potri.012G033200 Chr12  Potri.012G033200.3 Potri.012G033200 Chr12  Potri.012G034600.1 Potri.012G034600 Chr12  Potri.012G044500.1 Potri.012G044500 Chr12  Potri.012G045300.2 Potri.012G045300 Chr12  Potri.012G045300.3 Potri.012G045300 Chr12  Potri.012G045300.4 Potri.012G045300 Chr12  Potri.012G048000.1 Potri.012G048000 Chr12  Potri.012G067600.1 Potri.012G067600 Chr12  Potri.012G071100.1 Potri.012G071100 Chr12  Potri.012G071100.2 Potri.012G071100 Chr12  Potri.012G078100.1 Potri.012G078100 Chr12  Potri.012G085600.1 Potri.012G085600 Chr12 AT3G11330.1 Potri.012G088100.1 Potri.012G088100 Chr12  Potri.012G088900.1 Potri.012G088900 Chr12 AT4G20140.1 Potri.012G090500.1 Potri.012G090500 Chr12 AT2G31880.1 Potri.012G095600.1 Potri.012G095600 Chr12  Potri.012G095600.2 Potri.012G095600 Chr12  Potri.012G095600.3 Potri.012G095600 Chr12  Potri.012G122400.2 Potri.012G122400 Chr12  Potri.012G122600.1 Potri.012G122600 Chr12  Potri.012G122900.1 Potri.012G122900 Chr12  Potri.012G123400.1 Potri.012G123400 Chr12  Potri.012G124100.1 Potri.012G124100 Chr12  Potri.012G124200.1 Potri.012G124200 Chr12  Potri.012G124300.1 Potri.012G124300 Chr12  Potri.012G128700.1 Potri.012G128700 Chr12  Potri.012G130400.1 Potri.012G130400 Chr12 AT5G62230.1 Potri.012G130400.2 Potri.012G130400 Chr12 AT5G62230.1 Potri.012G139000.1 Potri.012G139000 Chr12 AT5G07280.1 Potri.012G142900.1 Potri.012G142900 Chr12 AT3G11010.1 Potri.012G143000.1 Potri.012G143000 Chr12 AT4G20140.1 Potri.013G020900.1 Potri.013G020900 Chr13  Potri.013G024300.1 Potri.013G024300 Chr13 AT1G07390.3 Potri.013G029700.1 Potri.013G029700 Chr13  Potri.013G030100.1 Potri.013G030100 Chr13  Potri.013G035900.1 Potri.013G035900 Chr13  Potri.013G036600.1 Potri.013G036600 Chr13  Potri.013G036600.2 Potri.013G036600 Chr13  Potri.013G037000.1 Potri.013G037000 Chr13  Potri.013G037100.1 Potri.013G037100 Chr13  Potri.013G037500.1 Potri.013G037500 Chr13  Potri.013G048800.1 Potri.013G048800 Chr13  Potri.013G051300.1 Potri.013G051300 Chr13  Potri.013G060100.1 Potri.013G060100 Chr13  Potri.013G064300.1 Potri.013G064300 Chr13  Potri.013G064300.2 Potri.013G064300 Chr13  Potri.013G064300.3 Potri.013G064300 Chr13  Potri.013G064300.4 Potri.013G064300 Chr13  Potri.013G087200.1 Potri.013G087200 Chr13 AT1G65380.1 Potri.013G091000.1 Potri.013G091000 Chr13  Potri.013G091000.2 Potri.013G091000 Chr13  Potri.013G097100.1 Potri.013G097100 Chr13  Potri.013G098300.1 Potri.013G098300 Chr13  Potri.013G098900.1 Potri.013G098900 Chr13  Potri.013G114200.1 Potri.013G114200 Chr13  Potri.013G117200.1 Potri.013G117200 Chr13 AT1G71830.1 Potri.013G133100.1 Potri.013G133100 Chr13  Potri.013G144600.1 Potri.013G144600 Chr13 AT4G03390.1 Potri.013G144600.2 Potri.013G144600 Chr13 AT4G03390.1 Potri.013G150300.1 Potri.013G150300 Chr13  Potri.013G150300.2 Potri.013G150300 Chr13  Potri.013G150300.3 Potri.013G150300 Chr13  Potri.013G150300.4 Potri.013G150300 Chr13  Potri.013G158800.1 Potri.013G158800 Chr13  Potri.013G158800.2 Potri.013G158800 Chr13  Potri.014G001200.1 Potri.014G001200 Chr14 AT1G78980.1 Potri.014G001200.2 Potri.014G001200 Chr14 AT1G78980.1 Potri.014G001600.1 Potri.014G001600 Chr14  Potri.014G002700.1 Potri.014G002700 Chr14  Potri.014G005400.1 Potri.014G005400 Chr14  Potri.014G005400.2 Potri.014G005400 Chr14  Potri.014G007900.1 Potri.014G007900 Chr14  Potri.014G008200.1 Potri.014G008200 Chr14 AT3G49750.1 Potri.014G009400.2 Potri.014G009400 Chr14  Potri.014G009600.1 Potri.014G009600 Chr14  Potri.014G012300.1 Potri.014G012300 Chr14 AT3G49750.1 Potri.014G024300.1 Potri.014G024300 Chr14  Potri.014G024400.1 Potri.014G024400 Chr14  Potri.014G024400.2 Potri.014G024400 Chr14  Potri.014G035700.1 Potri.014G035700 Chr14 AT4G33300.1 Potri.014G036700.1 Potri.014G036700 Chr14  Potri.014G068700.1 Potri.014G068700 Chr14  Potri.014G136100.1 Potri.014G136100 Chr14  Potri.014G144600.1 Potri.014G144600 Chr14 AT3G02130.1 Potri.014G147300.1 Potri.014G147300 Chr14  Potri.014G147300.2 Potri.014G147300 Chr14  Potri.014G168500.1 Potri.014G168500 Chr14 AT3G07040.1 Potri.014G194800.1 Potri.014G194800 Chr14  Potri.014G194800.2 Potri.014G194800 Chr14  Potri.014G194800.3 Potri.014G194800 Chr14  Potri.014G194800.4 Potri.014G194800 Chr14  Potri.014G194800.5 Potri.014G194800 Chr14  Potri.014G194800.7 Potri.014G194800 Chr14    Potri.014G195100.1 Potri.014G195100 Chr14  Potri.014G195100.2 Potri.014G195100 Chr14  Potri.014G195200.1 Potri.014G195200 Chr14  Potri.014G196600.1 Potri.014G196600 Chr14  Potri.014G196600.2 Potri.014G196600 Chr14  Potri.015G023500.1 Potri.015G023500 Chr15  Potri.015G024500.1 Potri.015G024500 Chr15  Potri.015G024600.1 Potri.015G024600 Chr15  Potri.015G024800.1 Potri.015G024800 Chr15  Potri.015G025100.1 Potri.015G025100 Chr15  Potri.015G025100.2 Potri.015G025100 Chr15  Potri.015G025200.1 Potri.015G025200 Chr15  Potri.015G025200.2 Potri.015G025200 Chr15  Potri.015G025200.3 Potri.015G025200 Chr15  Potri.015G025300.1 Potri.015G025300 Chr15  Potri.015G025300.2 Potri.015G025300 Chr15  Potri.015G025300.3 Potri.015G025300 Chr15  Potri.015G025400.1 Potri.015G025400 Chr15  Potri.015G025800.1 Potri.015G025800 Chr15  Potri.015G025800.2 Potri.015G025800 Chr15  Potri.015G026000.1 Potri.015G026000 Chr15 AT4G13880.1 Potri.015G028600.1 Potri.015G028600 Chr15  Potri.015G035200.1 Potri.015G035200 Chr15  Potri.015G037400.1 Potri.015G037400 Chr15  Potri.015G048800.1 Potri.015G048800 Chr15  Potri.015G048800.2 Potri.015G048800 Chr15  Potri.015G048800.3 Potri.015G048800 Chr15  Potri.015G048800.4 Potri.015G048800 Chr15  Potri.015G061600.1 Potri.015G061600 Chr15  Potri.015G073500.1 Potri.015G073500 Chr15  Potri.015G080800.1 Potri.015G080800 Chr15  Potri.015G083800.1 Potri.015G083800 Chr15 AT3G11330.1 Potri.015G083800.2 Potri.015G083800 Chr15 AT3G11330.1 Potri.015G086800.1 Potri.015G086800 Chr15 AT2G31880.1 Potri.015G093100.1 Potri.015G093100 Chr15  Potri.015G093100.2 Potri.015G093100 Chr15  Potri.015G093100.3 Potri.015G093100 Chr15  Potri.015G093100.4 Potri.015G093100 Chr15  Potri.015G093100.5 Potri.015G093100 Chr15  Potri.015G093100.6 Potri.015G093100 Chr15  Potri.015G093100.7 Potri.015G093100 Chr15  Potri.015G122900.1 Potri.015G122900 Chr15  Potri.015G123100.1 Potri.015G123100 Chr15  Potri.015G123100.2 Potri.015G123100 Chr15  Potri.015G123100.3 Potri.015G123100 Chr15  Potri.015G123100.4 Potri.015G123100 Chr15  Potri.015G123400.1 Potri.015G123400 Chr15  Potri.015G123400.2 Potri.015G123400 Chr15  Potri.015G123400.3 Potri.015G123400 Chr15  Potri.015G123400.4 Potri.015G123400 Chr15  Potri.015G123700.1 Potri.015G123700 Chr15  Potri.015G123700.2 Potri.015G123700 Chr15  Potri.015G123700.3 Potri.015G123700 Chr15  Potri.015G123800.1 Potri.015G123800 Chr15  Potri.015G124100.1 Potri.015G124100 Chr15  Potri.015G124400.1 Potri.015G124400 Chr15  Potri.015G124400.2 Potri.015G124400 Chr15  Potri.015G130100.1 Potri.015G130100 Chr15  Potri.015G132200.1 Potri.015G132200 Chr15 AT5G62230.1 Potri.015G132200.2 Potri.015G132200 Chr15 AT5G07180.1 Potri.015G141200.1 Potri.015G141200 Chr15 AT5G07280.1 Potri.016G011400.1 Potri.016G011400 Chr16  Potri.016G011600.1 Potri.016G011600 Chr16  Potri.016G011600.2 Potri.016G011600 Chr16  Potri.016G012300.1 Potri.016G012300 Chr16  Potri.016G029900.1 Potri.016G029900 Chr16  Potri.016G030000.1 Potri.016G030000 Chr16  Potri.016G049400.1 Potri.016G049400 Chr16 AT5G06860.1 Potri.016G049600.1 Potri.016G049600 Chr16 AT5G06860.1 Potri.016G050800.1 Potri.016G050800 Chr16  Potri.016G051600.1 Potri.016G051600 Chr16  Potri.016G055400.1 Potri.016G055400 