Open Collections

UBC Graduate Research

Aesthetic Assessment of Drinking Water at UBC: A Comparison of Waterfillz and Tap Water Bailey, Sam; Robinson, Shona Apr 8, 2013

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
42591-Bailey_Sam_et_al_CIVL562_Appendices_Aesthetic_Assessment_2013.pdf [ 17.35MB ]
42591-Bailey_Sam_et_al_CIVL562_Aesthetic_Assessment_Drinking_Water_2013.pdf [ 242.87kB ]
Metadata
JSON: 42591-1.0075774.json
JSON-LD: 42591-1.0075774-ld.json
RDF/XML (Pretty): 42591-1.0075774-rdf.xml
RDF/JSON: 42591-1.0075774-rdf.json
Turtle: 42591-1.0075774-turtle.txt
N-Triples: 42591-1.0075774-rdf-ntriples.txt
Original Record: 42591-1.0075774-source.json
Full Text
42591-1.0075774-fulltext.txt
Citation
42591-1.0075774.ris

Full Text

	 ?	 ?SUPPORTING	 ?INFORMATION	 ?APPENDICES	 ?A-??H	 ?	 ?Aesthetic	 ?Assessment	 ?of	 ?Drinking	 ?Water	 ?at	 ?UBC:	 ?A	 ?Comparison	 ?of	 ?Waterfillz	 ?and	 ?Tap	 ?Water	 ?Civil	 ?562	 ?Project	 ?Submitted	 ?April	 ?8th,	 ?2013	 ?to	 ?Pierre	 ?B?rub?	 ?Sam	 ?Bailey	 ?Shona	 ?Robinson	 ?	 ? 	 ?	 ?	 ?Appendix	 ?A	 ?-??	 ?Preliminary	 ?Study	 ?The	 ?following	 ?outlines	 ?the	 ?preliminary	 ?range-??finding	 ?study,	 ?which	 ?was	 ?conducted	 ?in	 ?order	 ?to	 ?determine	 ?the	 ?aesthetic	 ?factors	 ?of	 ?interest	 ?as	 ?well	 ?as	 ?necessary	 ?sample	 ?number	 ?and	 ?aliquot	 ?volumes.	 ?As	 ?quality	 ?assurance	 ?was	 ?not	 ?carried	 ?out	 ?for	 ?any	 ?of	 ?these	 ?findings,	 ?the	 ?authors	 ?assign	 ?no	 ?statistical	 ?validity	 ?to	 ?the	 ?results	 ?and	 ?emphasize	 ?that	 ?they	 ?are	 ?purely	 ?exploratory.	 ?Preliminary	 ?sample	 ?collection	 ?Aliquots	 ?were	 ?collected	 ?on	 ?2013/02/07	 ?at	 ?5pm,	 ?as	 ?well	 ?as	 ?2013/02/08	 ?at	 ?8am	 ?from	 ?W1	 ?and	 ?W3	 ?using	 ?the	 ?protocol	 ?outlined	 ?in	 ?Appendix	 ?D.	 ?Aliquots	 ?were	 ?collected	 ?for	 ?HPC	 ?(20	 ?mL),	 ?TOC	 ?(40	 ?mL),	 ?temperature	 ?(50	 ?mL,	 ?onsite),	 ?chlorine	 ?(25	 ?mL,	 ?onsite),	 ?conductivity,	 ?turbidity,	 ?colour,	 ?and	 ?pH	 ?analysis	 ?(50	 ?mL	 ?total	 ?for	 ?these).	 ?Preliminary	 ?sample	 ?analysis	 ?Water	 ?was	 ?analyzed	 ?for	 ?bacteria	 ?using	 ?the	 ?spread-??plate	 ?agar	 ?method,	 ?similar	 ?to	 ?that	 ?outlined	 ?in	 ?Appendix	 ?D.	 ?However,	 ?instead	 ?of	 ?filtration	 ?of	 ?water,	 ?0.25	 ?mL	 ?of	 ?the	 ?aliquot	 ?was	 ?applied	 ?directly	 ?to	 ?the	 ?agar	 ?plate.	 ?Temperature,	 ?chlorine	 ?and	 ?TOC	 ?analyses	 ?used	 ?the	 ?protocols	 ?used	 ?in	 ?the	 ?main	 ?experiment	 ?(Appendix	 ?D).	 ?Conductivity,	 ?pH,	 ?turbidity	 ?and	 ?colour	 ?were	 ?measured	 ?using	 ?laboratory	 ?instruments.	 ?An	 ?Oakton	 ?300	 ?Series	 ?conductivity	 ?meter	 ?was	 ?used	 ?to	 ?estimate	 ?salinity	 ?of	 ?each	 ?water	 ?source.	 ?The	 ?pH	 ?was	 ?measured	 ?using	 ?a	 ?Beckmann	 ??44	 ?pH	 ?meter.	 ?Turbidity	 ?was	 ?measured	 ?using	 ?a	 ?Hach	 ?2100P	 ?Turbidimeter.	 ?Apparent	 ?colour	 ?(PtCo	 ?units)	 ?was	 ?assessed	 ?using	 ?a	 ?Hach	 ?DR2810	 ?UV-??Vis	 ?Spectrophotometer.	 ?Methods	 ?used	 ?for	 ?each	 ?instrument	 ?were	 ?as	 ?specified	 ?by	 ?the	 ?manufacturer.	 ?Preliminary	 ?results	 ?&	 ?discussion	 ?The	 ?results	 ?of	 ?our	 ?preliminary	 ?sampling	 ?are	 ?presented	 ?in	 ?Table	 ?1,	 ?below.	 ?Sample	 ?identifiers	 ?are	 ?like	 ?those	 ?in	 ?the	 ?main	 ?experiment,	 ?described	 ?in	 ?Table	 ?5,	 ?Appendix	 ?D.	 ?	 ? 2013/02/07,	 ?5pm	 ? 2013/02/08,	 ?8am	 ?W1	 ? T1	 ? W4	 ? T4	 ? W1	 ? T1	 ? W4	 ? T4	 ?Temperature	 ?(?C)	 ? 11.7	 ? 6.8	 ? 13.7	 ? 7.5	 ? 11.5	 ? 8.6	 ? 11.2	 ? 6.3	 ?Chlorine	 ?(ppm)	 ? 0	 ? 0.64	 ? 0	 ? 0.6	 ? 0	 ? 0.6	 ? 0	 ? 0.5	 ?HPC	 ?(CFU/100	 ?mL?)	 ? 0	 ? 266	 ? 600	 ? 0	 ? 100	 ? -??	 ? 100	 ? -??	 ?TOC	 ?(ppm)	 ? 0.86	 ? 0.78	 ? 0.12	 ? 0.78	 ? 0.70	 ? 0.84	 ? 0.11	 ? 0.82	 ?Conductivity	 ?(?S/cm)	 ? 32.3	 ? 33.5	 ? 32.8	 ? 33.0	 ? 27.5	 ? 26.4	 ? 26.9	 ? 26.8	 ?pH	 ? 6.74	 ? 6.64	 ? 6.57	 ? 6.69	 ? 6.04	 ? 6.42	 ? 6.23	 ? 6.41	 ?Turbidity	 ?(NTU)	 ? 0.040	 ? 0.047	 ? 0.027	 ? 0.093	 ? 0.067	 ? 0.127	 ? 0.100	 ? 0.200	 ?Colour	 ?(PtCo	 ?units)	 ? 1.7	 ? 1.3	 ? 1	 ? 1.3	 ? 1.3	 ? 1.3	 ? 1	 ? 2.7	 ?Table	 ?1.	 ?Data	 ?for	 ?all	 ?preliminary	 ?parameters.	 ??CFU/mL,	 ?spread	 ?plate	 ?method,	 ?48	 ?hrs/35?C,	 ?Difco?	 ?Agar	 ?	 ?Based	 ?on	 ?the	 ?above	 ?results,	 ?temperature,	 ?chlorine,	 ?and	 ?TOC	 ?showed	 ?the	 ?most	 ?interesting	 ?results	 ?when	 ?considered	 ?in	 ?conjunction	 ?with	 ?aesthetically	 ?relevant	 ?levels.	 ?Although	 ?conductivity	 ?(a	 ?surrogate	 ?for	 ?dissolved	 ?salts)	 ?and	 ?pH	 ?can	 ?both	 ?affect	 ?taste,	 ?the	 ?levels	 ?observed	 ?for	 ?tap	 ?and	 ?Waterfillz	 ?water	 ?were	 ?not	 ?noticeably	 ?different	 ?making	 ?comparison	 ?unnecessary.	 ?The	 ?turbidity	 ?and	 ?colour	 ?were	 ?detected	 ?by	 ?	 ?	 ?instruments	 ?but	 ?were	 ?not	 ?visually	 ?discernable	 ?suggesting	 ?they	 ?were	 ?so	 ?low	 ?as	 ?to	 ?be	 ?aesthetically	 ?irrelevant.	 ?The	 ?HPC	 ?results	 ?above,	 ?which	 ?used	 ?the	 ?spread	 ?plate	 ?method,	 ?required	 ?further	 ?investigation.	 ?A	 ?follow-??up	 ?test	 ?using	 ?the	 ?membrane	 ?filtration	 ?method	 ?provided	 ?far	 ?more	 ?informative	 ?data.	 ?These	 ?results,	 ?presented	 ?in	 ?Table	 ?2,	 ?included	 ?some	 ?inaccurate,	 ?out	 ?of	 ?range	 ?counts,	 ?but	 ?informed	 ?the	 ?dilutions	 ?required	 ?for	 ?subsequent	 ?samples.	 ?	 ? 2013/02/14	 ?W1	 ? T1	 ? W2	 ? T2	 ? W3	 ? T3	 ? W4	 ? T4	 ?HPC	 ?(CFU/100	 ?mL?)	 ? <200	 ? 67	 ? 7267	 ? 167	 ? >20000	 ? 400	 ? 18533	 ? 0	 ?Table	 ?2.	 ?Data	 ?from	 ?preliminary	 ?HPC	 ?membrane	 ?filtration	 ?test,	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?	 ?	 ? 	 ?	 ?	 ?Appendix	 ?B	 ??	 ?Sizing	 ?Experiment	 ?Description	 ?To	 ?determine	 ?the	 ?sample	 ?size	 ?required	 ?for	 ?the	 ?main	 ?experiment,	 ?the	 ?following	 ?calculations	 ?were	 ?performed.	 ?Sample	 ?sizing	 ?was	 ?considered	 ?with	 ?respect	 ?to	 ?only	 ?the	 ?first	 ?(main)	 ?objective.	 ?The	 ?preliminary	 ?study	 ?identified	 ?marked	 ?differences	 ?in	 ?chlorine,	 ?TOC	 ?and	 ?temperature.	 ?Chlorine	 ?showed	 ?complete	 ?removal	 ?in	 ?all	 ?instances,	 ?so	 ?would	 ?be	 ?the	 ?least	 ?conservative	 ?parameter	 ?for	 ?sizing.	 ?Total	 ?organic	 ?carbon	 ?showed	 ?marked	 ?but	 ?widely	 ?varying	 ?removal.	 ?Population	 ?variance	 ?was	 ?too	 ?high	 ?to	 ?provide	 ?a	 ?reasonable	 ?estimate	 ?of	 ?experiment	 ?sizing.	 ?Temperature	 ?showed	 ?obvious	 ?differences	 ?and	 ?had	 ?relatively	 ?constant	 ?variance,	 ?so	 ?was	 ?used	 ?for	 ?sizing.	 ?	 ?Calculations	 ?Sample	 ?size	 ?was	 ?calculated	 ?assuming	 ?a	 ?pre-??specified	 ?margin	 ?of	 ?error	 ?(?)	 ?for	 ?temperature,	 ?t-??statistic,	 ?a	 ?95%	 ?confidence	 ?interval	 ?and	 ?sample	 ?variance	 ?(?).	 ?Sample	 ?size	 ?is	 ?then	 ?calculated	 ?by	 ?the	 ?following:	 ?? =  ? (?????,???? ??)?1 + (?????,???? ??)?/?	 ?Where	 ??,	 ?the	 ?total	 ?population	 ?size,	 ?is	 ?large	 ?in	 ?comparison	 ?to	 ?the	 ?sample	 ?size,	 ?the	 ?denominator	 ?simplifies	 ?to	 ?1	 ?+	 ?(0).	 ?The	 ?same	 ?methods,	 ?detailed	 ?in	 ?Appendix	 ?F,	 ?were	 ?used	 ?to	 ?calculate	 ?paired	 ?difference	 ?and	 ?sample	 ?standard	 ?deviation	 ?for	 ?preliminary	 ?temperature	 ?results.	 ?Sample	 ?standard	 ?deviation	 ?was	 ?1.37?C.	 ?An	 ?acceptable	 ?margin	 ?of	 ?error	 ?was	 ?initially	 ?set	 ?at	 ?3?C.	 ?	 ?Assuming	 ?an	 ?initial	 ?estimate	 ?for	 ??	 ?(using	 ?? ? 1	 ?for	 ?t-??statistic)	 ?the	 ?equation	 ?above	 ?can	 ?be	 ?iterated	 ?to	 ?obtain	 ?the	 ?actual	 ?value	 ?of	 ??.	 ?pair	 ? ?(W-??T)	 ?(?C)	 ? mean,	 ?x	 ?(?C)	 ? margin,	 ??	 ?(?C)	 ? d	 ?=	 ?x	 ?-??	 ??	 ?(?C)	 ? s	 ?(?C)	 ?1	 ? 4.87	 ? 4.71	 ? 3	 ? 1.71	 ? 1.37	 ?2	 ? 6.23	 ?3	 ? 2.9	 ?4	 ? 4.83	 ?Table	 ?3:	 ?Preliminary	 ?temperature	 ?results	 ?with	 ?sample	 ?standard	 ?deviation	 ?(s)	 ?and	 ?pre-??specified	 ?margin	 ?of	 ?error	 ?(d)	 ?initial	 ?n	 ? t-??value	 ?(n-??1)	 ? calculated	 ?n	 ?5	 ? 2.571	 ? 4.26	 ?4	 ? 3.182	 ? 6.52	 ?Table	 ?4:	 ?Iterated	 ?calculations	 ?for	 ?sample	 ?size	 ?based	 ?on	 ?an	 ?initial	 ?guess	 ?of	 ?n	 ?As	 ?shown	 ?in	 ?table	 ?4,	 ?the	 ?required	 ?sample	 ?size,	 ?calculated	 ?based	 ?on	 ?temperature,	 ?lies	 ?somewhere	 ?between	 ?4<n<	 ?5.	 ?Because	 ?this	 ?sample	 ?size	 ?is	 ?relatively	 ?small,	 ?n=8	 ?was	 ?chosen	 ?to	 ?overestimate	 ?and	 ?allow	 ?for	 ?two	 ?data	 ?points	 ?per	 ?Waterfillz	 ?machine/tap	 ?pair.	 ?Subsequent	 ?sampling	 ?identified	 ?that	 ?the	 ?initial	 ?estimate	 ?for	 ?margin	 ?of	 ?error	 ?was	 ?conservative.	 ?Using	 ?8	 ?samples,	 ?d	 ?was	 ?as	 ?high	 ?as	 ?5?C,	 ?which	 ?correlated	 ?to	 ?perceivable	 ?thresholds	 ?identified	 ?in	 ?literature.	 ?	 ?	 ?Appendix	 ?C	 ?-??	 ?Safety	 ?Considerations	 ?Analyst	 ?safety	 ?considerations	 ?For	 ?all	 ?analyses,	 ?appropriate	 ?safety	 ?protocols	 ?were	 ?followed.	 ?Lab	 ?coats,	 ?gloves	 ?and	 ?safety	 ?glasses	 ?were	 ?worn	 ?in	 ?the	 ?laboratory.	 ?Safety	 ?equipment	 ?was	 ?not	 ?worn	 ?for	 ?fieldwork,	 ?with	 ?the	 ?exception	 ?of	 ?nitrile	 ?gloves	 ?for	 ?on-??site	 ?chlorine	 ?analysis.	 ?	 ?Disposal	 ?considerations	 ?All	 ?samples	 ?were	 ?disposed	 ?of	 ?directly	 ?to	 ?the	 ?drain	 ?after	 ?analysis,	 ?with	 ?the	 ?exception	 ?of	 ?the	 ?HPC	 ?agar	 ?plates	 ?and	 ?the	 ?acidic	 ?waste	 ?from	 ?the	 ?total	 ?organic	 ?carbon	 ?detector.	 ?The	 ?HPC	 ?agar	 ?plates	 ?are	 ?a	 ?potential	 ?biohazard,	 ?so	 ?they	 ?are	 ?autoclaved	 ?and	 ?disposed	 ?of	 ?in	 ?a	 ?separate	 ?bin	 ?in	 ?the	 ?lab.	 ?The	 ?acidic	 ?TOC	 ?waste	 ?was	 ?neutralized	 ?with	 ?calcium	 ?carbonate	 ?to	 ?above	 ?a	 ?pH	 ?of	 ?5	 ?before	 ?disposal	 ?to	 ?the	 ?drain.	 ?Notes	 ?for	 ?selected	 ?reagents	 ?Please	 ?refer	 ?to	 ?MSDS	 ?for	 ?comprehensive	 ?information	 ?on	 ?reagents.	 ?Phosphoric	 ?acid,	 ?85%	 ?-??	 ?reagent	 ?for	 ?TOC	 ?analyzer	 ?	 ? -??	 ?highly	 ?corrosive	 ?hazard	 ?	 ? -??	 ?severe	 ?irritant	 ?case	 ?of	 ?skin/eye	 ?contact	 ?or	 ?ingestion	 ?	 ? -??	 ?slight	 ?inhalation	 ?hazard	 ?Sodium	 ?hypochlorite,	 ?5.25%	 ?-??	 ?for	 ?preparation	 ?of	 ?chlorine	 ?spikes	 ?	 ? -??irritant	 ?hazard	 ?in	 ?case	 ?of	 ?skin/eye	 ?contact,	 ?ingestion	 ?or	 ?inhalation	 ?Sodium	 ?persulfate	 ?-??	 ?reagent	 ?for	 ?TOC	 ?analyzer	 ?	 ? -??very	 ?hazardous	 ?irritant	 ?in	 ?case	 ?of	 ?skin/eye	 ?contact	 ?	 ? -??hazard	 ?in	 ?case	 ?of	 ?ingestion	 ?	 ? -??highly	 ?reactive	 ?with	 ?reducing	 ?agents,	 ?organic	 ?material	 ? 	 ?	 ?	 ?Appendix	 ?D	 ?-??	 ?Sampling	 ?&	 ?Analysis	 ?Protocols	 ?Sample	 ?collection	 ?Sampling	 ?of	 ?each	 ?Waterfillz	 ?station	 ?was	 ?performed	 ?in	 ?pair	 ?with	 ?the	 ?nearest	 ?tap	 ?or	 ?fountain	 ?water	 ?source.	 ?It	 ?was	 ?assumed	 ?that	 ?taps	 ?and	 ?fountains	 ?were	 ?in	 ?direct	 ?connection	 ?to	 ?the	 ?municipal	 ?distribution	 ?system	 ?with	 ?no	 ?intermediate	 ?treatment	 ?or	 ?storage,	 ?beyond	 ?the	 ?volume	 ?held	 ?in	 ?piping,	 ?thereby	 ?providing	 ?a	 ?representative	 ?sample	 ?of	 ?a	 ?common	 ?background	 ?water	 ?supply.	 ?The	 ?measured	 ?chlorine	 ?residual	 ?for	 ?taps	 ?and	 ?fountains	 ?(see	 ?Appendix	 ?E)	 ?was	 ?consistent,	 ?and	 ?similar	 ?to	 ?the	 ?municipal	 ?dose	 ?(Metro	 ?Vancouver,	 ?2011b)	 ??	 ?evidence	 ?of	 ?a	 ?direct	 ?connection	 ?to	 ?the	 ?wider	 ?distribution	 ?system.	 ?The	 ?location	 ?and	 ?identification	 ?of	 ?each	 ?sample	 ?source	 ?is	 ?provided	 ?in	 ?Table	 ?5.	 ?Source	 ? Abbreviated	 ?I.D.	 ? Location	 ?Waterfillz	 ?station	 ? W1	 ? SUB	 ?main	 ?floor	 ?W2	 ? SUB	 ?basement	 ?W3	 ? Swing	 ?Space	 ?main	 ?floor	 ?W4	 ? MacMillan	 ?main	 ?floor	 ?Water	 ?fountain	 ? T1	 ? SUB	 ?main	 ?floor	 ?Washroom	 ?tap	 ?water	 ? T2	 ? SUB	 ?basement	 ?T3	 ? Swing	 ?Space	 ?main	 ?floor	 ?T4	 ? MacMillan	 ?main	 ?floor	 ?Field	 ?blank	 ?(opened	 ?at	 ?location	 ?#)	 ?B1	 ? SUB	 ?main	 ?floor	 ?B2	 ? SUB	 ?basement	 ?B3	 ? Swing	 ?Space	 ?main	 ?floor	 ?B4	 ? MacMillan	 ?main	 ?floor	 ?Trip	 ?blank	 ? B*1	 ? N/A	 ?B*2	 ? N/A	 ?Suffix	 ? Date	 ?a	 ? 2013/02/26	 ?b	 ? 2013/03/19	 ?Table	 ?5:	 ?List	 ?of	 ?sample	 ?identifiers	 ?Sample	 ?Population	 ?and	 ?Scheme	 ?The	 ?sampling	 ?procedure	 ?was	 ?designed	 ?acknowledging	 ?that	 ?short-??term	 ?fluctuations	 ?in	 ?water	 ?quality	 ?are	 ?inherent;	 ?however,	 ?they	 ?would	 ?be	 ?inconsequential	 ?to	 ?the	 ?objectives	 ?of	 ?the	 ?study.	 ?The	 ?aim	 ?of	 ?experimentation	 ?was	 ?to	 ?identify	 ?differences	 ?in	 ?the	 ?typical	 ?output	 ?quality	 ?of	 ?taps	 ?and	 ?Waterfillz,	 ?with	 ?the	 ?expectation	 ?that	 ?they	 ?would	 ?both	 ?produce	 ?a	 ?relatively	 ?stable	 ?product	 ?during	 ?a	 ?month	 ?of	 ?sampling.	 ?The	 ?temporal	 ?trends	 ?of	 ?interest	 ?were	 ?long-??term,	 ?measured	 ?by	 ?the	 ?service	 ?life	 ?of	 ?the	 ?different	 ?Waterfillz	 ?stations	 ?as	 ?indicated	 ?by	 ?the	 ?number	 ?of	 ??bottles	 ?filled?	 ?displayed	 ?on	 ?each	 ?station.	 ?As	 ?such,	 ?the	 ?sampling	 ?procedure	 ?was	 ?structured	 ?as	 ?stratified	 ?sampling	 ?of	 ?Waterfillz	 ?stations	 ?paired	 ?to	 ?tap	 ?water.	 ?Judgment	 ?indicated	 ?that	 ?water	 ?collected	 ?on	 ?Tuesday	 ?at	 ?11	 ?am	 ?would	 ?provide	 ?a	 ?representative	 ?sample	 ?of	 ?the	 ?typical	 ?water	 ?quality	 ?available	 ?to	 ?students	 ?due	 ?to	 ?high	 ?traffic	 ?observed	 ?at	 ?this	 ?time,	 ?without	 ?the	 ?variability	 ?that	 ?might	 ?be	 ?introduced	 ?from	 ?decreased	 ?use	 ?over	 ?the	 ?weekend.	 ?Another	 ?important	 ?factor	 ?was	 ?the	 ?	 ?	 ?convenience	 ?of	 ?this	 ?schedule.	 ?Sampling	 ?at	 ?11	 ?am	 ?on	 ?Tuesday	 ?allowed	 ?time	 ?in	 ?the	 ?afternoon	 ?to	 ?process	 ?samples,	 ?and	 ?consequently,	 ?incubated	 ?HPC	 ?could	 ?be	 ?made	 ?the	 ?following	 ?Friday	 ?before	 ?the	 ?weekend.	 ?Overall	 ?Sampling	 ?Method	 ?Prior	 ?to	 ?sample	 ?collection,	 ?source	 ?water	 ?was	 ?run	 ?for	 ?1	 ?minute	 ?for	 ?several	 ?reasons.	 ?This	 ?duration	 ?was	 ?chosen	 ?to	 ?promote	 ?a	 ?the	 ?flushing	 ?time	 ?that	 ?UBC	 ?Risk	 ?Management	 ?Services	 ?(2013)	 ?recommends	 ?prior	 ?to	 ?consumption,	 ?for	 ?aesthetic	 ?reasons.	 ?Also,	 ?because	 ?chlorine	 ?tends	 ?to	 ?decay	 ?when	 ?water	 ?sits	 ?stagnant	 ?in	 ?pipes,	 ?the	 ?flush	 ?was	 ?intended	 ?to	 ?bring	 ?a	 ?fresh	 ?stream	 ?of	 ?water,	 ?with	 ?an	 ?undiminished	 ?dose	 ?of	 ?chlorine	 ?residual	 ?from	 ?the	 ?distribution	 ?system.	 ?Finally,	 ?Standard	 ?Methods	 ?(APHA,	 ?2005)	 ?recommends	 ?flushing	 ?to	 ?obtain	 ?samples	 ?that	 ?represent	 ?the	 ?microbial	 ?count	 ?of	 ?the	 ?source	 ?water	 ?and	 ?not	 ?bacteria	 ?that	 ?may	 ?have	 ?accumulated	 ?in	 ?or	 ?on	 ?the	 ?spout.	 ?However,	 ?they	 ?recommend	 ?a	 ?flush	 ?time	 ?of	 ?2	 ?to	 ?3	 ?minutes,	 ?or	 ?enough	 ?time	 ?to	 ?clear	 ?the	 ?service	 ?line.	 ?Because	 ?the	 ?sample	 ?sources	 ?were	 ?in	 ?relatively	 ?high	 ?traffic	 ?areas,	 ?with	 ?some	 ?being	 ?visited	 ?by	 ?3	 ?or	 ?more	 ?users	 ?immediately	 ?prior	 ?to	 ?sampling,	 ?a	 ?1-??minute	 ?flush	 ?was	 ?deemed	 ?adequate	 ?to	 ?clear	 ?the	 ?line.	 ?Furthermore,	 ?a	 ?2	 ?to	 ?3	 ?minute	 ?flush	 ?would	 ?have	 ?been	 ?an	 ?inconveniently	 ?long	 ?interruption	 ?to	 ?tap	 ?users.	 ?	 ?After	 ?the	 ?1-??minute	 ?flush,	 ?samples	 ?were	 ?taken	 ?in	 ?quick	 ?succession	 ?for	 ?the	 ?four	 ?analyses	 ?(to	 ?follow).	 ?As	 ?these	 ?were	 ?collected	 ?rapidly,	 ?they	 ?are	 ?assumed	 ?to	 ?represent	 ?the	 ?same	 ?aliquot	 ?for	 ?purposes	 ?of	 ?analysis	 ?in	 ?this	 ?report.	 ?Temperature	 ?Method	 ?Temperature	 ?was	 ?measured	 ?at	 ?point	 ?of	 ?collection	 ?to	 ?forego	 ?any	 ?changes	 ?that	 ?might	 ?have	 ?occurred	 ?in	 ?transport.	 ?Care	 ?was	 ?taken	 ?not	 ?to	 ?warm	 ?the	 ?sample	 ?by	 ?limiting	 ?hand	 ?contact	 ?with	 ?the	 ?sample	 ?container.	 ?Analysis	 ?Procedure	 ?0. Select	 ?a	 ?container	 ?large	 ?enough	 ?to	 ?submerge	 ?a	 ?thermometer	 ?(i.e.	 ?Falcon	 ?tube)	 ?? One	 ?container	 ?can	 ?be	 ?used;	 ?contamination	 ?unimportant	 ?to	 ?temperature	 ?readings	 ?1. Sampling	 ?a. Transport	 ?container	 ?and	 ?thermometer	 ?to	 ?sampling	 ?site	 ?b. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Fill	 ?container	 ?with	 ?sample	 ?d. Let	 ?stand	 ?for	 ?1	 ?minute,	 ?holding	 ?container	 ?between	 ?thumb	 ?and	 ?forefinger	 ?? Wait	 ?time	 ?allows	 ?container	 ?to	 ?equilibrate	 ?to	 ?water	 ?temperature	 ?? Minimal	 ?hand	 ?contact	 ?limits	 ?warming	 ?of	 ?sample	 ?e. Empty	 ?container	 ?f. Refill	 ?container	 ?with	 ?sample	 ?g. Place	 ?the	 ?thermometer	 ?in	 ?the	 ?container	 ?h. Measure	 ?reading	 ?over	 ?30	 ?seconds	 ?? Reading	 ?should	 ?be	 ?stable	 ?for	 ?most	 ?of	 ?the	 ?30	 ?second	 ?duration	 ?? Otherwise,	 ?repeat	 ?equilibration	 ?steps	 ?c.	 ?to	 ?h.	 ?i. Record	 ?reading	 ?j. Empty	 ?container	 ?and	 ?repeat	 ?step	 ?1	 ?for	 ?subsequent	 ?samples	 ?	 ?	 ?Chlorine	 ?Method	 ?Total	 ?chlorine	 ?was	 ?analyzed	 ?using	 ?a	 ?HACH	 ?Chlorine	 ?(Free	 ?and	 ?Total)	 ?Test	 ?Kit,	 ?which	 ?uses	 ?N,	 ?N-??diethyl-??p-??phenylene	 ?diamine	 ?(DPD)	 ?colourimetry,	 ?allowing	 ?for	 ?the	 ?immediate	 ?on-??site	 ?evaluation	 ?of	 ?samples.	 ?Knowing	 ?that	 ?municipal	 ?chlorine	 ?residuals	 ?tend	 ?to	 ?be	 ?around	 ?0.5	 ?mg/L,	 ?measurements	 ?were	 ?performed	 ?using	 ?the	 ?low	 ?range	 ?(0-??0.7	 ?mg/L)	 ?variation	 ?offered	 ?by	 ?the	 ?test	 ?kit.	 ?	 ?Analysis	 ?Procedure	 ?1. Sampling	 ?a. Ensure	 ?Hach	 ?Chlorine	 ?(Free	 ?&	 ?Total)	 ?Test	 ?Kit	 ?is	 ?equipped	 ?with:	 ?i. Viewing	 ?apparatus,	 ?complete	 ?with	 ?colour	 ?wheel	 ?and	 ?mirror	 ?ii. Square-??bottom	 ?container	 ?and	 ?lids	 ?iii. Cylindrical	 ?vials	 ?iv. 25	 ?mL	 ?total	 ?chlorine	 ?DPD	 ?reagent	 ?pillows	 ?v. A	 ?sufficient	 ?volume	 ?of	 ?chlorine	 ?free,	 ?distilled,	 ?deionized,	 ?0.22	 ??m	 ?Millipore	 ?filtered	 ?water	 ?(hereafter	 ?abbreviated	 ?as	 ?DD	 ?water)	 ?for	 ?rinsing	 ?b. Transport	 ?test	 ?kit	 ?to	 ?sampling	 ?site	 ?c. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?d. With	 ?the	 ?square-??bottom	 ?container	 ?held	 ?at	 ?an	 ?approximate	 ?45?	 ?angle,	 ?close	 ?to	 ?the	 ?source	 ?spout,	 ?fill	 ?with	 ?approximately	 ?25	 ?mL	 ?sample	 ?? Angle	 ?and	 ?proximity	 ?to	 ?source	 ?spout	 ?limit	 ?potential	 ?chlorine	 ?volatilization	 ?e. Writing	 ?right-??ways-??up,	 ?tap	 ?the	 ?bottom	 ?edge	 ?of	 ?the	 ?reagent	 ?pillow	 ?on	 ?a	 ?flat	 ?surface	 ?? Ensures	 ?all	 ?reagent	 ?collects	 ?at	 ?the	 ?bottom	 ?of	 ?the	 ?pillow	 ?f. Open	 ?reagent	 ?package	 ?and	 ?add	 ?to	 ?the	 ?25	 ?mL	 ?of	 ?sample	 ?g. Place	 ?lid	 ?on	 ?the	 ?square-??bottom	 ?container	 ?h. Mix	 ?sample	 ?and	 ?reagent	 ?with	 ?rigorous	 ?shaking	 ?i. Allow	 ?3	 ?minutes,	 ?but	 ?no	 ?more	 ?than	 ?6	 ?minutes	 ?for	 ?reaction	 ?to	 ?equilibrate	 ?? Presence	 ?of	 ?chlorine	 ?is	 ?indicated	 ?by	 ?a	 ?pink	 ?colour	 ?2. Reading	 ?result	 ?a. Open	 ?the	 ?viewing	 ?apparatus	 ?	 ?	 ?b. Fit	 ?viewing	 ?apparatus	 ?with	 ?the	 ?reflective	 ?mirror	 ?and	 ?colour	 ?wheel	 ?? Mirror	 ?allows	 ?entire	 ?length	 ?of	 ?vials	 ?to	 ?be	 ?viewed	 ?for	 ?better	 ?low	 ?range	 ?accuracy	 ?c. Following	 ?at	 ?least	 ?3	 ?minutes	 ?of	 ?reaction,	 ?transfer	 ?approximately	 ?15	 ?mL	 ?of	 ?reacted	 ?sample	 ?from	 ?square-??bottom	 ?container	 ?to	 ?a	 ?cylindrical	 ?vial	 ?d. Fill	 ?another	 ?cylindrical	 ?vial	 ?with	 ?15	 ?mL	 ?of	 ?unreacted	 ?water	 ?from	 ?the	 ?source	 ?? Provides	 ?a	 ?blank	 ?reference	 ?for	 ?colourimetric	 ?readings	 ?e. Place	 ?the	 ?reacted	 ?sample	 ?vial	 ?in	 ?the	 ?right	 ?most	 ?slot	 ?of	 ?the	 ?viewing	 ?apparatus	 ?? Colour	 ?wheel	 ?is	 ?transparent	 ?on	 ?this	 ?side	 ?f. Place	 ?the	 ?unreacted	 ?water	 ?vial	 ?in	 ?the	 ?left	 ?most	 ?slot	 ?of	 ?the	 ?viewing	 ?apparatus	 ?? Colour	 ?wheel	 ?has	 ?a	 ?pink	 ?gradient	 ?on	 ?this	 ?side	 ?g. Point	 ?the	 ?tops	 ?of	 ?the	 ?two	 ?vials	 ?towards	 ?a	 ?light	 ?source	 ?h. Adjust	 ?colour	 ?wheel	 ?until	 ?left	 ?and	 ?right	 ?viewing	 ?slots	 ?show	 ?matching	 ?pink	 ?colour	 ?i. Record	 ?the	 ?reading	 ?indicated	 ?by	 ?the	 ?gradations	 ?on	 ?the	 ?bottom	 ?of	 ?the	 ?colour	 ?wheel	 ?	 ?	 ?? Have	 ?team	 ?members	 ?repeat	 ?steps	 ?h	 ?and	 ?i	 ?to	 ?ensure	 ?precision	 ?j. Empty	 ?square-??bottom	 ?container	 ?and	 ?cylindrical	 ?vials	 ?k. Rinse	 ?square-??bottom	 ?container	 ?and	 ?cylindrical	 ?vials	 ?with	 ?DD	 ?water	 ?Heterotrophic	 ?Plate	 ?Count	 ?Method	 ?Measurements	 ?of	 ?heterotrophic	 ?plate	 ?count	 ?include	 ?a	 ?few	 ?different	 ?procedures,	 ?two	 ?of	 ?which	 ??	 ?spread	 ?plate	 ? and	 ?membrane	 ? filtration	 ? ?	 ?were	 ? used	 ? in	 ? this	 ? study.	 ? The	 ? spread	 ? plate	 ?method	 ?was	 ? only	 ? used	 ? in	 ?explorative	 ? preliminary	 ? tests	 ? and	 ? was	 ? mostly	 ? inconclusive.	 ? The	 ? membrane	 ? filtration	 ? was	 ? practiced,	 ?perfected	 ?and	 ?employed	 ? for	 ?use	 ? in	 ?primary	 ?sampling.	 ? In	 ?combination	 ?with	 ?R2A	 ?agar,	 ? filtration	 ?enables	 ?different	 ? volumes	 ? of	 ? sample	 ? to	 ? be	 ? used,	 ? and	 ? allows	 ? more	 ? flexible	 ? evaluations	 ? to	 ? provide	 ? results	 ? for	 ?water	 ? very	 ? low	 ? in	 ? bacteria	 ? (Uhl	 ? and	 ? Schaule,	 ? 2004;	 ? APHA,	 ? 2005).	 ? The	 ?membrane	 ? filtration	 ?method	 ? is	 ?discussed	 ?in	 ?more	 ?detail.	 ?	 ?Analysis	 ?Procedure	 ?Note:	 ?considerable	 ?attention	 ?must	 ?be	 ?paid	 ?to	 ?perform	 ?the	 ?following	 ?procedure	 ?aseptically,	 ?to	 ?limit	 ?error	 ?introduced	 ?from	 ?the	 ?environment.	 ?0. Determine	 ?the	 ?expected	 ?range	 ?of	 ?bacteria	 ?concentration	 ?in	 ?samples	 ?from	 ?literature	 ?or	 ?through	 ?a	 ?preliminary	 ?run	 ?of	 ?the	 ?following	 ?method	 ?1. Prepare	 ?sample	 ?containers,	 ?travel	 ?and	 ?field	 ?blanks	 ?a. Choose	 ?containers	 ?	 ?i. Must	 ?be	 ?adequate	 ?size	 ?to	 ?hold	 ?required	 ?sample	 ?volume	 ?plus	 ?head	 ?space	 ?ii. All	 ?samples	 ?must	 ?be	 ?run	 ?in,	 ?at	 ?least,	 ?duplicate	 ?aliquot	 ?measurements	 ?iii. Containers	 ?and	 ?their	 ?lids	 ?must	 ?be	 ?temperature	 ?resistant	 ?to	 ?at	 ?least	 ?120?C	 ?b. Rinse	 ?containers	 ?and	 ?lids	 ?in	 ?hot,	 ?soapy	 ?water	 ?c. Rinse	 ?containers	 ?and	 ?lids	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?d. Add	 ?to	 ?all	 ?containers,	 ?0.1	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?(10%,	 ?Fisher	 ?Scientific)	 ?for	 ?every	 ?120	 ?mL	 ?of	 ?sample	 ?to	 ?be	 ?collected	 ?e. For	 ?travel	 ?and	 ?field	 ?blanks,	 ?fill	 ?containers	 ?with	 ?appropriate	 ?volume	 ?of	 ?DD	 ?water	 ?? The	 ?blank	 ?volume	 ?used	 ?should	 ?equal	 ?the	 ?largest	 ?volume	 ?of	 ?sample	 ?needed	 ?f. Loosely	 ?fit	 ?lids	 ?onto	 ?containers	 ?2. Prepare	 ?rinse	 ?water	 ?a. Calculate	 ?the	 ?amount	 ?of	 ?rinse	 ?water	 ?needed:	 ?i. Each	 ?sample	 ?filtered	 ?will	 ?require	 ?roughly	 ?60	 ?mL	 ?of	 ?rinse	 ?and	 ?carrying	 ?water	 ?ii. Rinse	 ?water	 ?can	 ?also	 ?be	 ?used	 ?for	 ?lab	 ?blanks	 ?b. Fill	 ?a	 ?conical	 ?flask	 ?with	 ?the	 ?required	 ?volume	 ?of	 ?DD	 ?water	 ?c. Add	 ?1	 ?mL	 ?each	 ?of	 ?K2H2PO4	 ?(85	 ?g/L)	 ?and	 ?MgCl	 ?(81	 ?g/L)	 ?to	 ?distilled/deionized	 ?water	 ?? Without	 ?adding	 ?these	 ?for	 ?osmotic	 ?pressure,	 ?DD	 ?water	 ?can	 ?lyse	 ?bacteria	 ?d. Mix	 ?with	 ?gentle	 ?rotation	 ?e. Loosely	 ?cover	 ?the	 ?conical	 ?flask	 ?with	 ?tin	 ?foil	 ?3. Prepare	 ?blanks	 ?a. Fill	 ?a	 ?container	 ?with	 ?the	 ?appropriate	 ?volume	 ?of	 ?blank	 ?(mentioned	 ?previously)	 ?b. Loosely	 ?fit	 ?lids	 ?onto	 ?containers	 ?	 ?	 ?4. Prepare	 ?pipette	 ?tips	 ?? Note:	 ?auto-??pipettes	 ?are	 ?used	 ?in	 ?this	 ?analysis	 ?a. Calibrate	 ?auto-??pipettes	 ?by	 ?measuring	 ?known	 ?volume	 ?of	 ?distilled	 ?water	 ?on	 ?a	 ?scale	 ?? 1	 ?mL	 ?of	 ?water	 ?=	 ?1	 ?g	 ?b. Collect	 ?appropriate	 ?size	 ?pipette	 ?tips	 ?for	 ?samples	 ?and	 ?blanks	 ?? Use	 ?a	 ?different	 ?tip	 ?for	 ?each	 ?sample	 ?and	 ?blank	 ?c. Collect	 ?5	 ?mL	 ?pipette	 ?tip	 ?for	 ?distributing	 ?agar	 ?d. Place	 ?a	 ?cotton	 ?plug	 ?in	 ?the	 ?top	 ?of	 ?each	 ?pipette	 ?tip	 ?? Auto-??pipettes	 ?cannot	 ?be	 ?autoclaved	 ?? This	 ?prevents	 ?them	 ?from	 ?contaminating	 ?samples	 ?	 ?e. Place	 ?pipette	 ?tips	 ?in	 ?a	 ?beaker	 ?and	 ?loosely	 ?cover	 ?with	 ?tin	 ?foil	 ?5. Prepare	 ?agar	 ?a. Calculate	 ?the	 ?amount	 ?of	 ?agar/water	 ?solution	 ?required:	 ?i. Each	 ?sample	 ?will	 ?require	 ?roughly	 ?5	 ?mL	 ?of	 ?agar	 ?ii. Note:	 ?later,	 ?boiling	 ?agar	 ?reduces	 ?volume;	 ?advise	 ?adding	 ?25%	 ?to	 ?calculated	 ?value	 ?b. Add	 ?calculated	 ?volume	 ?of	 ?water	 ?to	 ?an	 ?appropriately	 ?sized,	 ?heat	 ?resistant	 ?beaker	 ?c. To	 ?beaker,	 ?add	 ?16.82	 ?g	 ?of	 ?R2A	 ?agar	 ?powder	 ?for	 ?every	 ?liter	 ?of	 ?water	 ?d. Place	 ?a	 ?magnetic	 ?stir	 ?bar	 ?in	 ?the	 ?beaker	 ?(do	 ?not	 ?remove	 ?until	 ?after	 ?step	 ?8)	 ?e. Place	 ?the	 ?beaker	 ?on	 ?a	 ?magnetic	 ?stirred	 ?hot	 ?plate	 ?f. Turn	 ?on	 ?stirring	 ?to	 ?a	 ?low	 ?setting	 ?for	 ?gentle	 ?agitation	 ?g. Turn	 ?on	 ?heating	 ?to	 ?medium-??high	 ?? Medium-??high	 ?prevents	 ?potential	 ?heat	 ?shock	 ?cracking	 ?of	 ?glassware	 ?h. Continue	 ?to	 ?heat	 ?and	 ?stir	 ?until	 ?boiling	 ?i. Boil	 ?for	 ?1	 ?minute	 ?j. Remove	 ?from	 ?heat	 ?k. Loosely	 ?cover	 ?beaker	 ?with	 ?tin	 ?foil	 ?6. Prepare	 ?filter	 ?holder(s)	 ?a. Collect	 ?filter	 ?holder(s)	 ?b. Place	 ?filter	 ?holders	 ?in	 ?autoclave	 ?ready	 ?plastic	 ?bag	 ?c. Loosely	 ?close	 ?the	 ?bag	 ?7. Autoclave	 ?(Market	 ?Forge	 ?Sterilmatic)	 ?materials	 ?? Safety	 ?Note:	 ?avoid	 ?direct	 ?contact	 ?with	 ?steam	 ?exiting	 ?the	 ?autoclave	 ?a. Ensure	 ?the	 ?autoclave	 ?is	 ?not	 ?in	 ?use	 ?? Temperature	 ?and	 ?pressure	 ?gauges	 ?should	 ?show	 ?ambient	 ?levels	 ?(20?C,	 ?0	 ?psig)	 ?b. Put	 ?on	 ?a	 ?temperature	 ?resistant	 ?glove	 ?c. Stand	 ?to	 ?one	 ?side	 ?of	 ?the	 ?autoclave	 ?d. Open	 ?the	 ?autoclave	 ?with	 ?your	 ?gloved	 ?hand	 ?e. Remove	 ?glove	 ?f. Close	 ?the	 ?autoclave	 ?drain	 ?valve	 ?g. Fill	 ?the	 ?autoclave	 ?with	 ?water	 ?to	 ?the	 ?marked	 ?level	 ?(roughly	 ?10	 ?L)	 ?h. Place	 ?all	 ?the	 ?materials	 ?collected	 ?in	 ?steps	 ?1-??5	 ?in	 ?the	 ?autoclave	 ?chamber	 ?	 ?	 ?i. Close	 ?the	 ?autoclave	 ?j. Firmly	 ?secure	 ?the	 ?autoclave	 ?door	 ?lever	 ?k. Set	 ?the	 ?exhaust	 ?selector	 ?to	 ?the	 ??slow?	 ?option	 ?? Ensures	 ?that	 ?liquids	 ?do	 ?not	 ?vaporize	 ?when	 ?pressure	 ?is	 ?released	 ?	 ?l. Turn	 ?the	 ?timer	 ?dial	 ?to	 ?20	 ?minutes	 ?? This	 ?ensure	 ?sufficient	 ?time	 ?to	 ?sterilize	 ?liquids	 ?m. After	 ?20	 ?minutes,	 ?wait	 ?for	 ?temperature	 ?and	 ?pressure	 ?gauges	 ?to	 ?return	 ?to	 ?ambient	 ?levels	 ?n. Put	 ?on	 ?a	 ?heat	 ?resistant	 ?glove	 ?o. Stand	 ?to	 ?one	 ?side	 ?of	 ?the	 ?autoclave	 ?p. Open	 ?the	 ?autoclave	 ?with	 ?your	 ?gloved	 ?hand	 ?q. Allow	 ?any	 ?and	 ?all	 ?steam	 ?to	 ?escape	 ?r. Remove	 ?equipment	 ?s. Tightly	 ?seal	 ?lids	 ?and	 ?tin	 ?foil	 ?caps	 ?to	 ?all	 ?containers	 ?and	 ?tightly	 ?wrap	 ?bags	 ?around	 ?filter	 ?holders	 ?for	 ?storage	 ?8. Pour	 ?agar	 ?plates	 ?? Note:	 ?prepare	 ?plates	 ?in	 ?a	 ?horizontal-??laminar	 ?air	 ?flow	 ?hood	 ?or	 ?area	 ?free	 ?of	 ?draft	 ?a. Before	 ?agar	 ?has	 ?a	 ?chance	 ?to	 ?cool,	 ?transfer	 ?back	 ?to	 ?magnetic	 ?stirred	 ?hot	 ?plate	 ?? Heat	 ?and	 ?stir	 ?at	 ?a	 ?low	 ?setting,	 ?just	 ?enough	 ?to	 ?maintain	 ?agar	 ?as	 ?liquid	 ?b. Disinfect	 ?work	 ?surface	 ?with	 ?ethanol	 ?c. Lay	 ?out	 ?the	 ?required	 ?number	 ?of	 ?sterile	 ?Millipore	 ?petri	 ?dishes	 ?(plates)	 ?d. Open	 ?plate	 ?lids	 ?just	 ?before	 ?transferring	 ?agar	 ?e. Transfer	 ?enough	 ?agar	 ?by	 ?auto-??pipette	 ?to	 ?cover	 ?the	 ?bottom	 ?of	 ?each	 ?plate	 ?(roughly)	 ?f. Seal	 ?each	 ?plate	 ?	 ?g. Allow	 ?agar	 ?to	 ?cool/solidify	 ?at	 ?room	 ?temperature	 ?h. Label	 ?all	 ?plates	 ?appropriately	 ?i. Store	 ?plates	 ?agar	 ?side	 ?up	 ?in	 ?a	 ?sealed	 ?plastic	 ?bag	 ?at	 ?6?C	 ?for	 ?a	 ?maximum	 ?of	 ?2	 ?weeks	 ?9. Collect	 ?Samples	 ?a. Transport	 ?sealed,	 ?autoclaved	 ?sample	 ?containers,	 ?travel	 ?and	 ?field	 ?blanks	 ?to	 ?sampling	 ?site	 ?in	 ?a	 ?cooler	 ?b. Run	 ?tap	 ?or	 ?waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Remove	 ?lid	 ?from	 ?sample	 ?container	 ?just	 ?before	 ?sample	 ?collection	 ?? Ensures	 ?minimal	 ?environmental	 ?contamination	 ?d. Fill	 ?sample	 ?container:	 ?i. Without	 ?splashing	 ?or	 ?overflow	 ?ii. Collect	 ?required	 ?volume	 ?of	 ?sample,	 ?leaving	 ?head	 ?space	 ?for	 ?mixing	 ?e. Reseal	 ?container	 ?lid	 ?f. Momentarily	 ?open	 ?the	 ?container	 ?lids	 ?for	 ?field	 ?blanks	 ?g. Place	 ?all	 ?samples	 ?and	 ?blanks	 ?back	 ?into	 ?cooler	 ?and	 ?return	 ?to	 ?lab	 ?10. Prepare	 ?Sample	 ?Processing	 ?Workspace	 ?	 ?	 ?? Note:	 ?process	 ?samples	 ?as	 ?soon	 ?after	 ?collection	 ?as	 ?possible;	 ?sampling	 ?and	 ?analysis	 ?must	 ?be	 ?performed	 ?within	 ?8	 ?hours	 ?of	 ?collection	 ?a. Disinfect	 ?work	 ?surface	 ?with	 ?ethanol	 ?b. Collect	 ?0.45	 ??m,	 ?47	 ?mm	 ?filters	 ?and	 ?place	 ?at	 ?workspace	 ?c. Remove	 ?plates	 ?from	 ?fridge	 ?and	 ?place	 ?at	 ?workspace	 ?d. Remove	 ?samples	 ?from	 ?cooler	 ?and	 ?arrange	 ?at	 ?workspace	 ?e. Place	 ?rinse	 ?water	 ?at	 ?workspace	 ?f. Set-??up	 ?vacuum	 ?filtration	 ?apparatus:	 ?i. Attach	 ?flasks	 ?with	 ?male	 ?hose	 ?fittings	 ?to	 ?vacuum	 ?hoses	 ?ii. Ensure	 ?vacuum	 ?source	 ?is	 ?off	 ?iii. Attach	 ?hoses	 ?to	 ?vacuum	 ?source	 ?iv. Remove	 ?filter	 ?holders	 ?from	 ?autoclaved	 ?bags	 ?v. Fit	 ?filter	 ?holders	 ?into	 ?the	 ?flasks	 ?g. Fill	 ?a	 ?beaker	 ?with	 ?roughly	 ?10	 ?mL	 ?of	 ?ethanol	 ?h. Place	 ?tweezer	 ?tips	 ?in	 ?ethanol	 ?i. Attach	 ?Bunsen	 ?burner	 ?to	 ?gas	 ?source	 ?j. Place	 ?flint	 ?over	 ?Bunsen	 ?burner	 ?outlet	 ?k. When	 ?ready,	 ?turn	 ?on	 ?gas	 ?and	 ?strike	 ?flint	 ?to	 ?light	 ?flame	 ?? Safety	 ?note:	 ?do	 ?not	 ?leave	 ?open	 ?flames	 ?unattended	 ?11. Filter	 ?Samples	 ?a. Remove	 ?tweezers	 ?from	 ?ethanol	 ?and	 ?burn	 ?off	 ?excess	 ?over	 ?a	 ?flame	 ?? Ensures	 ?sterilization	 ?between	 ?steps	 ?b. Open	 ?a	 ?sterile	 ?filter	 ?package	 ?c. Remove	 ?the	 ?filter	 ?from	 ?the	 ?package	 ?with	 ?the	 ?sterilized	 ?tweezers	 ?d. Place	 ?filter	 ?on	 ?the	 ?filter	 ?holder	 ?grid-??side	 ?up	 ?e. Place	 ?the	 ?tweezers	 ?back	 ?in	 ?the	 ?ethanol	 ?f. Put	 ?filter	 ?holder	 ?cover	 ?in	 ?place	 ?and	 ?securely	 ?fasten	 ?g. Put	 ?10-??20	 ?mL	 ?of	 ?rinse	 ?water	 ?in	 ?the	 ?cover	 ?	 ?h. Apply	 ?vacuum	 ?i. Repeat	 ?steps	 ?g	 ?and	 ?h	 ?j. For	 ?small	 ?samples	 ?(<10	 ?mL):	 ?i. Put	 ?10-??20	 ?mL	 ?of	 ?rinse	 ?water	 ?in	 ?the	 ?cover	 ?ii. Pipette	 ?required	 ?volume	 ?of	 ?sample	 ?into	 ?cover	 ?iii. Apply	 ?vacuum	 ?k. For	 ?large	 ?samples	 ?(?10	 ?mL):	 ?i. Pipette	 ?required	 ?volume	 ?of	 ?sample	 ?into	 ?cover	 ?ii. Apply	 ?vacuum	 ?l. Remove	 ?filter	 ?holder	 ?cover	 ?m. Open	 ?an	 ?agar	 ?plate	 ?n. Remove	 ?tweezers	 ?from	 ?ethanol	 ?and	 ?burn	 ?off	 ?excess	 ?over	 ?a	 ?flame	 ?o. Transfer	 ?filter,	 ?grid-??side	 ?up	 ?to	 ?agar	 ?plate	 ?	 ?	 ?? Ensure	 ?that	 ?there	 ?is	 ?no	 ?air	 ?between	 ?the	 ?filter	 ?and	 ?agar	 ?? If	 ?necessary,	 ?smooth	 ?out	 ?air	 ?bubbles	 ?with	 ?sterilized	 ?tweezers	 ?p. Reseal	 ?the	 ?agar	 ?plate	 ?q. Repeat	 ?steps	 ?a	 ??	 ?p	 ?for	 ?all	 ?samples	 ?r. Place	 ?plates	 ?agar-??side	 ?up	 ?in	 ?a	 ?plastic	 ?bag	 ?? Where	 ?ambient	 ?moisture	 ?may	 ?be	 ?limited,	 ?place	 ?a	 ?moist	 ?towel	 ?in	 ?the	 ?bag	 ?? Note:	 ?may	 ?be	 ?excessive	 ?for	 ?lab	 ?analysis	 ?in	 ?Vancouver	 ?s. Seal	 ?plastic	 ?bag	 ?t. Incubate	 ?at	 ?35?C	 ?for	 ?72	 ?hours	 ?12. Enumerating	 ?Samples	 ?a. Remove	 ?plates	 ?from	 ?incubator	 ?and	 ?plastic	 ?bag	 ?b. Remove	 ?plate	 ?cover	 ?prior	 ?to	 ?counting	 ?c. Place	 ?opened	 ?plates	 ?under	 ?light	 ?and	 ?magnification	 ?d. Count	 ?all	 ?distinguishable	 ?colonies	 ?? Reliable	 ?results	 ?lie	 ?in	 ?the	 ?range	 ?of	 ?20-??200	 ?counts	 ?per	 ?plate	 ?e. Record	 ?counts	 ?as	 ?CFU/100	 ?mL	 ?of	 ?sample,	 ?method,	 ?incubation	 ?time/temperature,	 ?medium	 ?? Example:	 ?X	 ?CFU/100	 ?mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?f. Report	 ?results	 ?rounded	 ?to	 ?the	 ?two	 ?left	 ?most	 ?significant	 ?figures	 ?? Example:	 ?12480	 ?CFU/100	 ?mL	 ???	 ?12000	 ?CFU/100mL	 ?Total	 ?Organic	 ?Carbon	 ?Method	 ?	 ?Total	 ?organic	 ?carbon	 ?was	 ?analyzed	 ?using	 ?a	 ?Phoenix	 ?8000	 ?UV	 ?Persulfate	 ?TOC	 ?Analyzer	 ?with	 ?Zero	 ?Air.	 ?Analysis	 ?used	 ?1000	 ?ppm	 ?(0.5312g	 ?Potassium	 ?Hydrogen	 ?Phthalate	 ?per	 ?250	 ?mL)	 ?as	 ?standard.	 ?Analysis	 ?Procedure	 ?1. Prepare	 ?caps	 ?a. Wash	 ?with	 ?hot,	 ?soapy	 ?water	 ?b. Rinse	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?c. Store	 ?in	 ?a	 ?clean,	 ?carbon-??free	 ?container	 ?2. Prepare	 ?Amber	 ?40	 ?mL	 ?TOC	 ?vials	 ?a. Wash	 ?with	 ?hot,	 ?soapy	 ?water	 ?b. Rinse	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?c. Bake	 ?in	 ?an	 ?aluminum	 ?tray	 ?for	 ?2	 ?h	 ?at	 ?500	 ??C	 ?to	 ?remove	 ?traces	 ?of	 ?organic	 ?carbon	 ?d. Cool	 ?gradually	 ?to	 ?room	 ?temperature	 ?e. Cap	 ?with	 ?prepared	 ?inserts/caps	 ?once	 ?cool	 ?to	 ?minimize	 ?contamination	 ?3. Sampling	 ?a. Transport	 ?prepared	 ?40	 ?mL	 ?TOC	 ?vials	 ?to	 ?sampling	 ?site	 ?b. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Fill	 ?vial	 ?to	 ?within	 ?1	 ?cm	 ?of	 ?maximum	 ?d. Cap	 ?securely	 ?and	 ?return	 ?to	 ?lab	 ?in	 ?a	 ?plastic	 ?cooler	 ?for	 ?analysis	 ?4. Prepare	 ?acid	 ?solution	 ?for	 ?TOC	 ?analyzer	 ?	 ?	 ?a. Measure	 ?188	 ?mL	 ?of	 ?DD	 ?water	 ?into	 ?analyzer?s	 ?acid	 ?container	 ?b. Add	 ?37	 ?mL	 ?of	 ?concentrated	 ?phosphoric	 ?acid,	 ?