Chr16  Potri.016G061500.1 Potri.016G061500 Chr16  Potri.016G061500.2 Potri.016G061500 Chr16  Potri.016G061500.3 Potri.016G061500 Chr16  Potri.016G061500.4 Potri.016G061500 Chr16  Potri.016G070500.1 Potri.016G070500 Chr16  Potri.016G070500.2 Potri.016G070500 Chr16  Potri.016G092700.1 Potri.016G092700 Chr16  Potri.016G092700.2 Potri.016G092700 Chr16  Potri.016G092700.3 Potri.016G092700 Chr16  Potri.016G092800.1 Potri.016G092800 Chr16  Potri.016G114400.1 Potri.016G114400 Chr16  Potri.016G120500.1 Potri.016G120500 Chr16 AT1G45616.1 Potri.016G120600.1 Potri.016G120600 Chr16 AT1G45616.1 Potri.016G126300.1 Potri.016G126300 Chr16 AT3G51740.1 Potri.016G126900.1 Potri.016G126900 Chr16 AT1G45616.1 Potri.016G127000.1 Potri.016G127000 Chr16 AT1G45616.1 Potri.016G127100.1 Potri.016G127100 Chr16 AT3G05660.1 Potri.016G137000.1 Potri.016G137000 Chr16  Potri.016G138200.1 Potri.016G138200 Chr16 AT1G71400.1 Potri.016G139200.1 Potri.016G139200 Chr16  Potri.016G140100.1 Potri.016G140100 Chr16  Potri.016G140200.1 Potri.016G140200 Chr16  Potri.016G140200.2 Potri.016G140200 Chr16  Potri.016G140200.3 Potri.016G140200 Chr16  Potri.016G140300.1 Potri.016G140300 Chr16  Potri.016G140300.2 Potri.016G140300 Chr16  Potri.016G144100.1 Potri.016G144100 Chr16  Potri.016G144100.2 Potri.016G144100 Chr16  Potri.016G144100.3 Potri.016G144100 Chr16  Potri.017G003600.1 Potri.017G003600 Chr17 AT5G48380.1 Potri.017G003800.1 Potri.017G003800 Chr17 AT5G48380.1 Potri.017G004300.1 Potri.017G004300 Chr17 AT5G48380.1 Potri.017G010800.2 Potri.017G010800 Chr17  Potri.017G015500.1 Potri.017G015500 Chr17  Potri.017G016600.1 Potri.017G016600 Chr17 AT1G28440.1 Potri.017G018700.1 Potri.017G018700 Chr17 AT1G58190.2 Potri.017G028400.1 Potri.017G028400 Chr17  Potri.017G028600.1 Potri.017G028600 Chr17  Potri.017G033900.1 Potri.017G033900 Chr17  Potri.017G035300.1 Potri.017G035300 Chr17  Potri.017G050600.1 Potri.017G050600 Chr17 AT2G02220.1 Potri.017G050700.1 Potri.017G050700 Chr17 AT2G02220.1 Potri.017G074400.1 Potri.017G074400 Chr17  Potri.017G094400.1 Potri.017G094400 Chr17 AT3G02130.1 Potri.017G106500.1 Potri.017G106500 Chr17 AT3G07040.1 Potri.017G108000.1 Potri.017G108000 Chr17 AT5G16000.1 Potri.017G108000.2 Potri.017G108000 Chr17 AT5G16000.1 Potri.017G115900.1 Potri.017G115900 Chr17  Potri.017G119000.1 Potri.017G119000 Chr17  Potri.017G121500.1 Potri.017G121500 Chr17  Potri.017G121900.1 Potri.017G121900 Chr17  Potri.017G127000.1 Potri.017G127000 Chr17  Potri.017G127600.1 Potri.017G127600 Chr17  Potri.017G127800.1 Potri.017G127800 Chr17  Potri.017G128000.1 Potri.017G128000 Chr17  Potri.017G128000.2 Potri.017G128000 Chr17  Potri.017G130600.1 Potri.017G130600 Chr17 AT1G48480.1 Potri.017G130900.1 Potri.017G130900 Chr17  Potri.017G132100.1 Potri.017G132100 Chr17  Potri.017G133600.1 Potri.017G133600 Chr17  Potri.017G134900.1 Potri.017G134900 Chr17 AT1G66150.1 Potri.017G136400.1 Potri.017G136400 Chr17  Potri.017G136900.1 Potri.017G136900 Chr17  Potri.017G137700.1 Potri.017G137700 Chr17  Potri.017G137800.1 Potri.017G137800 Chr17  Potri.017G137900.1 Potri.017G137900 Chr17  Potri.017G138100.1 Potri.017G138100 Chr17  Potri.017G138600.1 Potri.017G138600 Chr17  Potri.017G145200.1 Potri.017G145200 Chr17  Potri.017G151400.1 Potri.017G151400 Chr17  Potri.017G152200.1 Potri.017G152200 Chr17  Potri.017G152400.1 Potri.017G152400 Chr17  Potri.017G152500.1 Potri.017G152500 Chr17  Potri.017G152500.2 Potri.017G152500 Chr17  Potri.018G002600.1 Potri.018G002600 Chr18  Potri.018G003200.1 Potri.018G003200 Chr18  Potri.018G004600.1 Potri.018G004600 Chr18  Potri.018G004900.1 Potri.018G004900 Chr18  Potri.018G020000.1 Potri.018G020000 Chr18  Potri.018G020100.1 Potri.018G020100 Chr18  Potri.018G026800.1 Potri.018G026800 Chr18  Potri.018G026800.2 Potri.018G026800 Chr18  Potri.018G035100.1 Potri.018G035100 Chr18  Potri.018G045500.1 Potri.018G045500 Chr18  Potri.018G057100.1 Potri.018G057100 Chr18  Potri.018G074300.1 Potri.018G074300 Chr18  Potri.018G080700.1 Potri.018G080700 Chr18  Potri.018G086200.1 Potri.018G086200 Chr18  Potri.018G086200.2 Potri.018G086200 Chr18  Potri.018G088100.1 Potri.018G088100 Chr18  Potri.018G088200.1 Potri.018G088200 Chr18  Potri.018G101300.1 Potri.018G101300 Chr18  Potri.018G103400.1 Potri.018G103400 Chr18  Potri.018G104900.1 Potri.018G104900 Chr18 AT5G57900.1 Potri.018G107400.1 Potri.018G107400 Chr18  Potri.018G113000.1 Potri.018G113000 Chr18  Potri.018G116600.1 Potri.018G116600 Chr18 AT1G74190.1 Potri.018G116700.1 Potri.018G116700 Chr18 AT5G49290.1 Potri.018G116800.1 Potri.018G116800 Chr18 AT1G07390.3 Potri.018G117200.1 Potri.018G117200 Chr18 AT5G49290.1 Potri.018G117300.1 Potri.018G117300 Chr18 AT1G58190.2 Potri.018G117400.1 Potri.018G117400 Chr18 AT1G74190.1 Potri.018G117600.1 Potri.018G117600 Chr18 AT1G74170.1 Potri.018G117700.1 Potri.018G117700 Chr18 AT5G49290.1 Potri.018G117800.1 Potri.018G117800 Chr18 AT1G58190.2 Potri.018G117900.1 Potri.018G117900 Chr18 AT1G07390.3 Potri.018G120600.1 Potri.018G120600 Chr18 AT1G74180.1 Potri.018G120700.1 Potri.018G120700 Chr18 AT1G74190.1 Potri.018G120800.1 Potri.018G120800 Chr18 AT2G25470.1 Potri.018G124400.1 Potri.018G124400 Chr18 AT1G58190.1 Potri.018G124400.2 Potri.018G124400 Chr18 AT1G58190.1 Potri.018G135600.1 Potri.018G135600 Chr18  Potri.018G135700.1 Potri.018G135700 Chr18  Potri.018G135800.1 Potri.018G135800 Chr18  Potri.018G136100.1 Potri.018G136100 Chr18  Potri.018G136300.1 Potri.018G136300 Chr18  Potri.018G136500.1 Potri.018G136500 Chr18    Potri.018G139700.1 Potri.018G139700 Chr18 AT2G19330.1 Potri.018G141000.1 Potri.018G141000 Chr18  Potri.018G144300.1 Potri.018G144300 Chr18 AT2G25470.1 Potri.018G144300.2 Potri.018G144300 Chr18 AT1G74170.1 Potri.018G144300.3 Potri.018G144300 Chr18 AT1G74170.1 Potri.018G144600.1 Potri.018G144600 Chr18 AT1G07390.3 Potri.018G144600.2 Potri.018G144600 Chr18 AT1G74190.1 Potri.018G144700.1 Potri.018G144700 Chr18 AT1G74190.1 Potri.018G144800.1 Potri.018G144800 Chr18 AT1G58190.2 Potri.018G144800.2 Potri.018G144800 Chr18 AT5G49290.1 Potri.018G144800.3 Potri.018G144800 Chr18 AT5G49290.1 Potri.018G144800.4 Potri.018G144800 Chr18 AT1G74190.1 Potri.018G147300.1 Potri.018G147300 Chr18  Potri.018G148000.1 Potri.018G148000 Chr18 AT1G58190.2 Potri.018G148000.2 Potri.018G148000 Chr18 AT2G25470.1 Potri.018G151000.1 Potri.018G151000 Chr18 AT1G62440.1 Potri.019G001800.1 Potri.019G001800 Chr19  Potri.019G001800.2 Potri.019G001800 Chr19  Potri.019G004600.1 Potri.019G004600 Chr19  Potri.019G004800.1 Potri.019G004800 Chr19  Potri.019G004900.1 Potri.019G004900 Chr19  Potri.019G005200.1 Potri.019G005200 Chr19  Potri.019G005200.2 Potri.019G005200 Chr19  Potri.019G005300.1 Potri.019G005300 Chr19  Potri.019G005300.2 Potri.019G005300 Chr19  Potri.019G005700.1 Potri.019G005700 Chr19  Potri.019G005900.1 Potri.019G005900 Chr19  Potri.019G005900.2 Potri.019G005900 Chr19  Potri.019G005900.3 Potri.019G005900 Chr19  Potri.019G005900.4 Potri.019G005900 Chr19  Potri.019G005900.6 Potri.019G005900 Chr19  Potri.019G006000.1 Potri.019G006000 Chr19  Potri.019G006200.1 Potri.019G006200 Chr19  Potri.019G006200.2 Potri.019G006200 Chr19  Potri.019G007900.1 Potri.019G007900 Chr19  Potri.019G008900.1 Potri.019G008900 Chr19  Potri.019G009600.1 Potri.019G009600 Chr19  Potri.019G009800.1 Potri.019G009800 Chr19  Potri.019G018800.1 Potri.019G018800 Chr19  Potri.019G021700.1 Potri.019G021700 Chr19  Potri.019G025500.1 Potri.019G025500 Chr19  Potri.019G025500.2 Potri.019G025500 Chr19  Potri.019G034600.1 Potri.019G034600 