(to	 ?acidify	 ?and	 ?remove	 ?inorganic	 ?carbon	 ?from	 ?sample)	 ?c. Cap	 ?container	 ?securely	 ?and	 ?shake	 ?to	 ?mix	 ?d. Replace	 ?reagent	 ?at	 ?instrument	 ?5. Prepare	 ?oxidant	 ?solution	 ?for	 ?TOC	 ?analyzer	 ?a. Measure	 ?426	 ?mL	 ?of	 ?DD	 ?water	 ?into	 ?analyzer?s	 ?acid	 ?container	 ?b. Add	 ?18	 ?mL	 ?of	 ?concentrated	 ?phosphoric	 ?acid	 ?c. Add	 ?50	 ?g	 ?NaS2O8,	 ?(to	 ?oxidize	 ?total	 ?organic	 ?carbon	 ?in	 ?sample,	 ?producing	 ?CO2	 ?for	 ?analysis)	 ?d. Cap	 ?container	 ?securely	 ?and	 ?shake	 ?to	 ?mix	 ?e. Replace	 ?reagent	 ?at	 ?instrument	 ?6. Instrumental	 ?protocol	 ?a. Open	 ?zero-??air	 ?gas	 ?valve	 ?on	 ?TOC	 ?analyzer,	 ?ensuring	 ?that	 ?flow	 ?is	 ?200?2	 ?cm3/s	 ?b. Ensure	 ?DD	 ?water	 ?container	 ?is	 ?full	 ?c. Ensure	 ?waste	 ?container	 ?is	 ?empty	 ?d. Uncap	 ?all	 ?samples	 ?and	 ?place	 ?in	 ?autosampler	 ?rack	 ?e. Set	 ?up	 ?acquisition	 ?software	 ?according	 ?to	 ?manufacturer?s	 ?instructions	 ?in	 ?the	 ?0.1	 ?-??	 ?5	 ?ppm	 ?range.	 ?f. Take	 ?three	 ?measurements	 ?per	 ?vial,	 ?recording	 ?the	 ?average	 ?value.	 ?g. Begin	 ?run	 ?with	 ?three	 ?lab	 ?blanks	 ?(DD	 ?water)	 ?to	 ?clear	 ?lines.	 ?h. Distribute	 ?each	 ?sample	 ?type	 ?(e.g.	 ?standards,	 ?blanks,	 ?tap,	 ?Waterfillz)	 ?uniformly	 ?throughout	 ?each	 ?run.	 ?i. Start	 ?instrument	 ?j. Once	 ?run	 ?is	 ?complete,	 ?close	 ?the	 ?gas	 ?cylinder	 ?and	 ?export	 ?data	 ?to	 ?Excel.	 ? 	 ?	 ?	 ?Appendix	 ?E	 ?-??	 ?Sample	 ?Data	 ?Summary	 ?The	 ?following	 ?section	 ?provides	 ?all	 ?of	 ?the	 ?raw	 ?data	 ?collected	 ?during	 ?primary	 ?experimentation	 ?and	 ?sampling,	 ?referred	 ?to	 ?as	 ?sampling	 ?run	 ?a	 ?and	 ?b.	 ?Independent	 ?Variable:	 ?Machine	 ?Use	 ?Waterfillz	 ?machine	 ?use	 ?was	 ?recorded	 ?at	 ?each	 ?time	 ?of	 ?sampling	 ?as	 ?shown	 ?in	 ?Table	 ?6.	 ?	 ?The	 ?mean	 ?weekly	 ?use	 ?for	 ?each	 ?machine	 ?was	 ?also	 ?determined	 ?from	 ?four	 ?separate	 ?observations	 ?made	 ?at	 ?1-??week	 ?intervals,	 ?as	 ?shown	 ?in	 ?Table	 ?7.	 ?The	 ?total	 ?number	 ?of	 ?bottles	 ?filled	 ?had	 ?positive	 ?correlation	 ?to	 ?average	 ?fill	 ?rate.	 ?Recognizing	 ?this	 ?relationship,	 ?the	 ?total	 ?number	 ?of	 ?bottles	 ?filled	 ?was	 ?maintained	 ?as	 ?the	 ?x-??ordinate.	 ?	 ?Location	 ? Total	 ?bottles	 ?filled	 ?	 ??a?	 ?samples	 ? Total	 ?bottles	 ?filled	 ??b?	 ?samples	 ?W1	 ? 333792	 ? 353903	 ?W2	 ? 120271	 ? 128770	 ?W3	 ? 8246	 ? 12806	 ?W4	 ? 2421	 ? 3942	 ?Table	 ?6.	 ?Total	 ?bottles	 ?filled	 ?from	 ?Waterfillz	 ?machines	 ?on	 ?sampling	 ?days	 ?'a'	 ?and	 ?'b'	 ?Station	 ?ID	 ? T=0	 ?weeks	 ? T=1	 ?week	 ? T=2	 ?weeks	 ? T=3	 ?weeks	 ? Avg.	 ?fill	 ?rate	 ?(bottles/week)	 ? Sample	 ?Deviation	 ?26-??Feb	 ? 05-??Mar	 ? 12-??Mar	 ? 19-??Mar	 ?1	 ? 333792	 ? 339854	 ? 347046	 ? 353903	 ? 6704	 ? 580.39	 ?2	 ? 120271	 ? 123000	 ? 125906	 ? 128770	 ? 2833	 ? 92.48	 ?3	 ? 8246	 ? 9669	 ? 11243	 ? 12806	 ? 1520	 ? 84.18	 ?4	 ? 2421	 ? 2880	 ? 3378	 ? 3942	 ? 507	 ? 53.08	 ?Table	 ?7.	 ?Weekly	 ?Waterfillz	 ?machine	 ?reported	 ?total	 ?use	 ?	 ? 	 ?	 ?	 ?Dependent	 ?Variables:	 ?Parameters	 ?of	 ?Interest	 ?Temperature,	 ?chlorine,	 ?HPC	 ?and	 ?TOC	 ?data	 ?are	 ?as	 ?follows.	 ?Details	 ?on	 ?calibration	 ?for	 ?each	 ?method	 ?are	 ?included	 ?in	 ?the	 ?relevant	 ?methods	 ?section.	 ?Sample	 ?ID	 ? Temperature	 ?(?C)	 ? Chlorine	 ?(ppm)	 ? HPC	 ?(CFU/100	 ?mL?)	 ? TOC	 ?(ppm)	 ?W1a	 ? 11.5	 ? 0*	 ? 65	 ? 0.510	 ?T1a	 ? 5.3	 ? 0.5	 ? 1.67*	 ? 0.716	 ?B1a	 ? 	 ? 0*	 ? 0*	 ? 0.036*	 ?W2a	 ? 11.5	 ? 0*	 ? 5050	 ? 0.379	 ?T2a	 ? 5.5	 ? 0.6	 ? 1.67*	 ? 0.737	 ?B2a	 ? 	 ? 0*	 ? 0*	 ? 0.016*	 ?W3a	 ? 12.3	 ? 0*	 ? 33500	 ? 0.312	 ?T3a	 ? 6.9	 ? 0.6	 ? 527	 ? 0.603	 ?B3a	 ? 	 ? 0*	 ? 0*	 ? 0.008*	 ?W4a	 ? 10.9	 ? 0*	 ? 20900	 ? 0.063*	 ?T4a	 ? 6.6	 ? 0.5	 ? 0*	 ? 0.616	 ?B4a	 ? 	 ? 0*	 ? 0*	 ? 0.003*	 ?W1b	 ? 12	 ? 0*	 ? 68	 ? 0.567	 ?T1b	 ? 6.1	 ? 0.56	 ? 20*	 ? 0.645	 ?B1b	 ? 	 ? 0*	 ? 0*	 ? 0.008*	 ?W2b	 ? 12.5	 ? 0*	 ? 11200	 ? 0.402	 ?T2b	 ? 6.0	 ? 0.52	 ? 1.67*	 ? 0.631	 ?B2b	 ? 	 ? 0*	 ? 0*	 ? 0.014*	 ?W3b	 ? 12.9	 ? 0*	 ? 9150	 ? 0.434	 ?T3b	 ? 6.5	 ? 0.54	 ? 203	 ? 0.637	 ?B3b	 ? 	 ? 0*	 ? 0*	 ? 0.014*	 ?W4b	 ? 11.5	 ? 0*	 ? 20600	 ? 0.043*	 ?T4b	 ? 6.0	 ? 0.54	 ? 0*	 ? 0.585	 ?B4b	 ? 	 ? 0*	 ? 0*	 ? 0.002*	 ?B*1	 ? 	 ? 0*	 ? 0*	 ? 0.003*	 ?B*2	 ? 	 ? 0*	 ? 0	 ?*	 ? 0.001*	 ?Table	 ?8.	 ?Raw	 ?data	 ?from	 ?taps	 ?and	 ?Waterfillz	 ?units	 ?for	 ?all	 ?blanks	 ?and	 ?samples.	 ?*below	 ?the	 ?limit	 ?of	 ?detection	 ?**between	 ?the	 ?limit	 ?of	 ?detection	 ?and	 ?limit	 ?of	 ?quantification	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar.	 ?Table	 ?9	 ?displays	 ?the	 ?specific	 ?volumes	 ?analyzed	 ?for	 ?HPC	 ?for	 ?each	 ?sample	 ?source	 ?and	 ?blanks.	 ?Two	 ?different	 ?volumes	 ?were	 ?used	 ?to	 ?ensure	 ?that	 ?counts	 ?were	 ?captured	 ?with	 ?the	 ?range	 ?of	 ?20	 ??	 ?200	 ?CFU,	 ?providing	 ?reliable	 ?results.	 ?	 ?T1	 ? T2	 ? T3	 ? T4	 ? W1	 ? W2	 ? W3	 ? W4	 ? B	 ?or	 ?B*	 ?10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 0.5	 ?mL	 ? 0.5	 ?mL	 ? 0.5	 ?mL	 ? -??	 ?30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 1.0	 ?mL	 ? 1.0	 ?mL	 ? 1.0	 ?mL	 ? 30	 ?mL	 ?Table	 ?9:	 ?Volumes	 ?analyzed	 ?by	 ?HPC	 ?membrane	 ?filtration	 ?method	 ?for	 ?each	 ?source	 ?and	 ?blanks	 ?	 ?	 ? 	 ?	 ?	 ?Appendix	 ?F	 ?-??	 ?Data	 ?Analysis	 ?General	 ?Calculations	 ?All	 ?of	 ?the	 ?sample	 ?data	 ?collected	 ?was	 ?subsequently	 ?evaluated	 ?by	 ?paired	 ?analysis.	 ?The	 ?difference	 ?(???)	 ?in	 ?the	 ?measured	 ?parameter	 ?values	 ?(??)	 ?between	 ?Waterfillz	 ?stations	 ?and	 ?the	 ?corresponding	 ?taps	 ?was	 ?determined	 ?with	 ?the	 ?following	 ?formula:	 ???, ????????? ? ??, ?? = ??? 	 ?Objective	 ?1	 ?Sample	 ?Calculations	 ?Objective	 ?1	 ?was	 ?to	 ?determine	 ?mean	 ?differences	 ?between	 ?Waterfillz	 ?and	 ?tap	 ?water.	 ?The	 ?sample	 ?mean	 ?(?? ?)	 ?of	 ?the	 ?differences	 ?was	 ?calculated	 ?using	 ?the	 ?excel	 ?function	 ??average?;	 ?otherwise	 ?defined	 ?as:	 ??? ? = (???)????? 	 ?The	 ?sample	 ?standard	 ?deviation	 ?was	 ?calculated	 ?using	 ?the	 ?excel	 ?function	 ??stdev.s?;	 ?otherwise	 ?defined	 ?as:	 ?s? ? = (??? ? ?? ?)???? ? ? 1 	 ?The	 ?standard	 ?error	 ?of	 ?the	 ?differences	 ?is	 ?the	 ?standard	 ?deviation	 ?divided	 ?by	 ?the	 ?number	 ?of	 ?paired	 ?of	 ?samples	 ?(n=8):	 ?? ??? = ? ?? ?? 	 ?The	 ?t-??value	 ?for	 ?a	 ?95%	 ?confidence	 ?interval	 ?was	 ?2.365,	 ?and	 ?the	 ?confidence	 ?interval	 ?(CI)	 ?was	 ?calculated	 ?using	 ?the	 ?following	 ?formula:	 ? ?? ? ??. ?? ,????? ? ? ???	 ?Objective	 ?2	 ?Sample	 ?Calculations	 ?Objective	 ?2	 ?was	 ?to	 ?determine	 ?the	 ?presence	 ?of	 ?trends.	 ?Linear	 ?regression	 ?was	 ?performed	 ?with	 ?the	 ?results	 ?of	 ?the	 ?paired	 ?analysis.	 ?A	 ?linear	 ?trend	 ?estimates	 ?the	 ?dependent	 ?variable	 ?(?)	 ?based	 ?on	 ?the	 ?input	 ?of	 ?an	 ?independent	 ?variable	 ?(x)	 ?represented	 ?by	 ?the	 ?following	 ?model:	 ?? = ?? + ??x	 ?An	 ?initial	 ?estimate	 ?of	 ?the	 ?equation	 ?intercept	 ?(??)	 ?is	 ?derived	 ?from	 ?the	 ?sample	 ?mean	 ?(??),	 ?given	 ?by:	 ??? = ? ? ?  ???x	 ?The	 ?slope	 ?of	 ?the	 ?model	 ?(??)	 ?is	 ?calculated	 ?using	 ?the	 ?sum	 ?of	 ?differences	 ?between	 ?dependent	 ?(??)	 ?and	 ?independent	 ?(??)	 ?sample	 ?values	 ?and	 ?their	 ?respective	 ?means	 ?with	 ?the	 ?following	 ?formula:	 ?	 ?	 ??? = [(?????? ?  ?x)(?? ? ? ?)][(?????? ?  ?x)] 	 ?Calculating	 ?the	 ?Parameter	 ?variation	 ?first	 ?requires	 ?calculating	 ?the	 ?mean	 ?residual	 ?sum	 ?of	 ?squares	 ?(s2),	 ?with	 ?the	 ?denominator	 ?representing	 ?sample	 ?size	 ?minus	 ?a	 ?degree	 ?of	 ?freedom	 ?for	 ?each	 ?parameter	 ?estimated	 ?(i.e.	 ?2),	 ?as	 ?indicated	 ?by:	 ??? = (?? ? ?)????? ? 2 	 ?Variance	 ?of	 ?the	 ?intercept	 ?parameter	 ?(??)	 ?is	 ?then:	 ??? ?? = ??(1? + x?(?? ?  ?x)????? )	 ?Variance	 ?of	 ?the	 ?slope	 ?parameter	 ?(??)	 ?is	 ?then:	 ?? ? ?? = ??( 1(?? ?  ?x)????? )	 ?Variance	 ?of	 ?the	 ?predicted	 ?value	 ?(??)	 ?around	 ?a	 ?known	 ?value	 ?(??)	 ?is	 ?then:	 ??? ?? = ??(1? + (?? ?  ?x)?(?? ?  ?x)????? )	 ?Two	 ?tailed	 ?confidence	 ?intervals	 ?(1-?? ??)	 ?for	 ?each	 ?parameter	 ?are	 ?calculated	 ?as	 ?follows:	 ???  ?? ??,?/? ?? ?? 	 ???  ?? ??,?/? ?? ?? 	 ?? = (?? + ????)  ?? ??,?/? ?? ?? 	 ?Given	 ?a	 ?certain	 ?confidence	 ?interval,	 ?if	 ?a	 ?trend	 ?exists	 ?the	 ?range	 ?of	 ?values	 ?calculated	 ?for	 ?the	 ?slope	 ?will	 ?not	 ?include	 ?the	 ?value	 ?of	 ?0.	 ?In	 ?this	 ?report,	 ?95%	 ?confidence	 ?intervals	 ?were	 ?used	 ?to	 ?determine	 ?significance.	 ?Anything	 ?under	 ?80%	 ?is	 ?deemed	 ?insignificant.	 ?	 ?	 ? 	 ?	 ?	 ?Results	 ?from	 ?Manipulated	 ?Data	 ?Temperature	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?T,	 ??C	 ?1a	 ? 6.2	 ?2a	 ? 6.0	 ?3a	 ? 5.4	 ?4a	 ? 4.3	 ?1b	 ? 5.9	 ?2b	 ? 6.5	 ?3b	 ? 6.4	 ?4b	 ? 5.5	 ?mean	 ? 5.78	 ?std	 ?error	 ? 0.25	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.365	 ?upper	 ?CI	 ? 6.37	 ?lower	 ?CI	 ? 5.18	 ?Aesthetically	 ?relevant	 ?difference	 ? 5	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? -??1	 ?Table	 ?10:	 ?Temperature	 ?results	 ?relating	 ?to	 ?the	 ?first	 ?objective,	 ?a	 ?comparison	 ?of	 ?Waterfillz	 ?to	 ?nearby	 ?tap	 ?water	 ?Objective	 ?2	 ?Results	 ?Sample	 ?ID	 ? ?T,	 ??C	 ?1a	 ? 6.2	 ?2a	 ? 6	 ?3a	 ? 5.4	 ?4a	 ? 4.3	 ?1b	 ? 5.9	 ?2b	 ? 6.5	 ?3b	 ? 6.4	 ?4b	 ? 5.5	 ?mean	 ? 5.8	 ?b0	 ? 5.5	 ?b1	 ? 2.02E-??06	 ?Parameter	 ?deviation	 ? 0.699	 ?var(b0)	 ? 0.108	 ?var(b1)	 ? 3.22E-??12	 ?CI	 ?80%	 ?(t=1.440)	 ? upper	 ?b1	 ? 4.61E-??06	 ?lower	 ?b1	 ? -??5.64E-??07	 ?Includes	 ??0??	 ? YES	 ?Significant	 ?linear	 ?trend?	 ? NO	 ?Table	 ?11.	 ?Temperature	 ?results	 ?relating	 ?to	 ?the	 ?second	 ?objective,	 ?an	 ?assessment	 ?of	 ?performance	 ?during	 ?use.	 ?	 ?	 ?Observations/Comments	 ?Temperature	 ?is	 ?well	 ?explained	 ?by	 ?objective	 ?1,	 ?as	 ?evidenced	 ?by	 ?the	 ?relatively	 ?narrow	 ?interval	 ?(?T	 ?=	 ?5.78	 ??	 ?0.59?C	 ?(?	 ?10%)).	 ?Objective	 ?2	 ?can	 ?be	 ?assumed	 ?inapplicable	 ?to	 ?temperature,	 ?as	 ?there	 ?is	 ?no	 ?apparent	 ?trend	 ?at	 ?a	 ?confidence	 ?interval	 ?of	 ?80%.	 ?	 ?Chlorine	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?Chlorine,	 ?ppm	 ?1a	 ? -??0.50	 ?2a	 ? -??0.60	 ?3a	 ? -??0.60	 ?4a	 ? -??0.50	 ?1b	 ? -??0.56	 ?2b	 ? -??0.52	 ?3b	 ? -??0.54	 ?4b	 ? -??0.54	 ?mean	 ? -??0.545	 ?std	 ?error	 ? 0.014	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.365	 ?upper	 ?CI	 ? -??0.51	 ?lower	 ?CI	 ? -??0.58	 ?Aesthetically	 ?relevant	 ?difference	 ? 0.5	 ?ppm	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? +1	 ?Table	 ?12.	 ?Chlorine	 ?results	 ?for	 ?the	 ?first	 ?objective.	 ?Objective	 ?2	 ?Results	 ?Because	 ?Waterfillz	 ?consistently	 ?output	 ?water	 ?with	 ?a	 ?chlorine	 ?residual	 ?of	 ?0,	 ?any	 ?analysis	 ?of	 ?trend	 ?would	 ?be	 ?for	 ?the	 ?values	 ?obtained	 ?from	 ?tap	 ?water	 ?alone,	 ?which	 ?was	 ?not	 ?the	 ?intent	 ?of	 ?the	 ?study.	 ?Therefore,	 ?objective	 ?2	 ?was	 ?inherently	 ?irrelevant	 ?for	 ?chlorine.	 ?Observations/Comments	 ?Chlorine	 ?is	 ?well	 ?explained	 ?by	 ?objective	 ?1,	 ?as	 ?evidenced	 ?by	 ?the	 ?narrow	 ?interval	 ?(?Chlorine	 ?=	 ?-??0.545	 ??	 ?0.0331?C	 ?(?	 ?6%)).	 ?	 ?	 ? 	 ?	 ?	 ?HPC	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?HPC,	 ?CFU/100	 ?mL?	 ?1a	 ? 63	 ?2a	 ? 5048	 ?3a	 ? 32973	 ?4a	 ? 20900	 ?1b	 ? 48	 ?2b	 ? 11198	 ?3b	 ? 8947	 ?4b	 ? 20600	 ?mean	 ? 12472	 ?std	 ?error	 ? 4086	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.37	 ?upper	 ?CI	 ? 22135	 ?lower	 ?CI	 ? 2809	 ?Aesthetically	 ?relevant	 ?difference	 ? Any	 ?significant	 ?change	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? -??1	 ?Table	 ?13.	 ?HPC	 ?results,	 ?relating	 ?to	 ?objective	 ?1	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?	 ?Figure	 ?1.	 ?Image	 ?of	 ?membrane	 ?filtration	 ?plate	 ?results	 ?	 ?	 ?	 ?W4	 ? 	 ?	 ?	 ?	 ?	 ?	 ?W3	 ? 	 ? 	 ?W2	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?W1	 ?	 ?	 ?Objective	 ?2	 ?Results	 ?Sample	 ?ID	 ? ?HPC,	 ?CFU/100	 ?mL?	 ?1a	 ? 63	 ?2a	 ? 5048	 ?3a	 ? 32973	 ?4a	 ? 20900	 ?1b	 ? 48	 ?2b	 ? 11198	 ?3b	 ? 8947	 ?4b	 ? 20600	 ?mean	 ? 12472	 ?b0	 ? 19952	 ?b1	 ? -??6.21E-??02	 ?Parameter	 ?deviation	 ? 7640	 ?var(b0)	 ? 12883304	 ?var(b1)	 ? 3.85E-??04	 ?CI	 ?95%	 ?(t=2.447)	 ? upper	 ?b1	 ? -??1.41E-??02	 ?lower	 ?b1	 ? -??1.10E-??01	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?14.	 ?HPC	 ?results,	 ?relating	 ?to	 ?objective	 ?1?CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?Observations/Comments	 ?The	 ?HPC	 ?data	 ?is	 ?shows	 ?a	 ?wide	 ?range	 ?of	 ?values	 ?as	 ?determined	 ?for	 ?objective	 ?1:	 ??HPC	 ?=	 ?12472	 ??	 ?9684	 ?CFU/100	 ?mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?(?	 ?78%),	 ?which	 ?suggests	 ?that	 ?another	 ?explanation	 ?might	 ?be	 ?more	 ?adequate.	 ?For	 ?the	 ?data	 ?presented	 ?above,	 ?evaluations	 ?for	 ?objective	 ?2	 ?confirm	 ?with	 ?95%	 ?confidence	 ?that	 ?a	 ?downward	 ?trend	 ?exists.	 ?	 ?However,	 ?one	 ?of	 ?the	 ?key	 ?factors	 ?for	 ?the	 ?success	 ?of	 ?linear	 ?regression	 ?is	 ?homoscedasticity,	 ?or	 ?homogeneity	 ?of	 ?variance	 ?(HOV).	 ?Each	 ?paired	 ?HPC	 ?sample	 ?has	 ?an	 ?observably	 ?wide-??ranging	 ?variance,	 ?as	 ?seen	 ?in	 ?Table	 ?15,	 ?so	 ?it	 ?cannot	 ?be	 ?assumed	 ?equal,	 ?which	 ?limits	 ?confidence	 ?in	 ?the	 ?stated	 ?trend.	 ?With	 ?this	 ?in	 ?mind,	 ?a	 ?log10	 ?transform	 ?was	 ?applied	 ?to	 ?each	 ?sample	 ?value.	 ?This	 ?is	 ?a	 ?technique	 ?recommended	 ?by	 ?Brown	 ?and	 ?Berthouex	 ?(2002).	 ?	 ? HPC,	 ?CFU/100	 ?mL?	 ? Sample	 ?Deviation	 ? LOG(HPC)	 ? Sample	 ?Deviation	 ?waterfillz\n	 ? 1	 ? 2	 ? 1	 ? 2	 ?1(a&b)	 ? 63	 ? 48	 ? 11	 ? 1.80	 ? 1.68	 ? 0.085	 ?2(a&b)	 ? 5048	 ? 11198	 ? 4349	 ? 3.70	 ? 4.05	 ? 0.245	 ?3(a&b)	 ? 32973	 ? 8947	 ? 16989	 ? 4.52	 ? 3.95	 ? 0.401	 ?4(a&b)	 ? 20900	 ? 20600	 ? 212	 ? 4.32	 ? 4.31	 ? 0.004	 ?Table	 ?15.	 ?Indication	 ?that	 ?HPC	 ?variances	 ?differ	 ?substantially	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?The	 ?log10	 ?transformed	 ?data	 ?was	 ?similarly	 ?tested	 ?for	 ?a	 ?trend,	 ?and	 ?the	 ?results	 ?are	 ?presented	 ?in	 ?Table	 ?16.	 ?Analysis	 ?confirms	 ?the	 ?presence	 ?of	 ?a	 ?downward	 ?slope	 ?within	 ?a	 ?95%	 ?confidence	 ?interval.	 ?	 ?	 ?Sample	 ?ID	 ? log(?HPC)	 ?1a	 ? 1.80	 ?2a	 ? 3.70	 ?3a	 ? 4.52	 ?4a	 ? 4.32	 ?1b	 ? 1.68	 ?2b	 ? 4.05	 ?3b	 ? 3.95	 ?4b	 ? 4.31	 ?mean	 ? 3.54	 ?b0	 ? 4.45	 ?b1	 ? -??7.49E-??06	 ?Parameter	 ?deviation	 ? 0.311	 ?var(b0)	 ? 2.13E-??02	 ?var(b1)	 ? -??7.49E-??06	 ?CI	 ?95%	 ?(t=2.447)	 ? upper	 ?b1	 ? -??5.54E-??06	 ?lower	 ?b1	 ? -??9.44E-??06	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?16.	 ?Log-??transform	 ?HPC	 ?data,	 ?for	 ?statistically	 ?appropriate	 ?comparison.	 ?A	 ?Brown-??Forsythe	 ?F-??test	 ?was	 ?performed	 ?in	 ?a	 ?trial	 ?copy	 ?of	 ?IBM	 ?SPSS	 ?Statistics	 ?to	 ?statistically	 ?evaluate	 ?the	 ?HOV	 ?of	 ?the	 ?transformed	 ?data.	 ?The	 ?results	 ?are	 ?presented	 ?in	 ?Appendix	 ?H.	 ?The	 ?8	 ?samples	 ?obtained	 ?during	 ?the	 ?first	 ?and	 ?second	 ?test	 ?run	 ?were	 ?insufficient,	 ?resulting	 ?in	 ?a	 ??0?	 ?in	 ?the	 ?denominator	 ?of	 ?test	 ?calculations.	 ?By	 ?incorporating	 ?an	 ?extra	 ?2	 ?points	 ?of	 ?within-??range	 ?data	 ?from	 ?the	 ?preliminary	 ?results	 ?(i.e.	 ?counts	 ?returned	 ?within	 ?20-??200	 ?CFU),	 ?similarly	 ?transformed	 ?with	 ?log10,	 ?the	 ?variances	 ?could	 ?be	 ?confirmed	 ?as	 ?equal	 ?with	 ?less	 ?than	 ?5%	 ?error	 ?(p<0.05).	 ?However,	 ?studies	 ?suggest	 ?that	 ?Brown-??Forsythe	 ?F-??tests	 ?are	 ?less	 ?robust	 ?when	 ?used	 ?to	 ?analyze	 ?groups	 ?with	 ?different	 ?sample	 ?numbers	 ?(Lim	 ?and	 ?Loh,	 ?1996;	 ?Lee	 ?et	 ?al.,	 ?2010),	 ?as	 ?was	 ?the	 ?case	 ?when	 ?incorporating	 ?preliminary	 ?data.	 ?Therefore,	 ?while	 ?the	 ?result	 ?of	 ?the	 ?Brown-??Forsythe	 ?test	 ?suggests	 ?equal	 ?variance,	 ?it	 ?cannot	 ?be	 ?claimed	 ?definitively.	 ?Therefore,	 ?the	 ?results	 ?of	 ?objective	 ?2	 ?evaluations	 ?are	 ?presented	 ?to	 ?suggest	 ?the	 ?trend	 ?with	 ?recognition	 ?of	 ?this	 ?limitation.	 ?	 ?	 ?	 ?Figure	 ?2:	 ?HPC	 ?results	 ?using	 ?un-??transformed	 ?y-??axis	 ?	 ?Figure	 ?3.	 ?HPC	 ?results	 ?using	 ?transformed	 ?y-??axis	 ?	 ?y	 ?=	 ?-??0.0621x	 ?+	 ?19952	 ?R?	 ?=	 ?0.62536	 ?0	 ?5000	 ?10000	 ?15000	 ?20000	 ?25000	 ?30000	 ?35000	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ??HPC,	 ?CFU/100	 ?mL)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?y	 ?=	 ?-??7E-??06x	 ?+	 ?4.4452	 ?R?	 ?=	 ?0.93626	 ?0.00	 ?1.00	 ?2.00	 ?3.00	 ?4.00	 ?5.00	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ?log	 ?(?HPC,	 ?CFU/100	 ?mL)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?	 ?	 ?TOC	 ?Results	 ?Objective	 ?1	 ?Results	 ? Sample	 ?ID	 ? ?TOC, ppm	 ?1a	 ? -??0.21	 ?2a	 ? -??0.36	 ?3a	 ? -??0.29	 ?4a	 ? -??0.55	 ?1b	 ? -??0.08	 ?2b	 ? -??0.23	 ?3b	 ? -??0.20	 ?4b	 ? -??0.54	 ?mean	 ? -??0.31	 ?std	 ?error	 ? 0.06	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.37	 ?upper	 ?CI	 ? -??0.17	 ?lower	 ?CI	 ? -??0.45	 ?	 ? 	 ?Aesthetically	 ?relevant	 ?difference	 ? any	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? 1	 ?Table	 ?17.	 ?TOC	 ?results	 ?for	 ?objective	 ?1.	 ?Objective	 ?2	 ?Results	 ? Sample	 ?ID	 ? ?TOC,	 ?ppm	 ?1a	 ? -??0.21	 ?2a	 ? -??0.36	 ?3a	 ? -??0.29	 ?4a	 ? -??0.55	 ?1b	 ? -??0.08	 ?2b	 ? -??0.23	 ?3b	 ? -??0.20	 ?4b	 ? -??0.54	 ?mean	 ? -??0.31	 ?b0	 ? -??0.40	 ?b1	 ? 7.84E-??07	 ?Parameter	 ?deviation	 ? 0.132	 ?var(b0)	 ? 3.87E-??03	 ?var(b1)	 ? 1.15E-??13	 ?CI	 ?90%	 ?(t=1.943)	 ? upper	 ?b1	 ? 1.44E-??06	 ?lower	 ?b1	 ? 1.24E-??07	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?18.	 ?TOC	 ?results	 ?for	 ?objective	 ?2,	 ?without	 ?log-??transform	 ?of	 ?x	 ?axis	 ?	 ?	 ?Observations/Comments	 ?The	 ?TOC	 ?data	 ?is	 ?shows	 ?a	 ?wide	 ?range	 ?of	 ?values	 ?as	 ?determined	 ?for	 ?objective	 ?1:	 ??TOC	 ?=	 ?-??0.31	 ??	 ?0.14	 ?ppm	 ?(?	 ?46%),	 ?which	 ?suggests	 ?that	 ?another	 ?explanation	 ?might	 ?be	 ?more	 ?adequate.	 ?For	 ?the	 ?data	 ?presented	 ?above,	 ?evaluations	 ?for	 ?objective	 ?2	 ?show	 ?with	 ?90%	 ?confidence	 ?that	 ?a	 ?downward	 ?trend	 ?exists.	 ?This	 ?confidence	 ?falls	 ?outside	 ?the	 ?range	 ?of	 ?predetermined	 ?quality	 ?objectives.	 ?	 ?	 ?Figure	 ?4.	 ?Change	 ?in	 ?TOC	 ?concentration	 ?between	 ?tap	 ?and	 ?Waterfillz,	 ?with	 ?respect	 ?to	 ?the	 ?number	 ?of	 ?bottles	 ?filled.	 ?	 ?Figure	 ?5.	 ?Change	 ?in	 ?TOC	 ?concentration	 ?between	 ?tap	 ?and	 ?Waterfillz,	 ?with	 ?respect	 ?to	 ?the	 ?log10	 ?of	 ?number	 ?of	 ?bottles	 ?filled.	 ?The	 ?rationale	 ?for	 ?modeling	 ?TOC	 ?performance	 ?depreciation	 ?using	 ?a	 ?log	 ?x-??axis	 ?is	 ?based	 ?on	 ?observations	 ?of	 ?granular	 ?media	 ?filters?	 ?ability	 ?to	 ?remove	 ?TOC	 ?(Crittenden	 ?et	 ?al.,	 ?2005).	 ?It	 ?was	 ?observed	 ?that	 ?rather	 ?than	 ?a	 ?typical	 ?breakthrough	 ?curve,	 ?carbon	 ?filters	 ?show	 ?exponentially	 ?decreasing	 ?ability	 ?to	 ?remove	 ?TOC.	 ?To	 ?confirm	 ?that	 ?this	 ?relationship	 ?is	 ?linear	 ?with	 ?respect	 ?to	 ?log(Volume),	 ?data	 ?points	 ?were	 ?extracted	 ?manually	 ?from	 ?Figure	 ?15-??28	 ?(page	 ?1328),	 ?and	 ?re-??plotted,	 ?as	 ?shown	 ?below:	 ?y	 ?=	 ?8E-??07x	 ?-??	 ?0.4019	 ?R?	 ?=	 ?0.47013	 ?-??0.60	 ?-??0.50	 ?-??0.40	 ?-??0.30	 ?-??0.20	 ?-??0.10	 ?0.00	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ?Change	 ?in	 ?TOC	 ?(ppm)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?y	 ?=	 ?0.1478x	 ?-??	 ?0.9772	 ?R?	 ?=	 ?0.59473	 ?-??0.60	 ?-??0.50	 ?-??0.40	 ?-??0.30	 ?-??0.20	 ?-??0.10	 ?0.00	 ?3.00	 ? 3.50	 ? 4.00	 ? 4.50	 ? 5.00	 ? 5.50	 ? 6.00	 ?Change	 ?in	 ?TOC	 ?(ppm)	 ?Log(number	 ?of	 ?bo?es	 ?filled)	 ?	 ?	 ?Volume	 ?treated,	 ?L/g	 ?GAC	 ? Log(Volume	 ?Treated)	 ? TOC	 ?Concentration	 ?in	 ?Effluent	 ?(mg/L)	 ?2	 ? 0.306	 ? 0.32	 ?3	 ? 0.48	 ? 0.45	 ?4	 ? 0.60	 ? 0.6	 ?5	 ? 0.70	 ? 0.7	 ?7.5	 ? 0.88	 ? 0.95	 ?10	 ? 1.00	 ? 1.35	 ?12.5	 ? 1.10	 ? 1.58	 ?15	 ? 1.18	 ? 1.75	 ?20	 ? 1.30	 ? 1.9	 ?25	 ? 1.40	 ? 1.9	 ?30	 ? 1.48	 ? 1.95	 ?35	 ? 1.54	 ? 2.05	 ?40	 ? 1.60	 ? 2.2	 ?Table	 ?19.	 ?Data	 ?points	 ?selected	 ?from	 ?Water	 ?Treatment	 ?Figure	 ?15-??28,	 ?page	 ?1328,	 ?for	 ?justification	 ?of	 ?log-??x	 ?in	 ?TOC	 ?analysis	 ?for	 ?second	 ?objective.	 ?	 ?Figure	 ?6:	 ?Log-??transform	 ?plot	 ?of	 ?data	 ?extracted	 ?from	 ?Water	 ?Treatment,	 ?p.	 ?1328	 ? 	 ?y	 ?=	 ?1.5533x	 ?-??	 ?0.2574	 ?R?	 ?=	 ?0.97266	 ?0	 ?0.5	 ?1	 ?1.5	 ?2	 ?2.5	 ?0	 ? 0.5	 ? 1	 ? 1.5	 ? 2	 ?TOC	 ?Concentra?n	 ?in	 ?Effluent	 ?(mg/L)	 ?Log	 ?(Volume	 ?Treated)	 ?	 ?	 ?Appendix	 ?G:	 ?QA/QC	 ?Temperature	 ?Sample	 ?Collection	 ?Quality	 ?control	 ?for	 ?temperature	 ?was	 ?informed	 ?by	 ?preliminary	 ?results.	 ?Readings	 ?became	 ?more	 ?precise	 ?as	 ?a	 ? sample	 ? tube	 ? was	 ? filled	 ? and	 ? refilled,	 ? suggesting	 ? that	 ? the	 ? temperature	 ? of	 ? the	 ? tube	 ? itself	 ? could	 ? alter	 ?results.	 ?This	 ?sensitivity	 ?suggested	 ?that	 ?hand	 ?warmth	 ?might	 ?also	 ?alter	 ?readings,	 ?so	 ?care	 ?was	 ?taken	 ?to	 ?limit	 ?hand	 ? contact	 ? with	 ? the	 ? tube	 ? by	 ? holding	 ? its	 ? top	 ? edge	 ? with	 ? thumb	 ? and	 ? forefinger.	 ? Considering	 ? these	 ?factors,	 ?the	 ?vial	 ?was	 ?filled	 ?once,	 ?allowed	 ?to	 ?acclimatize	 ?over	 ?30	 ?seconds,	 ?filled	 ?again,	 ?measured	 ?over	 ?30	 ?seconds	 ?and	 ?the	 ?result	 ?was	 ?then	 ?recorded.	 ?Chlorine	 ?Sample	 ?Collection	 ?Prior	 ?to	 ?sample	 ?collection,	 ?containers	 ?were	 ?rinsed	 ?with	 ?the	 ?target	 ?sample	 ?to	 ?limit	 ?contamination	 ?or	 ?dilution.	 ?Upon	 ?sample	 ?collection,	 ?containers	 ?were	 ?held	 ?close	 ?and	 ?at	 ?a	 ?shallow	 ?angle	 ?to	 ?the	 ?source,	 ?allowing	 ?sample	 ?to	 ?stream	 ?down	 ?the	 ?side,	 ?thereby	 ?limiting	 ?the	 ?potential	 ?for	 ?volatilization.	 ?Spike	 ?Evaluation	 ?Description	 ?A	 ?primary	 ?source	 ?of	 ?interference	 ?with	 ?the	 ?DPD	 ?method	 ?for	 ?chlorine	 ?detection	 ?is	 ?the	 ?presence	 ?of	 ?oxidized	 ?manganese	 ?compounds	 ?(APHA,	 ?2005).	 ?Metals	 ?have	 ?been	 ?shown	 ?to	 ?decrease	 ?after	 ?Waterfillz	 ?treatment	 ?(Tran	 ?et	 ?al.,	 ?2012),	 ?so	 ?Waterfillz	 ?water	 ?could	 ?reasonably	 ?be	 ?assumed	 ?to	 ?have	 ?either	 ?the	 ?same	 ?or	 ?lowered	 ?concentration	 ?of	 ?manganese	 ?in	 ?comparison	 ?to	 ?tap	 ?water.	 ?A	 ?conservative	 ?measurement	 ?of	 ?matrix	 ?effects	 ?would	 ?test	 ?tap	 ?water.	 ?As	 ?mentioned,	 ?chlorine	 ?detection	 ?was	 ?performed	 ?using	 ?the	 ?low-??range	 ?(0	 ??	 ?0.7	 ?mg/L)	 ?total	 ?chlorine	 ?variation	 ?of	 ?the	 ?Hach	 ?test	 ?kit.	 ?Sample	 ?measurements	 ?consistently	 ?returned	 ?values	 ?around	 ?0.5	 ?and	 ?0.6	 ?mg/L.	 ?Spike	 ?methods	 ?typically	 ?employ	 ?the	 ?addition	 ?of	 ?a	 ?concentrated	 ?solution	 ?to	 ?equal	 ?the	 ?magnitude	 ?of	 ?measurements.	 ?In	 ?this	 ?case,	 ?traditional	 ?techniques	 ?could	 ?involve	 ?spiking	 ?with	 ?a	 ?certain	 ?volume	 ?of	 ?concentrated	 ?solution	 ?to	 ?attain	 ?a	 ?concentration	 ?around	 ?1	 ?mg/L.	 ?A	 ?low	 ?concentration	 ?spike	 ?to	 ?obtain	 ?a	 ?result	 ?below	 ?the	 ?upper	 ?limit	 ?of	 ?the	 ?test	 ?range	 ?(0.6-??0.7	 ?mg/L)	 ?might	 ?not	 ?be	 ?distinguishable	 ?from	 ?sample	 ?measurements,	 ?and	 ?inversely,	 ?spiking	 ?to	 ?1	 ?mg/L	 ?would	 ?exceed	 ?the	 ?range.	 ?Therefore,	 ?a	 ?method	 ?to	 ?simultaneously	 ?spike	 ?samples	 ?and	 ?dilute	 ?them	 ?with	 ?chlorine-??demand	 ?free	 ?distilled/deionized	 ?water	 ?was	 ?developed.	 ?	 ?Tap	 ?water	 ?was	 ?tested	 ?in	 ?solution	 ?with	 ?destilled/deionized	 ?water	 ?and	 ?a	 ?bleach	 ?(hypochlorite)	 ?solution	 ?diluted	 ?to	 ?0.3	 ?and	 ?0.5	 ?mg/L.	 ?Hypochlorite,	 ?a	 ?free	 ?chlorine	 ?specie,	 ?is	 ?used	 ?here	 ?as	 ?a	 ?surrogate	 ?spike	 ?for	 ?total	 ?chlorine,	 ?which	 ?is	 ?a	 ?measure	 ?of	 ?both	 ?free	 ?and	 ?combined	 ?chlorine.	 ?Any	 ?reaction	 ?converting	 ?hypochlorite	 ?to	 ?combined	 ?chlorine	 ?would	 ?be	 ?accounted	 ?for	 ?in	 ?the	 ?measurement.	 ?Further,	 ?combined	 ?chlorine	 ?is	 ?generally	 ?more	 ?stable	 ?than	 ?free	 ?chlorine.	 ?If	 ?any	 ?matrix	 ?effects	 ?were	 ?present,	 ?hypochlorite	 ?would	 ?be	 ?preferentially	 ?consumed,	 ?providing	 ?a	 ?sensitive	 ?indicator	 ?for	 ?interference.	 ?	 ?	 ?The	 ?precision	 ?of	 ?the	 ?test	 ?kit	 ?is	 ?0.02	 ?mg/L	 ?(HACH,	 ?2013a);	 ?all	 ?measurements	 ?returned	 ?results	 ?around	 ?the	 ?expected	 ?value,	 ??0.02	 ?mg/L.	 ?Therefore,	 ?no	 ?significant	 ?matrix	 ?effects	 ?have	 ?been	 ?identified.	 ?Protocol	 ?1. Prepare	 ?bleach	 ?(Hypochlorite)	 ?solution:	 ?a. Add	 ?approximately	 ?250	 ?mL	 ?of	 ?distilled/deionized	 ?(DD)	 ?water	 ?to	 ?a	 ?250	 ?mL	 ?conical	 ?flask	 ?b. Add	 ?approximately	 ?5	 ?mL	 ?of	 ?6%	 ?commercial	 ?bleach	 ?to	 ?the	 ?DD	 ?water	 ?c. Mix	 ?with	 ?gentle	 ?rotation	 ?d. Transfer	 ?bleach	 ?solution	 ?to	 ?a	 ?burette	 ?for	 ?standardization	 ?e. Record	 ?initial	 ?volume	 ?of	 ?burette,	 ?A	 ?