Chr19 AT4G04220.1 Potri.019G036900.1 Potri.019G036900 Chr19  Potri.019G039000.1 Potri.019G039000 Chr19  Potri.019G039000.2 Potri.019G039000 Chr19  Potri.019G058600.1 Potri.019G058600 Chr19  Potri.019G059600.1 Potri.019G059600 Chr19  Potri.019G059900.1 Potri.019G059900 Chr19  Potri.019G060100.1 Potri.019G060100 Chr19  Potri.019G060200.1 Potri.019G060200 Chr19  Potri.019G060400.1 Potri.019G060400 Chr19  Potri.019G062100.1 Potri.019G062100 Chr19  Potri.019G062100.2 Potri.019G062100 Chr19  Potri.019G062100.3 Potri.019G062100 Chr19  Potri.019G074000.1 Potri.019G074000 Chr19  Potri.019G074100.1 Potri.019G074100 Chr19  Potri.019G074200.1 Potri.019G074200 Chr19  Potri.019G074300.1 Potri.019G074300 Chr19  Potri.019G078400.1 Potri.019G078400 Chr19  Potri.019G084700.1 Potri.019G084700 Chr19  Potri.019G084800.1 Potri.019G084800 Chr19  Potri.019G084800.2 Potri.019G084800 Chr19  Potri.019G087700.1 Potri.019G087700 Chr19 AT1G71830.1 Potri.019G094200.1 Potri.019G094200 Chr19  Potri.019G094300.1 Potri.019G094300 Chr19  Potri.019G094600.1 Potri.019G094600 Chr19  Potri.019G094700.1 Potri.019G094700 Chr19  Potri.019G094800.1 Potri.019G094800 Chr19  Potri.019G094800.2 Potri.019G094800 Chr19  Potri.019G097100.2 Potri.019G097100 Chr19  Potri.019G097600.1 Potri.019G097600 Chr19 AT4G16950.2 Potri.019G097700.1 Potri.019G097700 Chr19  Potri.019G098700.1 Potri.019G098700 Chr19  Potri.019G099200.1 Potri.019G099200 Chr19  Potri.019G100900.1 Potri.019G100900 Chr19  Potri.019G103900.1 Potri.019G103900 Chr19 AT4G03390.1 Potri.019G103900.2 Potri.019G103900 Chr19 AT4G03390.1 Potri.019G103900.3 Potri.019G103900 Chr19 AT4G03390.1 Potri.019G109400.1 Potri.019G109400 Chr19  Potri.019G109400.2 Potri.019G109400 Chr19  Potri.019G109600.1 Potri.019G109600 Chr19  Potri.019G109900.1 Potri.019G109900 Chr19  Potri.019G110400.1 Potri.019G110400 Chr19  Potri.019G110600.1 Potri.019G110600 Chr19  Potri.019G110800.1 Potri.019G110800 Chr19  Potri.019G111100.1 Potri.019G111100 Chr19  Potri.019G114600.1 Potri.019G114600 Chr19  Potri.019G114600.2 Potri.019G114600 Chr19  Potri.019G114600.3 Potri.019G114600 Chr19  Potri.019G119300.1 Potri.019G119300 Chr19  Potri.019G119300.2 Potri.019G119300 Chr19  Potri.019G119300.3 Potri.019G119300 Chr19  Potri.019G119500.1 Potri.019G119500 Chr19  Potri.019G119500.2 Potri.019G119500 Chr19  Potri.019G119500.3 Potri.019G119500 Chr19  Potri.019G120700.1 Potri.019G120700 Chr19  Potri.019G121000.1 Potri.019G121000 Chr19  Potri.019G122500.1 Potri.019G122500 Chr19  Potri.019G122700.1 Potri.019G122700 Chr19  Potri.019G122900.1 Potri.019G122900 Chr19  Potri.019G127200.1 Potri.019G127200 Chr19  Potri.019G127200.2 Potri.019G127200 Chr19  Potri.019G129100.1 Potri.019G129100 Chr19  Potri.019G129300.1 Potri.019G129300 Chr19  Potri.019G129400.1 Potri.019G129400 Chr19  Potri.019G131500.1 Potri.019G131500 Chr19  Potri.019G131500.2 Potri.019G131500 Chr19  Potri.019G131800.1 Potri.019G131800 Chr19  Potri.019G131800.2 Potri.019G131800 Chr19  Potri.T002200.1 Potri.T002200 scaffold_20  Potri.T002300.1 Potri.T002300 scaffold_20  Potri.T002300.2 Potri.T002300 scaffold_20  Potri.T002600.1 Potri.T002600 scaffold_20  Potri.T005300.1 Potri.T005300 scaffold_20  Potri.T008000.1 Potri.T008000 scaffold_24  Potri.T008100.1 Potri.T008100 scaffold_24  Potri.T008100.2 Potri.T008100 scaffold_24  Potri.T008200.1 Potri.T008200 scaffold_24  Potri.T008500.1 Potri.T008500 scaffold_24  Potri.T008800.1 Potri.T008800 scaffold_24  Potri.T009400.1 Potri.T009400 scaffold_24  Potri.T009900.1 Potri.T009900 scaffold_24  Potri.T010000.1 Potri.T010000 scaffold_24  Potri.T010100.1 Potri.T010100 scaffold_24  Potri.T014500.1 Potri.T014500 scaffold_25  Potri.T014500.2 Potri.T014500 scaffold_25  Potri.T014600.1 Potri.T014600 scaffold_25  Potri.T014700.1 Potri.T014700 scaffold_25  Potri.T032300.1 Potri.T032300 scaffold_34  Potri.T032600.1 Potri.T032600 scaffold_34  Potri.T032800.1 Potri.T032800 scaffold_34  Potri.T037800.1 Potri.T037800 scaffold_38  Potri.T038900.2 Potri.T038900 scaffold_38  Potri.T039800.1 Potri.T039800 scaffold_38  Potri.T040200.1 Potri.T040200 scaffold_38  Potri.T040800.1 Potri.T040800 scaffold_39 AT1G58190.2 Potri.T040800.2 Potri.T040800 scaffold_39 AT1G58190.2 Potri.T040800.3 Potri.T040800 scaffold_39 AT1G58190.2 Potri.T040800.4 Potri.T040800 scaffold_39 AT1G07390.1 Potri.T041300.1 Potri.T041300 scaffold_39 AT1G07390.1 Potri.T041300.2 Potri.T041300 scaffold_39 AT1G74190.1 Potri.T041300.3 Potri.T041300 scaffold_39 AT1G74190.1 Potri.T041700.1 Potri.T041700 scaffold_39 AT1G07390.3 Potri.T041700.2 Potri.T041700 scaffold_39 AT1G07390.3 Potri.T041900.1 Potri.T041900 scaffold_39  Potri.T042100.1 Potri.T042100 scaffold_39  Potri.T042200.1 Potri.T042200 scaffold_39  Potri.T042400.1 Potri.T042400 scaffold_39  Potri.T042500.1 Potri.T042500 scaffold_39  Potri.T045000.1 Potri.T045000 scaffold_42  Potri.T045200.1 Potri.T045200 scaffold_42  Potri.T045300.1 Potri.T045300 scaffold_42  Potri.T045300.2 Potri.T045300 scaffold_42  Potri.T045900.1 Potri.T045900 scaffold_42  Potri.T048300.1 Potri.T048300 scaffold_47  Potri.T048300.2 Potri.T048300 scaffold_47  Potri.T049000.1 Potri.T049000 scaffold_47  Potri.T049300.1 Potri.T049300 scaffold_47 AT3G12610.1 Potri.T049800.1 Potri.T049800 scaffold_47  Potri.T050300.1 Potri.T050300 scaffold_47  Potri.T050400.1 Potri.T050400 scaffold_47  Potri.T052600.1 Potri.T052600 scaffold_48  Potri.T068500.1 Potri.T068500 scaffold_73 AT1G64070.1 Potri.T069100.1 Potri.T069100 scaffold_73  Potri.T069100.2 Potri.T069100 scaffold_73  Potri.T069400.1 Potri.T069400 scaffold_73 AT1G64070.1 Potri.T072700.1 Potri.T072700 scaffold_79  Potri.T075000.1 Potri.T075000 scaffold_82 AT5G48380.1 Potri.T075300.1 Potri.T075300 scaffold_82 AT5G48380.1 Potri.T075300.2 Potri.T075300 scaffold_82 AT5G48380.1 Potri.T075500.1 Potri.T075500 scaffold_82 AT5G48380.1 Potri.T077200.1 Potri.T077200 scaffold_85  Potri.T085500.1 Potri.T085500 scaffold_99 AT1G71400.1 Potri.T085700.1 Potri.T085700 scaffold_99 AT5G40170.1 Potri.T085700.2 Potri.T085700 scaffold_99 AT5G40170.1 Potri.T085700.3 Potri.T085700 scaffold_99 AT5G40170.1 Potri.T085800.1 Potri.T085800 scaffold_99 AT4G13920.1 Potri.T086100.1 Potri.T086100 scaffold_99 AT1G71400.1 Potri.T086100.2 Potri.T086100 scaffold_99 AT1G71400.1 Potri.T086100.3 Potri.T086100 scaffold_99 AT1G71400.1 Potri.T091900.1 Potri.T091900 scaffold_119 AT3G05660.1 Potri.T092000.1 Potri.T092000 scaffold_119 AT3G05660.1 Potri.T092200.1 Potri.T092200 scaffold_119 AT1G47890.1 Potri.T092300.1 Potri.T092300 scaffold_119 AT1G45616.1 Potri.T092500.1 Potri.T092500 scaffold_122  Potri.T092500.2 Potri.T092500 scaffold_122  Potri.T092500.3 Potri.T092500 scaffold_122  Potri.T092800.1 Potri.T092800 scaffold_123 AT5G62230.2   Potri.T094500.1 Potri.T094500 scaffold_127 AT1G74190.1 Potri.T094800.1 Potri.T094800 scaffold_127 AT2G25470.1 Potri.T094800.2 Potri.T094800 scaffold_127 AT2G25470.1 Potri.T094800.3 Potri.T094800 scaffold_127 AT1G74190.1 Potri.T094800.4 Potri.T094800 scaffold_127 AT2G25470.1 Potri.T094900.1 Potri.T094900 scaffold_127 AT1G07390.1 Potri.T102800.1 Potri.T102800 scaffold_149  Potri.T102900.1 Potri.T102900 scaffold_149  Potri.T103000.1 Potri.T103000 scaffold_149  Potri.T103200.1 Potri.T103200 scaffold_149  Potri.T105500.1 Potri.T105500 scaffold_156  Potri.T105600.1 Potri.T105600 scaffold_156  Potri.T108900.1 Potri.T108900 scaffold_168  Potri.T109300.1 Potri.T109300 scaffold_169 AT1G74170.1 Potri.T109500.1 Potri.T109500 scaffold_169 AT1G07390.1 Potri.T109700.1 Potri.T109700 scaffold_169 AT1G07390.3 Potri.T109800.1 Potri.T109800 scaffold_169 AT5G49290.1 Potri.T110100.1 Potri.T110100 scaffold_169 AT1G07390.2 Potri.T110200.1 Potri.T110200 scaffold_169 AT5G49290.1 Potri.T112500.1 Potri.T112500 scaffold_175  Potri.T113500.1 Potri.T113500 scaffold_179 AT1G71400.1 Potri.T113700.1 Potri.T113700 scaffold_179 AT3G28890.1 Potri.T114000.1 Potri.T114000 scaffold_179 AT2G33060.1 Potri.T114100.1 Potri.T114100 scaffold_183 AT1G74170.1 Potri.T114300.1 Potri.T114300 scaffold_183 AT1G54470.2 Potri.T116100.1 Potri.T116100 scaffold_186  Potri.T116200.1 Potri.T116200 scaffold_186  Potri.T117100.1 Potri.T117100 scaffold_188 AT3G44480.1 Potri.T118400.1 Potri.T118400 scaffold_190  Potri.T119100.1 Potri.T119100 scaffold_197 AT3G28890.1 Potri.T119600.1 Potri.T119600 scaffold_200  Potri.T130500.1 Potri.T130500 scaffold_250  Potri.T130700.1 Potri.T130700 scaffold_250  Potri.T133400.1 Potri.T133400 scaffold_268 AT1G74190.1 Potri.T133400.2 Potri.T133400 scaffold_268 AT1G74190.1 Potri.T146400.1 Potri.T146400 scaffold_459  Potri.T155600.1 Potri.T155600 scaffold_644 AT2G25470.1 Potri.T155700.1 Potri.T155700 scaffold_644 AT1G74190.1 Potri.T155700.2 Potri.T155700 scaffold_644 AT1G74170.1 Potri.T155700.3 Potri.T155700 scaffold_644 AT1G74170.1 Potri.T160800.1 Potri.T160800 scaffold_744 AT3G28890.1 Potri.T161800.1 Potri.T161800 scaffold_752 AT1G58190.2 Potri.T163500.1 Potri.T163500 scaffold_811 AT1G71400.1 Potri.T164100.1 Potri.T164100 scaffold_822 AT1G71400.1 Potri.T164200.1 Potri.T164200 scaffold_822 AT2G33060.1 Potri.T169000.1 Potri.T169000 scaffold_960  Potri.T176800.1 Potri.T176800 scaffold_1534  Potri.T176800.2 Potri.T176800 scaffold_1534  Potri.T176800.3 Potri.T176800 scaffold_1534  Potri.019G070100.1 Potri.019G070100 Chr19  Potri.019G098500.2 Potri.019G098500 Chr19  Potri.019G113700.1 Potri.019G113700 Chr19  Potri.019G113700.2 Potri.019G113700 Chr19  Potri.T001400.1 Potri.T001400 scaffold_20  Potri.T001900.1 Potri.T001900 scaffold_20  Potri.T002700.1 Potri.T002700 scaffold_20  Potri.T077200.2 Potri.T077200 scaffold_85  Potri.T077200.3 Potri.T077200 scaffold_85  Potri.T077200.4 Potri.T077200 scaffold_85  Potri.001G029300.1 Potri.001G029300 Chr01  Potri.001G033100.1 Potri.001G033100 Chr01  Potri.001G134300.1 Potri.001G134300 Chr01 AT3G07040.1 Potri.001G134400.1 Potri.001G134400 Chr01 AT3G07040.1 Potri.001G134500.1 Potri.001G134500 Chr01  Potri.001G134700.1 Potri.001G134700 Chr01 AT3G07040.1 Potri.001G172300.1 Potri.001G172300 Chr01  Potri.001G261300.1 Potri.001G261300 Chr01  Potri.001G261400.1 Potri.001G261400 Chr01  Potri.001G261500.1 Potri.001G261500 Chr01  Potri.001G261500.2 Potri.001G261500 Chr01  Potri.001G313300.1 Potri.001G313300 Chr01  Potri.001G363700.1 Potri.001G363700 Chr01  Potri.001G364700.1 Potri.001G364700 Chr01  Potri.001G379700.1 Potri.001G379700 Chr01  Potri.001G379700.2 Potri.001G379700 Chr01  Potri.001G405000.1 Potri.001G405000 Chr01  Potri.001G405100.1 Potri.001G405100 Chr01  Potri.001G406000.1 Potri.001G406000 Chr01  Potri.001G406100.1 Potri.001G406100 Chr01  Potri.001G416900.1 Potri.001G416900 Chr01  Potri.001G419800.1 Potri.001G419800 Chr01  Potri.001G419800.2 Potri.001G419800 Chr01  Potri.001G420000.1 Potri.001G420000 Chr01  Potri.001G422800.1 Potri.001G422800 Chr01  Potri.001G422800.10 Potri.001G422800 Chr01  Potri.001G422800.11 Potri.001G422800 Chr01  Potri.001G422800.12 Potri.001G422800 Chr01  Potri.001G422800.13 Potri.001G422800 Chr01  Potri.001G422800.14 Potri.001G422800 Chr01  Potri.001G422800.2 Potri.001G422800 Chr01  Potri.001G422800.3 Potri.001G422800 Chr01  Potri.001G422800.4 Potri.001G422800 Chr01  Potri.001G422800.5 Potri.001G422800 Chr01  Potri.001G422800.6 Potri.001G422800 Chr01  Potri.001G422800.7 Potri.001G422800 Chr01  Potri.001G422800.8 Potri.001G422800 Chr01  Potri.001G422800.9 Potri.001G422800 Chr01  Potri.001G425300.1 Potri.001G425300 Chr01  Potri.001G425500.1 Potri.001G425500 Chr01  Potri.001G425500.2 Potri.001G425500 Chr01  Potri.001G425500.3 Potri.001G425500 Chr01  Potri.001G425900.1 Potri.001G425900 Chr01  Potri.001G426200.1 Potri.001G426200 Chr01  Potri.001G426600.1 Potri.001G426600 Chr01  Potri.001G426900.1 Potri.001G426900 Chr01  Potri.001G427100.1 Potri.001G427100 Chr01  Potri.001G427500.1 Potri.001G427500 Chr01  Potri.001G427500.2 Potri.001G427500 Chr01  Potri.001G427500.3 Potri.001G427500 Chr01  Potri.001G427500.4 Potri.001G427500 Chr01  Potri.001G427600.1 Potri.001G427600 Chr01  Potri.001G427700.1 Potri.001G427700 Chr01  Potri.001G427700.2 Potri.001G427700 Chr01  Potri.001G428100.1 Potri.001G428100 Chr01  Potri.001G428100.2 Potri.001G428100 Chr01  Potri.001G428700.1 Potri.001G428700 Chr01  Potri.001G428700.2 Potri.001G428700 Chr01  Potri.001G428700.3 Potri.001G428700 Chr01  Potri.001G428700.4 Potri.001G428700 Chr01  Potri.001G429100.1 Potri.001G429100 Chr01  Potri.001G429100.2 Potri.001G429100 Chr01  Potri.001G429100.3 Potri.001G429100 Chr01  Potri.001G429600.1 Potri.001G429600 Chr01  Potri.001G429700.1 Potri.001G429700 Chr01  Potri.001G429800.1 Potri.001G429800 Chr01  Potri.001G429800.2 Potri.001G429800 Chr01  Potri.001G432200.1 Potri.001G432200 Chr01  Potri.001G432300.1 Potri.001G432300 Chr01  Potri.001G432300.2 Potri.001G432300 Chr01  Potri.001G432800.1 Potri.001G432800 Chr01 AT4G26090.1 Potri.001G433500.1 Potri.001G433500 Chr01  Potri.001G433700.1 Potri.001G433700 Chr01  Potri.001G433900.1 Potri.001G433900 Chr01  Potri.001G434000.1 Potri.001G434000 Chr01  Potri.001G434000.2 Potri.001G434000 Chr01  Potri.001G434000.3 Potri.001G434000 Chr01  Potri.001G434000.4 Potri.001G434000 Chr01  Potri.001G434700.1 Potri.001G434700 Chr01 AT4G26090.1 Potri.001G435100.1 Potri.001G435100 Chr01  Potri.001G443400.1 Potri.001G443400 Chr01  Potri.001G443700.1 Potri.001G443700 Chr01  Potri.001G443900.1 Potri.001G443900 Chr01 AT1G12210.1 Potri.001G444000.1 Potri.001G444000 Chr01  Potri.001G444000.2 Potri.001G444000 Chr01  Potri.001G444000.3 Potri.001G444000 Chr01  Potri.001G444100.1 Potri.001G444100 Chr01  Potri.001G444100.2 Potri.001G444100 Chr01  Potri.001G444500.1 Potri.001G444500 Chr01  Potri.001G444600.1 Potri.001G444600 Chr01  Potri.001G444700.1 Potri.001G444700 Chr01  Potri.001G445000.1 Potri.001G445000 Chr01  Potri.001G445200.1 Potri.001G445200 Chr01  Potri.001G445300.1 Potri.001G445300 Chr01 AT4G26090.1 Potri.001G445600.1 Potri.001G445600 Chr01  Potri.001G445600.2 Potri.001G445600 Chr01  Potri.001G445700.1 Potri.001G445700 Chr01  Potri.001G445900.1 Potri.001G445900 Chr01  Potri.001G446300.1 Potri.001G446300 Chr01  Potri.001G446600.1 Potri.001G446600 Chr01  Potri.001G446900.1 Potri.001G446900 Chr01  Potri.001G446900.2 Potri.001G446900 Chr01  Potri.001G447100.1 Potri.001G447100 Chr01  Potri.001G468600.1 Potri.001G468600 Chr01  Potri.001G472200.1 Potri.001G472200 Chr01  Potri.002G129300.1 Potri.002G129300 Chr02 AT4G33300.1 Potri.002G129300.2 Potri.002G129300 Chr02 AT4G33300.1 Potri.002G216800.1 Potri.002G216800 Chr02 AT3G07040.1 Potri.003G012900.1 Potri.003G012900 Chr03 AT3G07040.1 Potri.003G015500.1 Potri.003G015500 Chr03  Potri.003G017200.1 Potri.003G017200 Chr03  Potri.003G026900.1 Potri.003G026900 Chr03  Potri.003G055600.1 Potri.003G055600 Chr03  Potri.003G062100.1 Potri.003G062100 Chr03  Potri.003G099000.1 Potri.003G099000 Chr03 AT3G07040.1 Potri.003G099100.1 Potri.003G099100 Chr03 AT3G07040.1 Potri.003G099200.1 Potri.003G099200 Chr03  Potri.003G149800.1 Potri.003G149800 Chr03 AT5G43470.1 Potri.003G150200.1 Potri.003G150200 Chr03  Potri.003G199500.1 Potri.003G199500 Chr03  Potri.003G199600.1 Potri.003G199600 Chr03  Potri.003G200200.1 Potri.003G200200 Chr03  Potri.003G200200.2 Potri.003G200200 Chr03  Potri.003G200500.1 Potri.003G200500 Chr03  Potri.003G200800.1 Potri.003G200800 Chr03  Potri.003G201900.1 Potri.003G201900 Chr03  Potri.003G220600.1 Potri.003G220600 Chr03 AT3G07040.1 Potri.004G076700.1 Potri.004G076700 Chr04  Potri.004G077200.1 Potri.004G077200 Chr04  Potri.004G087800.1 Potri.004G087800 Chr04    Potri.004G169800.1 Potri.004G169800 Chr04  Potri.004G169800.2 Potri.004G169800 Chr04  Potri.004G170100.1 Potri.004G170100 Chr04  Potri.004G170200.1 Potri.004G170200 Chr04  Potri.004G170700.1 Potri.004G170700 Chr04  Potri.004G194800.1 Potri.004G194800 Chr04  Potri.004G194800.2 Potri.004G194800 Chr04  Potri.004G195200.1 Potri.004G195200 Chr04  Potri.004G196100.1 Potri.004G196100 Chr04  Potri.004G197900.1 Potri.004G197900 Chr04  Potri.004G198600.1 Potri.004G198600 Chr04  Potri.004G202700.1 Potri.004G202700 Chr04  Potri.005G007000.1 Potri.005G007000 Chr05  Potri.005G007800.1 Potri.005G007800 Chr05 AT3G07040.1 Potri.005G008000.1 Potri.005G008000 Chr05 AT3G07040.1 Potri.005G008700.1 Potri.005G008700 Chr05 AT3G07040.1 Potri.005G008700.2 Potri.005G008700 Chr05 AT3G07040.1 Potri.005G009100.1 Potri.005G009100 Chr05  Potri.005G009600.1 Potri.005G009600 Chr05 AT3G07040.1 Potri.005G009900.1 Potri.005G009900 Chr05 AT3G07040.1 Potri.005G010500.1 Potri.005G010500 Chr05  Potri.005G034900.1 Potri.005G034900 Chr05 AT3G07040.1 Potri.005G035700.1 Potri.005G035700 Chr05 AT3G07040.1 Potri.005G041100.1 Potri.005G041100 Chr05  Potri.005G041100.2 Potri.005G041100 Chr05 AT4G26090.1 Potri.005G041300.1 Potri.005G041300 Chr05 AT4G26090.1 Potri.005G042200.1 Potri.005G042200 Chr05  Potri.005G042400.1 Potri.005G042400 Chr05 AT4G26090.1 Potri.005G042400.2 Potri.005G042400 Chr05 AT4G26090.1 Potri.005G042900.1 Potri.005G042900 Chr05  Potri.005G061900.1 Potri.005G061900 Chr05  Potri.005G062000.1 Potri.005G062000 Chr05  Potri.005G062200.1 Potri.005G062200 Chr05  Potri.005G062200.2 Potri.005G062200 Chr05  Potri.005G062300.1 Potri.005G062300 Chr05  Potri.005G062600.1 Potri.005G062600 Chr05  Potri.006G014400.1 Potri.006G014400 Chr06 AT3G50950.1 Potri.006G273200.1 Potri.006G273200 Chr06  Potri.006G273200.2 Potri.006G273200 Chr06  Potri.007G039000.1 Potri.007G039000 Chr07  Potri.007G039100.1 Potri.007G039100 Chr07  Potri.007G039300.1 Potri.007G039300 Chr07  Potri.007G123200.1 Potri.007G123200 Chr07  Potri.007G137100.1 Potri.007G137100 Chr07  Potri.008G212200.1 Potri.008G212200 Chr08  Potri.009G056200.1 Potri.009G056200 Chr09  Potri.011G011900.1 Potri.011G011900 Chr11  Potri.011G015300.1 Potri.011G015300 Chr11  Potri.011G031400.1 Potri.011G031400 Chr11  Potri.011G040800.1 Potri.011G040800 Chr11  Potri.011G124100.1 Potri.011G124100 Chr11  Potri.011G127200.1 Potri.011G127200 Chr11  Potri.011G127300.1 Potri.011G127300 Chr11  Potri.011G127300.2 Potri.011G127300 Chr11  Potri.011G165700.1 Potri.011G165700 Chr11 AT3G07040.1 Potri.012G121900.1 Potri.012G121900 Chr12  Potri.012G122000.1 Potri.012G122000 Chr12  Potri.012G122200.1 Potri.012G122200 Chr12  Potri.012G122400.1 Potri.012G122400 Chr12  Potri.012G122500.1 Potri.012G122500 Chr12  Potri.012G123000.1 Potri.012G123000 Chr12  Potri.012G123000.2 Potri.012G123000 Chr12  Potri.012G123200.1 Potri.012G123200 Chr12  Potri.012G123500.1 Potri.012G123500 Chr12  Potri.013G007400.1 Potri.013G007400 Chr13  Potri.013G015700.1 Potri.013G015700 Chr13  Potri.013G015900.1 Potri.013G015900 Chr13  Potri.013G016000.1 Potri.013G016000 Chr13  Potri.013G016400.1 Potri.013G016400 Chr13  Potri.013G016600.1 Potri.013G016600 Chr13  Potri.013G016700.1 Potri.013G016700 Chr13  Potri.013G027300.1 Potri.013G027300 Chr13  Potri.013G027400.1 Potri.013G027400 Chr13  Potri.013G030600.1 Potri.013G030600 Chr13  Potri.013G056000.1 Potri.013G056000 Chr13 AT3G50950.1 Potri.013G097200.1 Potri.013G097200 Chr13  Potri.014G001900.1 Potri.014G001900 Chr14  Potri.014G002000.1 Potri.014G002000 Chr14  Potri.014G002200.1 Potri.014G002200 Chr14  Potri.014G002300.1 Potri.014G002300 Chr14  Potri.014G002900.1 Potri.014G002900 Chr14  Potri.014G002900.2 Potri.014G002900 Chr14  Potri.014G003200.1 Potri.014G003200 Chr14  Potri.014G003200.2 Potri.014G003200 Chr14  Potri.014G003400.1 Potri.014G003400 Chr14  Potri.014G003600.1 Potri.014G003600 Chr14  Potri.014G003600.2 Potri.014G003600 Chr14  Potri.014G005300.1 Potri.014G005300 Chr14  Potri.014G005600.1 Potri.014G005600 Chr14  Potri.014G005600.2 Potri.014G005600 Chr14  Potri.014G007600.1 Potri.014G007600 Chr14  Potri.014G009300.1 Potri.014G009300 Chr14  Potri.014G009400.1 Potri.014G009400 Chr14  Potri.014G010600.1 Potri.014G010600 Chr14  Potri.014G010700.1 Potri.014G010700 Chr14  Potri.014G010900.1 Potri.014G010900 Chr14  Potri.014G011400.1 Potri.014G011400 Chr14  Potri.014G011600.1 Potri.014G011600 Chr14  Potri.014G012000.1 Potri.014G012000 Chr14  Potri.014G063900.2 Potri.014G063900 Chr14  Potri.015G118100.1 Potri.015G118100 Chr15 AT3G07040.1 Potri.015G118100.2 Potri.015G118100 Chr15 AT3G07040.1 Potri.015G121800.1 Potri.015G121800 Chr15  Potri.016G092600.1 Potri.016G092600 Chr16 AT3G50950.1 Potri.016G092600.2 Potri.016G092600 Chr16 AT3G50950.1 Potri.017G014900.1 Potri.017G014900 Chr17  Potri.017G015100.1 Potri.017G015100 Chr17  Potri.017G015200.1 Potri.017G015200 Chr17  Potri.017G015300.1 Potri.017G015300 Chr17  Potri.017G015300.2 Potri.017G015300 Chr17  Potri.017G015600.1 Potri.017G015600 Chr17  Potri.017G015600.2 Potri.017G015600 Chr17  Potri.017G015600.3 Potri.017G015600 Chr17  Potri.017G015600.4 Potri.017G015600 Chr17  Potri.017G034200.1 Potri.017G034200 Chr17  Potri.017G034200.2 Potri.017G034200 Chr17  Potri.017G034200.3 Potri.017G034200 Chr17  Potri.017G034400.1 Potri.017G034400 Chr17  Potri.017G105700.1 Potri.017G105700 Chr17  Potri.017G121700.1 Potri.017G121700 Chr17  Potri.017G123500.1 Potri.017G123500 Chr17  Potri.017G127200.1 Potri.017G127200 Chr17  Potri.017G131200.1 Potri.017G131200 Chr17  Potri.017G133700.1 Potri.017G133700 Chr17  Potri.017G136700.1 Potri.017G136700 Chr17  Potri.017G140100.1 Potri.017G140100 Chr17  Potri.017G143400.1 Potri.017G143400 Chr17  Potri.017G143400.2 Potri.017G143400 Chr17  Potri.017G143500.1 Potri.017G143500 Chr17  Potri.017G143600.1 Potri.017G143600 Chr17  Potri.017G143600.2 Potri.017G143600 Chr17  Potri.017G143700.1 Potri.017G143700 Chr17  Potri.017G143800.1 Potri.017G143800 Chr17  Potri.017G143900.1 Potri.017G143900 Chr17  Potri.017G144100.1 Potri.017G144100 Chr17  Potri.017G144200.1 Potri.017G144200 Chr17  Potri.017G144300.1 Potri.017G144300 Chr17  Potri.017G144400.1 Potri.017G144400 Chr17  Potri.017G145000.1 Potri.017G145000 Chr17  Potri.017G145300.1 Potri.017G145300 Chr17  Potri.017G145600.1 Potri.017G145600 Chr17  Potri.018G003500.1 Potri.018G003500 Chr18  Potri.018G013500.1 Potri.018G013500 Chr18 AT3G07040.1 Potri.018G017900.1 Potri.018G017900 Chr18  Potri.018G080500.1 Potri.018G080500 Chr18  Potri.018G136700.1 Potri.018G136700 Chr18  Potri.018G137800.1 Potri.018G137800 Chr18  Potri.018G137900.1 Potri.018G137900 Chr18  Potri.018G138500.1 Potri.018G138500 Chr18  Potri.018G138500.2 Potri.018G138500 Chr18  Potri.019G002700.1 Potri.019G002700 Chr19  Potri.019G002800.1 Potri.019G002800 Chr19  Potri.019G002800.2 Potri.019G002800 Chr19  Potri.019G014500.1 Potri.019G014500 Chr19  Potri.019G020200.1 Potri.019G020200 Chr19  Potri.019G020200.2 Potri.019G020200 Chr19  Potri.019G020400.1 Potri.019G020400 Chr19  Potri.019G020500.1 Potri.019G020500 Chr19  Potri.019G022800.1 Potri.019G022800 Chr19  Potri.019G023300.1 Potri.019G023300 Chr19  Potri.019G097200.1 Potri.019G097200 Chr19  Potri.019G114300.1 Potri.019G114300 Chr19 AT4G12020.2 Potri.T001600.1 Potri.T001600 scaffold_20  Potri.T003600.1 Potri.T003600 scaffold_20  Potri.T003800.1 Potri.T003800 scaffold_20  Potri.T003900.1 Potri.T003900 scaffold_20  Potri.T004100.1 Potri.T004100 scaffold_20  Potri.T004100.2 Potri.T004100 scaffold_20  Potri.T004200.1 Potri.T004200 scaffold_20  Potri.T012000.1 Potri.T012000 scaffold_25  Potri.T012900.1 Potri.T012900 scaffold_25  Potri.T013200.1 Potri.T013200 scaffold_25  Potri.T013300.1 Potri.T013300 scaffold_25  Potri.T013300.2 Potri.T013300 scaffold_25  Potri.T013300.3 Potri.T013300 scaffold_25  Potri.T013600.1 Potri.T013600 scaffold_25  Potri.T013800.1 Potri.T013800 scaffold_25  Potri.T013900.1 Potri.T013900 scaffold_25  Potri.T014300.1 Potri.T014300 scaffold_25  Potri.T014900.1 Potri.T014900 scaffold_25 AT1G12220.1 Potri.T015200.1 Potri.T015200 scaffold_25  Potri.T015300.1 Potri.T015300 scaffold_25  Potri.T015300.2 Potri.T015300 scaffold_25  Potri.T015400.1 Potri.T015400 scaffold_25  Potri.T015500.1 Potri.T015500 scaffold_25  Potri.T015600.1 Potri.T015600 scaffold_25  Potri.T015900.1 Potri.T015900 scaffold_25 AT1G12210.1 Potri.T015900.2 Potri.T015900 scaffold_25 AT1G12220.1 Potri.T016200.1 Potri.T016200 scaffold_25    Potri.T016200.2 Potri.T016200 scaffold_25  Potri.T024700.1 Potri.T024700 scaffold_30  Potri.T024900.1 Potri.T024900 scaffold_30  Potri.T024900.2 Potri.T024900 scaffold_30  Potri.T025000.1 Potri.T025000 scaffold_30  Potri.T025100.1 Potri.T025100 scaffold_30  Potri.T025300.1 Potri.T025300 scaffold_30  Potri.T025500.1 Potri.T025500 scaffold_30  Potri.T025800.1 Potri.T025800 scaffold_30  Potri.T025900.1 Potri.T025900 scaffold_30  Potri.T026200.1 Potri.T026200 scaffold_30  Potri.T026400.1 Potri.T026400 scaffold_30  Potri.T026600.1 Potri.T026600 scaffold_30  Potri.T026700.1 Potri.T026700 scaffold_30  Potri.T026800.1 Potri.T026800 scaffold_30  Potri.T026900.1 Potri.T026900 scaffold_30  Potri.T027200.1 Potri.T027200 scaffold_30  Potri.T027300.1 Potri.T027300 scaffold_30  Potri.T027500.1 Potri.T027500 scaffold_30  Potri.T027700.1 Potri.T027700 scaffold_30  Potri.T028000.1 Potri.T028000 scaffold_30  Potri.T028100.1 Potri.T028100 scaffold_30  Potri.T028300.1 Potri.T028300 scaffold_30  Potri.T028500.1 Potri.T028500 scaffold_30  Potri.T028700.1 Potri.T028700 scaffold_30  Potri.T029000.1 Potri.T029000 scaffold_30  Potri.T040600.1 Potri.T040600 scaffold_39  Potri.T044500.1 Potri.T044500 scaffold_42  Potri.T044600.1 Potri.T044600 scaffold_42  Potri.T044800.1 Potri.T044800 scaffold_42  Potri.T046000.1 Potri.T046000 scaffold_42  Potri.T050100.2 Potri.T050100 scaffold_47  Potri.T052000.1 Potri.T052000 scaffold_48  Potri.T052300.1 Potri.T052300 scaffold_48  Potri.T052800.1 Potri.T052800 scaffold_48  Potri.T053000.1 Potri.T053000 scaffold_48  Potri.T059100.1 Potri.T059100 scaffold_61  Potri.T060300.1 Potri.T060300 scaffold_61  Potri.T060400.1 Potri.T060400 scaffold_61  Potri.T060500.1 Potri.T060500 scaffold_61  Potri.T060700.1 Potri.T060700 scaffold_61  Potri.T065900.1 Potri.T065900 scaffold_68  Potri.T065900.2 Potri.T065900 scaffold_68  Potri.T065900.3 Potri.T065900 scaffold_68  Potri.T065900.4 Potri.T065900 scaffold_68  Potri.T066200.1 Potri.T066200 scaffold_68  Potri.T068700.1 Potri.T068700 scaffold_73  Potri.T087700.1 Potri.T087700 scaffold_104  Potri.T087700.2 Potri.T087700 scaffold_104  Potri.T087900.1 Potri.T087900 scaffold_104  Potri.T092600.1 Potri.T092600 scaffold_122  Potri.T092600.2 Potri.T092600 scaffold_122  Potri.T092600.3 Potri.T092600 scaffold_122  Potri.T093200.1 Potri.T093200 scaffold_123 AT3G07040.1 Potri.T096100.1 Potri.T096100 scaffold_128  Potri.T098700.1 Potri.T098700 scaffold_139  Potri.T100800.1 Potri.T100800 scaffold_145  Potri.T100800.2 Potri.T100800 scaffold_145  Potri.T117700.1 Potri.T117700 scaffold_190  Potri.T117800.1 Potri.T117800 scaffold_190  Potri.T118000.1 Potri.T118000 scaffold_190  Potri.T118300.1 Potri.T118300 scaffold_190  Potri.T118300.2 Potri.T118300 scaffold_190  Potri.T129600.1 Potri.T129600 scaffold_241 AT3G07040.1 Potri.T129700.1 Potri.T129700 scaffold_241 AT3G07040.1 Potri.T129800.1 Potri.T129800 scaffold_241 AT3G07040.1 Potri.T130200.1 Potri.T130200 scaffold_241 AT3G07040.1 Potri.T133200.1 Potri.T133200 scaffold_268 AT3G07040.1 Potri.T143000.1 Potri.T143000 scaffold_388 AT3G07040.1 Potri.T143000.2 Potri.T143000 scaffold_388 AT3G07040.1 Potri.T154200.2 Potri.T154200 scaffold_607  Potri.T154200.3 Potri.T154200 scaffold_607  Potri.T160500.1 Potri.T160500 scaffold_733  Potri.T162100.1 Potri.T162100 scaffold_758  Potri.T162100.2 Potri.T162100 scaffold_758  Potri.T162100.3 Potri.T162100 scaffold_758  Potri.T162100.4 Potri.T162100 scaffold_758  Potri.T162100.5 Potri.T162100 scaffold_758  Potri.T169100.1 Potri.T169100 scaffold_960  Potri.T169200.1 Potri.T169200 scaffold_960  Potri.T174800.1 Potri.T174800 scaffold_1334  Potri.T176000.1 Potri.T176000 scaffold_1478  Potri.007G038600.1 Potri.007G038600 Chr07 AT3G50470.1 Potri.007G038800.1 Potri.007G038800 Chr07  Potri.009G091700.1 Potri.009G091700 Chr09 AT5G66630.1 Potri.002G030100.1 Potri.002G030100 Chr02  Potri.002G030400.1 Potri.002G030400 Chr02  Potri.002G030400.2 Potri.002G030400 Chr02  Potri.002G030400.3 Potri.002G030400 Chr02  Potri.005G232400.1 Potri.005G232400 Chr05  Potri.005G232500.1 Potri.005G232500 Chr05  Potri.010G144900.1 Potri.010G144900 Chr10 AT1G05760.1 Potri.010G144900.2 Potri.010G144900 Chr10 AT1G05760.1 Potri.012G140000.1 Potri.012G140000 Chr12  Potri.017G010900.1 Potri.017G010900 Chr17  Potri.017G010900.2 Potri.017G010900 Chr17  Potri.017G010900.3 Potri.017G010900 Chr17  Potri.017G011900.1 Potri.017G011900 Chr17  Potri.017G011900.2 Potri.017G011900 Chr17  Potri.017G011900.3 Potri.017G011900 Chr17  Potri.017G011900.4 Potri.017G011900 Chr17  Potri.017G011900.5 Potri.017G011900 Chr17  Potri.017G011900.6 Potri.017G011900 Chr17  Potri.017G012100.1 Potri.017G012100 Chr17  Potri.T173000.1 Potri.T173000 scaffold_1214  Potri.T173000.2 Potri.T173000 scaffold_1214   TS4.B. Pfam terms associated with NBS-LRRs domains based on a keyword search of Pfam database. Yellow highlights the Pfam terms enriched in introgressed regions  Accession ID Description Search word PF00560 LRR_1  Leucine Rich Repeat TIR-NBS-LRR; NBS-LRR PF00931 NB-ARC NB-ARC domain TIR-NBS-LRR; CC-NBS-LRR; NBS-LRR PF01419 Jacalin Jacalin-like lectin domain NBS-LRR PF01582 TIR TIR domain TIR-NBS-LRR; NBS-LRR PF05659 RPW8  Arabidopsis broad-spectrum mildew resistance protein RPW8 NBS-LRR PF07725 LRR_3  Leucine Rich Repeat TIR-NBS-LRR; NBS-LRR   PF13855 LRR_8  Leucine rich repeat TIR-NBS-LRR; CC-NBS-LRR; NBS-LRR  TS4.C. P. balsamifera introgressed genes in P. trichocarpa that are associated with enriched PF01582 (in bold)  Transcript genelist_atg_id genelist_go_id pfam_id genelist_panther_id blast_hit Potri.005G003900.1 AT1G72930-toll/interleukin-1 receptor-like; AT1G72920-Toll-Interleukin-Resistance (TIR) domain family protein GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN;PTHR23155:SF247-SUBFAMILY NOT NAMED Toll-Interleukin-Resistance (TIR) domain family protein Potri.005G004000.1  GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155:SF344-;PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN Potrs014685g18295.1;Potrs014685g18295.1 Potri.005G004100.1  GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN;PTHR23155:SF247-SUBFAMILY NOT NAMED Potra000608g04627.1;Potra000608g04627.1 Potri.005G004200.1 AT1G72930-toll/interleukin-1 receptor-like; AT1G72920-Toll-Interleukin-Resistance (TIR) domain family protein GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155:SF296-;PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN Potrs001866g03284.1;Potrs001866g03284.1;Potrs010647g15661.1;Potrs010647g15661.1 Potri.005G004300.1 AT1G02500.1    Potrs000571g32749.1 Potri.005G004400.1  GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN;PTHR23155:SF247-SUBFAMILY NOT NAMED Potra157021g26800.1;Potrs001866g03285.1;Potrs031907g32627.1   Potri.005G004500.1 AT1G72930-toll/interleukin-1 receptor-like; AT1G72920-Toll-Interleukin-Resistance (TIR) domain family protein GO:0005515-protein binding;GO:0005622-intracellular;GO:0007165-signal transduction;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR  PTHR23155:SF296-;PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN Potra197648g29242.1 Potri.007G142500.1  GO:0005524-ATP binding;GO:0043531-ADP binding;GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0006915-apoptosis;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune resp PF01582-TIR ;PF00931-NB-ARC  PTHR23155:SF344-;PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN Potra010334g26565.1 Potri.007G142600.1  GO:0005515-protein binding;GO:0043531-ADP binding;GO:0005524-ATP binding;GO:0006915-apoptosis PF00560-Leucine Rich Repeat;PF00931-NB-ARC  PTHR11017-LEUCINE RICH REPEAT PROTEIN;PTHR11017:SF20-DISEASE RESISTANCE PROTEIN Potra000502g03248.1;Potra004937g34476.1;Potra008707g26217.1;Potrs032407g23689.1;Potrs038354g24711.1 Potri.007G142700.1     Potrs005846g08200.1;Potrs019943g22616.1;Potrs034229g23878.1;Potrs038435g24736.1 Potri.007G142800.1  GO:0008270-zinc ion binding;GO:0016491-oxidoreductase activity;GO:0055114-oxidation reduction PF00107-Zinc-binding dehydrogenase PTHR11695-ALCOHOL DEHYDROGENASE RELATED;PTHR11695:SF5-BENZYLALCOHOL DEHYDROGENASE Potra174431g31205.1 Potri.007G142900.1  GO:0046983-protein dimerization activity PF05699-hAT family dimerisation    Potri.007G143000.1  GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune response PF01582-TIR   Potra004489g24976.1;Potrs147025g32243.1 Potri.007G143100.1  GO:0005524-ATP binding;GO:0043531-ADP binding;GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0006915-apoptosis;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to PF01582-TIR ;PF00931-NB-ARC  PTHR11017-LEUCINE RICH REPEAT PROTEIN;PTHR11017:SF20-DISEASE RESISTANCE PROTEIN Potra003566g22042.1;Potra004937g25225.1;Potra196233g29093.1   membrane;GO:0045087-innate immune resp Potri.007G143100.2  GO:0005524-ATP binding;GO:0043531-ADP binding;GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0006915-apoptosis;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune resp PF01582-TIR ;PF00931-NB-ARC  PTHR11017-LEUCINE RICH REPEAT PROTEIN;PTHR11017:SF20-DISEASE RESISTANCE PROTEIN  Potri.007G143100.3  GO:0043531-ADP binding;GO:0005515-protein binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0005524-ATP binding;GO:0006915-apoptosis;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune resp PF01582-TIR ;PF00931-NB-ARC  PTHR23155:SF344-;PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN  Potri.007G143200.1  GO:0005515-protein binding PF00560-Leucine Rich Repeat PTHR23155-LEUCINE-RICH REPEAT-CONTAINING PROTEIN;PTHR23155:SF48-SUBFAMILY NOT NAMED Potra187140g28483.1;Potrs016365g19125.1 Potri.007G143300.1  GO:0005515-protein binding;GO:0043531-ADP binding;GO:0007165-signal transduction;GO:0005622-intracellular;GO:0005524-ATP binding;GO:0006915-apoptosis;GO:0004888-transmembrane receptor activity;GO:0031224-intrinsic to membrane;GO:0045087-innate immune resp PF01582-TIR ;PF00560-Leucine Rich Repeat;PF00931-NB-ARC  PTHR11017-LEUCINE RICH REPEAT PROTEIN;PTHR11017:SF20-DISEASE RESISTANCE PROTEIN Potra000502g03247.1;Potra000502g03247.1;Potra000502g03247.1;Potra001122g09904.1;Potra003566g22040.1;Potra003566g22040.1; Potra005351g25369.1;Potra005351g25369.1;Potra005351g25369.1;Potra166452g27219.1;Potra166452g27219.1;Potra174365g27716.1;Potra174431g277  TS4.D P. trichocarpa introgressed genes in P. balsamifera that are associated with enriched PF00560 (in bold)  Transcript_Name genelist_atg_id genelist_go_id genelist_pfam_id genelist_panther_id blast_hit   Potri.005G074200.2  GO:0004672-protein kinase activity;GO:0005524-ATP binding;GO:0006468-protein amino acid phosphorylation;GO:0005515-protein binding PF00069-Protein kinase ;PF00560-Leucine Rich Repeat;PF08263-Leucine rich repeat N-terminal  PTHR24420:SF422-SUBFAMILY NOT NAMED;PTHR24420-FAMILY NOT NAMED  Potri.008G014300.2  GO:0004672-protein kinase activity;GO:0005524-ATP binding;GO:0006468-protein amino acid phosphorylation;GO:0005515-protein binding PF00069-Protein kinase ;PF00560-Leucine Rich Repeat PTHR24420-FAMILY NOT NAMED;PTHR24420:SF465-SUBFAMILY NOT NAMED  Potri.016G120500.1 AT1G45616.1 GO:0005515-protein binding PF00560-Leucine Rich Repeat;PF08263-Leucine rich repeat N-terminal  PTHR24420-FAMILY NOT NAMED;PTHR24420:SF473-SUBFAMILY NOT NAMED Potra004545g25051.1;Potra004545g25051.1;Potra005111g25277.1;Potra005111g25277.1;Potra005111g25277.1;Potra005111g25277.1 ;Potra005111g25277.1;Potra005111g25277.1;Potra005111g25277.1 Potri.016G120600.1 AT1G45616.1 GO:0005515-protein binding PF00560-Leucine Rich Repeat;PF08263-Leucine rich repeat N-terminal  PTHR24420-FAMILY NOT NAMED;PTHR24420:SF473-SUBFAMILY NOT NAMED  Potri.016G126300.1 AT3G51740.1 GO:0004672-protein kinase activity;GO:0005524-ATP binding;GO:0006468-protein amino acid phosphorylation;GO:0005515-protein binding PF00069-Protein kinase ;PF00560-Leucine Rich Repeat;PF08263-Leucine rich repeat N-terminal  PTHR24420:SF863-;PTHR24420-FAMILY NOT NAMED Potra003009g20523.1;Potrs011169g16359.1 Potri.016G126400.1 AT2G38360.1  PF03208-PRA1 family protein PTHR19317-PRENYLATED RAB ACCEPTOR 1-RELATED Potra003009g20524.1;Potrs011169g16356.1 Potri.016G126500.1   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED Potra003009g20525.1;Potrs011169g16355.1 Potri.016G126500.2   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED    Potri.016G126600.1   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED Potrs039750g25219.1 Potri.016G126700.2   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED  Potri.016G126700.3   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED  Potri.016G126700.1   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED  Potri.016G126800.1   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED Potra186950g28468.1;Potrs010303g15399.1;Potrs031694g23630.1 Potri.016G126800.2   PF01187-Macrophage migration inhibitory factor (MIF) PTHR11954-MACROPHAGE MIGRATION INHIBITORY FACTOR RELATED;PTHR11954:SF3-MACROPHAGE MIGRATION INHIBITORY FACTOR-RELATED    Potri.016G126900.1 AT1G45616.1 GO:0005515-protein binding PF00560-Leucine Rich Repeat;PF08263-Leucine rich repeat N-terminal  PTHR24420-FAMILY NOT NAMED;PTHR24420:SF473-SUBFAMILY NOT NAMED   Table S5A. ANOVAs comparing the average Tajima’s D values in each introgressed regions with that in windows without signals of unusually high levels of introgression  > summary(lm(TajimaD_tricho~introg, data=all)) > summary(lm(TajimaD_balsa~introg, data=all))     Call: Call: lm(formula = TajimaD_tricho ~ introg, data = all) lm(formula = TajimaD_balsa ~ introg, data = all)     Residuals: Residuals:     Min      1Q  Median      3Q     Max      Min      1Q  Median      3Q     Max  -2.5895 -0.4742  0.0182  0.4734  3.2937  -2.7289 -0.5440 -0.0414  0.5437  3.8267      Coefficients: Coefficients:                Estimate Std. Error t value Pr(>|t|)                    Estimate Std. Error t value Pr(>|t|)     (Intercept)          0.064321   0.005570  11.549  < 2e-16 *** (Intercept)          0.08938    0.00638  14.009  < 2e-16 *** introgintrog10_int   0.442538   0.164259   2.694  0.00706 **  introgintrog10_int  -0.16780    0.18807  -0.892 0.372272     introgintrog11a_int -0.037262   0.237963  -0.157  0.87557     introgintrog11a_int -0.03997    0.27245  -0.147 0.883369     introgintrog11b_int -0.011208   0.237963  -0.047  0.96243     introgintrog11b_int  0.35763    0.27245   1.313 0.189317     introgintrog11c_int -0.148710   0.131077  -1.135  0.25659     introgintrog11c_int -0.57092    0.15007  -3.804 0.000143 *** introgintrog12_inb   0.195848   0.188157   1.041  0.29795     introgintrog12_inb  -0.20498    0.21543  -0.952 0.341352     introgintrog14a_int  0.169789   0.137463   1.235  0.21679     introgintrog14a_int  0.21185    0.15739   1.346 0.178300     introgintrog14b_int -0.139617   0.284397  -0.491  0.62349     introgintrog14b_int  0.17303    0.32562   0.531 0.595156     introgintrog15a_int -0.267137   0.137463  -1.943  0.05199 .   introgintrog15a_int  0.25926    0.15739   1.647 0.099512 .   introgintrog15b_int -0.110646   0.156964  -0.705  0.48087     introgintrog15b_int  0.08085    0.17971   0.450 0.652805     introgintrog16a_inb -0.043668   0.217241  -0.201  0.84069     introgintrog16a_inb  0.05036    0.24873   0.202 0.839541     introgintrog16b_inb  0.078816   0.250828   0.314  0.75336     introgintrog16b_inb  0.04488    0.28718   0.156 0.875814     introgintrog16c_inb -0.072666   0.131077  -0.554  0.57933     introgintrog16c_inb  0.12661    0.15007   0.844 0.398891       introgintrog16d_inb -0.054808   0.150563  -0.364  0.71584     introgintrog16d_inb -0.14630    0.17239  -0.849 0.396065     introgintrog17a_int  0.073234   0.116216   0.630  0.52860     introgintrog17a_int  0.09287    0.13306   0.698 0.485210     introgintrog17b_int  0.148392   0.125507   1.182  0.23709     introgintrog17b_int  0.12075    0.14370   0.840 0.400740     introgintrog17c_int  0.121943   0.131077   0.930  0.35222     introgintrog17c_int -0.05397    0.15007  -0.360 0.719152     introgintrog1a_int   0.057106   0.168311   0.339  0.73440     introgintrog1a_int  -0.28511    0.18807  -1.516 0.129536     introgintrog1b_int  -0.720639   0.168311  -4.282 1.86e-05 *** introgintrog1b_int  -0.30617    0.19271  -1.589 0.112128     introgintrog3_inb    0.358891   0.172679   2.078  0.03769 *   introgintrog3_inb    0.34048    0.19771   1.722 0.085060 .   introgintrog3_int    0.229475   0.139809   1.641  0.10074     introgintrog3_int    0.10458    0.16007   0.653 0.513534     introgintrog5a_inb   0.389826   0.139809   2.788  0.00530 **  introgintrog5a_inb   0.21761    0.15739   1.383 0.166789     introgintrog5a_int  -0.198803   0.208724  -0.952  0.34087     introgintrog5a_int  -0.21783    0.23898  -0.911 0.362044     introgintrog5b_inb   0.052626   0.153663   0.342  0.73200     introgintrog5b_inb  -0.12671    0.17594  -0.720 0.471387     introgintrog5b_int   0.083964   0.208724   0.402  0.68749     introgintrog5b_int  -0.92361    0.23898  -3.865 0.000112 *** introgintrog6_int    0.143613   0.250828   0.573  0.56695     introgintrog6_int   -0.37428    0.28718  -1.303 0.192495     introgintrog7_int   -0.337455   0.111060  -3.038  0.00238 **  introgintrog7_int   -0.05223    0.12716  -0.411 0.681228     introgintrog8_inb    0.215221   0.112284   1.917  0.05528 .   introgintrog8_inb    0.47102    0.12856   3.664 0.000249 *** introgintrog9_int    0.008387   0.172679   0.049  0.96126     introgintrog9_int    0.12510    0.19771   0.633 0.526904     --- --- Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   Residual standard error: 0.7523 on 18872 degrees of freedom Residual standard error: 0.8613 on 18853 degrees of freedom   (823 observations deleted due to missingness)   (842 observations deleted due to missingness) Multiple R-squared:  0.00352, Adjusted R-squared:  0.002042  Multiple R-squared:  0.003591, Adjusted R-squared:  0.002111  F-statistic: 2.381 on 28 and 18872 DF,  p-value: 5.481e-05 F-statistic: 2.427 on 28 and 18853 DF,  p-value: 3.666e-05  Table S5B. Introgressed regions and windows with Tajima's D values above 95% or below 5% the genome wide distribution  introgressed region in_species TajimaD.tricho<5% TajimaD.tricho>95% TajimaD.balsa<5% TajimaD.balsa>95% 1a_int in tricho NA tricho95 balsa5 NA 1b_int in tricho tricho5 NA NA NA 3_inb in balsa tricho5 tricho95 NA NA 3_int in tricho NA tricho95 balsa5 balsa95 5a_int in tricho NA NA NA NA 5a_inb in balsa NA tricho95 balsa5 balsa95 5b_inb in balsa NA tricho95 balsa5 NA   5b_int in tricho NA tricho95 balsa5 NA 6_int in tricho NA NA balsa5 NA 7_int in tricho tricho5 NA NA NA 8_inb in balsa tricho5 tricho95 balsa5 balsa95 9_int in tricho tricho5 NA balsa5 NA 10_int in tricho NA tricho95 balsa5 balsa95 11a_int in tricho tricho5 NA NA NA 11b_int in tricho tricho5 tricho95 balsa5 balsa95 11c_int in tricho tricho5 NA balsa5 NA 12_inb in balsa NA tricho95 NA NA 14a_int in tricho NA tricho95 NA balsa95 14b_int in tricho NA NA balsa5 NA 15a_int in tricho tricho5 tricho95 NA balsa95 15b_int in tricho NA tricho95 NA balsa95 16a_inb in balsa NA NA NA balsa95 16a_inb in balsa NA NA NA NA 16c_inb in balsa tricho5 tricho95 balsa5 balsa95 16d_inb in balsa tricho5 NA balsa5 balsa95 17a_int in tricho tricho5 tricho95 NA balsa95 17b_int in tricho tricho5 tricho95 balsa5 balsa95 17c_int in tricho NA tricho95 NA balsa95  Table S6. Alpha values across all the introgressed regions for the 50 pure species individuals (P. trichocarpa and P. balsamifera).  introgressed alpha_pure_P.balsamifera Details alpha_pure_P.trichocarpa  all_regions -0.1060826  -0.02488887  ch01a_tricho 1 Ds=0 1 Ds=0 ch01b_tricho NA Ds=0;Dn=10 NA Ds=0;Dn=0 ch03_balsa NA Ds=0;Dn=11 NA Ds=0;Dn=1 ch03_tricho 0.621738773 positive CI: 0.1456,  1.1512  0.588374236 positive CI: 0.0596,  1.1874 ch05a_balsa 1 Ds=0 1 Ds=0 ch05a_tricho NA Ds=0;Dn=12 NA Ds=0;Dn=2 ch05b_balsa NA Ds=0;Dn=13 NA Ds=0;Dn=3 ch05b_tricho 0.034565002 positive 0.242979692 positive ch05c_balsa NA Ds=0;Dn=14 NA Ds=0;Dn=4 ch06_tricho NA Ds=0;Dn=15 NA Ds=0;Dn=5 ch07_tricho 1 Ds=0 1 Ds=0 ch08_balsa 0.170913046 positive 0.238101493 positive ch09_tricho 1 Ds=0 1 Ds=0 ch10_tricho 0.061923737 positive 0.276997289 positive ch11a_tricho -4.614421356  -2.925123321  ch11b_tricho 1 Ds=0 1 Ds=0 ch11c_tricho -0.696151996  -0.437267446  ch12_balsa NA Ds=0;Dn=16 NA Ds=0;Dn=6   ch14a_tricho -0.043281124  0.156226502 positive ch14b_tricho NA Ds=0;Dn=17 NA Ds=0;Dn=7 ch14c_tricho 1 Ds=0 1 Ds=0 ch15a_tricho -0.315246057  -0.089640638  ch15b_tricho NA Ds=0;Dn=18 NA Ds=0;Dn=8 ch16a_balsa 0.011222111 positive 0.005530754 positive ch16b_balsa NA Ds=0;Dn=19 NA Ds=0;Dn=9 ch16c_balsa -0.456108089  -0.420812025  ch16d_balsa -0.308860981  -0.24154362  ch17a_tricho 0.126002601 positive 0.176344905 positive ch17b_tricho 0.169101965 positive 0.183512363 positive ch17c_tricho 1 Ds=0 1 Ds=0  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.42591.1-0364052/manifest

Comment

Related Items