(14.6	 ?mL)	 ?2. Prepare	 ?indicator	 ?solution:	 ?a. Add	 ?approximately	 ?50	 ?mL	 ?of	 ?DD	 ?water	 ?to	 ?a	 ?250	 ?mL	 ?conical	 ?flask	 ?b. Add	 ?approximately	 ?1	 ?g	 ?of	 ?potassium	 ?iodide	 ?(KI,	 ?Fisher	 ?Scientific)	 ?c. Add	 ?approximately	 ?5	 ?mL	 ?of	 ?acetic	 ?acid	 ?solution	 ?(99.7%	 ?Acetic	 ?Acid	 ?Glacial,	 ?Fisher	 ?Scientific,	 ?dilute	 ?in	 ?10-??25	 ?mL	 ?of	 ?DD	 ?water)	 ?d. Add	 ?exactly	 ?10	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?(0.025	 ?N,	 ?Fisher	 ?Scientific)	 ?e. Add	 ?an	 ?eyedropper	 ?full	 ?of	 ?starch	 ?solution	 ?3. Standardize	 ?bleach	 ?solution:	 ?a. Insert	 ?magnetic	 ?stir	 ?bar	 ?into	 ?the	 ?flask	 ?containing	 ?the	 ?indicator	 ?solution	 ?b. Position	 ?a	 ?stir	 ?plate	 ?beneath	 ?the	 ?burette	 ?containing	 ?the	 ?bleach	 ?solution	 ?c. Place	 ?the	 ?flask	 ?containing	 ?the	 ?indicator	 ?solution	 ?on	 ?the	 ?stir	 ?plate	 ?d. Turn	 ?on	 ?the	 ?stir	 ?plate	 ?to	 ?a	 ?low	 ?setting	 ?for	 ?gentle	 ?mixing	 ?e. Titrate	 ?the	 ?bleach	 ?solution	 ?into	 ?the	 ?indicator	 ?solution	 ?until	 ?a	 ?steady	 ?blue	 ?end	 ?point	 ?is	 ?met	 ?f. Record	 ?final	 ?volume	 ?of	 ?burette,	 ?B	 ?(6	 ?mL)	 ?g. Concentration	 ?of	 ?the	 ?bleach	 ?solution,	 ?reported	 ?as	 ?mg	 ?Cl2/L	 ?is	 ?calculated	 ?by:	 ?	 ? ? = 10 ?? ?0.025 ?? ?35450? ? ? = 1030.52 ? ?  ? ? ?/?	 ?Where:	 ?? 10	 ?=	 ?10	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?? 0.025	 ?=	 ?0.025	 ?N	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?? 34,450	 ?=	 ?scalar	 ?representing	 ?the	 ?ratio	 ?of	 ?chlorine	 ?quenched	 ?by	 ?sodium	 ?thiosulfate	 ?and	 ?unit	 ?conversions	 ?4. Prepare	 ?diluted	 ?solutions	 ?of	 ?desired	 ?concentration	 ?a. Knowing	 ?concentration	 ?of	 ?standardized	 ?bleach	 ?solution	 ?and	 ?desired	 ?concentration	 ?and	 ?volume	 ?of	 ?diluted	 ?solutions,	 ?calculate	 ?required	 ?dilutions:	 ???? . = ??? .???? .??? . 	 ?	 ? Where:	 ?? Vreq.	 ?=	 ?volume	 ?of	 ?standard	 ?required	 ?per	 ?volume	 ?of	 ?desired	 ?diluted	 ?solution	 ?(Vdes.)	 ?? Cdes.	 ?=	 ?desired	 ?concentration	 ?of	 ?diluted	 ?solution	 ?? Cstd.	 ?=	 ?known	 ?concentration	 ?of	 ?standard	 ?solution	 ?	 ?	 ?b. Pipette	 ?the	 ?required	 ?volume	 ?(Vreq.)	 ?of	 ?standard	 ?solution	 ?into	 ?a	 ?volume	 ?of	 ?DD	 ?water	 ?equivalent	 ?to	 ?the	 ?desired	 ?volume	 ?(Vdes.)	 ?Results	 ?of	 ?Chlorine	 ?Spike	 ?	 ? 	 ? Chlorine	 ?(ppm)	 ?Composition	 ? Duplicate	 ? Result	 ? Average	 ? Expected	 ?result	 ?Tap	 ?Water	 ? 1	 ? 0.50	 ? 0.49	 ?2	 ? 0.48	 ?DD	 ?Water	 ? 1	 ? 0.00	 ? 0.00	 ? 0.00	 ?2	 ? 0.00	 ?40/60	 ?-??	 ?Tap/DD	 ?Water	 ? 1	 ? 0.20	 ? 0.20	 ? 0.20	 ?2	 ? 0.20	 ?0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.30	 ? 0.30	 ? 0.30	 ?2	 ? 0.30	 ?40/60	 ?-??	 ?Tap/0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.36	 ? 0.36	 ? 0.38	 ?2	 ? 0.36	 ?60/40	 ?-??	 ?Tap/0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.40	 ? 0.41	 ? 0.40	 ?2	 ? 0.42	 ?20/80	 ?-??	 ?Tap/0.3	 ?ppm	 ?solution	 ? 1	 ? 0.36	 ? 0.35	 ? 0.34	 ?2	 ? 0.34	 ?0.5	 ?ppm	 ?sol	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?40/60	 ?-??	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.48	 ? 0.49	 ? 0.50	 ?2	 ? 0.50	 ?60/40	 ?-??	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?80/20	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?Table	 ?20	 ?Results	 ?of	 ?the	 ?chlorine	 ?spike	 ?analysis	 ?-??	 ?different	 ?compositions	 ?and	 ?their	 ?resulting	 ?value	 ?compared	 ?to	 ?tap	 ?water	 ?Heterotrophic	 ?Plate	 ?Count	 ?Sample	 ?Collection	 ?Samples	 ?containers	 ?were	 ?spiked	 ?with	 ?0.1	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?(10%,	 ?Fisher	 ?Scientific)	 ?per	 ?120	 ?mL	 ?of	 ?sample	 ?to	 ?quench	 ?and	 ?eliminate	 ?the	 ?effects	 ?of	 ?chlorine	 ?on	 ?bacterial	 ?growth.	 ?Containers	 ?were	 ?autoclaved	 ?and	 ?sealed	 ?until	 ?sample	 ?collection.	 ?Two	 ?travel	 ?blanks	 ?as	 ?well	 ?as	 ?a	 ?field	 ?blank	 ?for	 ?each	 ?of	 ?the	 ?four	 ?test	 ?locations	 ?were	 ?evaluated	 ?for	 ?both	 ?sample	 ?runs.	 ?	 ?Total	 ?Organic	 ?Carbon	 ?Sample	 ?Collection	 ?Containers	 ?were	 ?baked	 ?to	 ?remove	 ?organic	 ?carbon	 ?content,	 ?then	 ?capped	 ?and	 ?sealed	 ?until	 ?collection.	 ?	 ?	 ?TOC	 ?Quantification	 ?To	 ?quantify	 ?TOC	 ?concentration	 ?in	 ?samples,	 ?a	 ?calibration	 ?curve	 ?was	 ?constructed	 ?as	 ?follows.	 ?All	 ?values	 ?reported	 ?are	 ?concentrations,	 ?as	 ?determined	 ?from	 ?this	 ?curve:	 ?	 ?Table	 ?21.	 ?TOC	 ?calibration	 ?curve.	 ?Slope	 ?is	 ?approximately	 ?1	 ?due	 ?to	 ?pre-??programmed	 ?instrumental	 ?calibration	 ?Blanks	 ?and	 ?0.5ppm	 ?standards	 ?were	 ?analyzed	 ?throughout	 ?the	 ?run.	 ?The	 ?LOD	 ?and	 ?LOQ	 ?were	 ?determined	 ?to	 ?be	 ?0.082	 ?ppm	 ?and	 ?0.273	 ?ppm,	 ?respectively,	 ?based	 ?on	 ?the	 ?pooled	 ?standard	 ?deviation,	 ?as	 ?follows:	 ?Replicate	 ?Number	 ? 0.5	 ?ppm	 ?TOC	 ?Standard	 ? Instrumental	 ?Blank	 ?1	 ? 0.539	 ? 0.051	 ?2	 ? 0.534	 ? 0.056	 ?3	 ? 0.480	 ? 0.013	 ?4	 ? 0.496	 ? 0.002	 ?5	 ? 0.500	 ? -??0.013	 ?6	 ? 0.484	 ? -??0.003	 ?7	 ? 0.564	 ? 0.030	 ?	 ? 	 ? 	 ?Mean	 ? 0.514	 ? 0.019	 ?Sample	 ?Standard	 ?Dev.	 ? 0.025	 ? 0.029	 ?Table	 ?22.	 ?Replicates	 ?of	 ?blank	 ?and	 ?standard	 ?used	 ?in	 ?determination	 ?of	 ?LOD	 ?and	 ?LOQ.	 ????? = ?? ? 1 ??? + (?? ? 1)????? + ?? ? 2 = 0.027 ? ??  ?	 ??? = 3 ? ???? = 0.082 ? ?? 	 ??? = 10 ? ???? = 0.273 ? ?? 	 ?y	 ?=	 ?0.9658x	 ?+	 ?0.006	 ?R?	 ?=	 ?0.99974	 ?0	 ?0.5	 ?1	 ?1.5	 ?2	 ?2.5	 ?0	 ? 0.5	 ? 1	 ? 1.5	 ? 2	 ? 2.5	 ?Instrument	 ?Response	 ?(rela?ve)	 ?TOC	 ?Concentra?n	 ?(ppm)	 ?	 ?	 ?TOC	 ?Spike	 ?Evaluation	 ?Description	 ?Spikes	 ?were	 ?performed	 ?by	 ?adding	 ?known	 ?amounts	 ?of	 ?concentrated	 ?Suwanee	 ?River	 ?NOM	 ?(aq)	 ?to	 ?both	 ?Waterfillz	 ?and	 ?tap	 ?samples.	 ?These	 ?were	 ?compared	 ?to	 ?identically	 ?spiked	 ?blanks.	 ?It	 ?was	 ?determined	 ?that	 ?the	 ?matrix	 ?has	 ?no	 ?statistically	 ?significant	 ?effect	 ?(95%	 ?confidence)	 ?on	 ?the	 ?instrumental	 ?response.	 ?The	 ?95%	 ?confidence	 ?interval	 ?was	 ?constructed	 ?based	 ?on	 ?the	 ?standard	 ?deviations	 ?of	 ?spike	 ?and	 ?matrix	 ?samples.	 ?Standard	 ?deviations,	 ?rather	 ?than	 ?standard	 ?errors,	 ?were	 ?applied	 ?because	 ?we	 ?are	 ?comparing	 ?a	 ?measurement	 ?to	 ?an	 ?expected	 ?measurement.	 ?Confidence	 ?interval	 ?calculation	 ?was	 ?performed	 ?in	 ?the	 ?manner	 ?given	 ?in	 ?Appendix	 ?F.	 ?Values	 ?of	 ?spike	 ?and	 ?blank	 ?are	 ?given	 ?below:	 ?	 ? Aliquot	 ? NOM	 ?Spike	 ?(in	 ?blank)	 ? Aliquot	 ?+	 ?NOM	 ?Spike	 ?Water	 ?type	 ? Background	 ?TOC	 ?concentration	 ?(ppm)	 ? Spiked	 ?TOC	 ?concentration	 ?(ppm)	 ? Predicted	 ?Range	 ?of	 ?95%	 ?CI	 ?(mg/L)	 ? Concentration	 ?(mg/L)	 ?Tap	 ? 0.63	 ?ppm	 ? 0.83	 ?ppm	 ? 1.24	 ?to	 ?1.56	 ? 1.45	 ?Waterfillz	 ? 0.43	 ?ppm	 ? 0.83	 ?ppm	 ? 1.48	 ?to	 ?1.16	 ? 1.18	 ?Table	 ?23:	 ?TOC	 ?spike	 ?procedure	 ?results	 ?Protocol	 ?Vials	 ?for	 ?standards	 ?and	 ?blanks	 ?should	 ?be	 ?prepared	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?sample	 ?vials	 ?1. Three	 ?types	 ?of	 ?blanks	 ?are	 ?prepared	 ?as	 ?follows:	 ?a. Instrumental	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?DD	 ?water	 ?ii. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?b. Trip	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?DD	 ?water	 ?ii. Cap	 ?vial,	 ?carry	 ?to	 ?sampling	 ?site	 ?and	 ?back	 ?to	 ?lab	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?samples	 ?iii. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?c. Field	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?distilled,	 ?deionized,	 ?0.22	 ??m	 ?Millipore	 ?filtered	 ?water	 ?ii. Cap	 ?vial,	 ?carry	 ?to	 ?sampling	 ?site,	 ?open	 ?vial	 ?for	 ?30	 ?s	 ?and	 ?close	 ?again	 ?d. Transport	 ?back	 ?to	 ?lab	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?samples	 ?e. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?2. Calibration	 ?Standards	 ?a. Prepare	 ?1000	 ?ppm	 ?stock	 ?solution	 ?of	 ?TOC	 ?Standard:	 ?0.5312g	 ?Potassium	 ?Hydrogen	 ?Phthalate	 ?per	 ?250	 ?mL	 ?of	 ?DD	 ?water	 ?b. To	 ?make	 ?20	 ?ppm	 ?standard,	 ?add	 ?2	 ?mL	 ?1000ppm	 ?stock	 ?solution	 ?to	 ?100	 ?mL	 ?volumetric	 ?flask,	 ?top	 ?up	 ?to	 ?line	 ?with	 ?DD	 ?water	 ?c. Prepare	 ?calibration	 ?standards	 ?in	 ?40	 ?mL	 ?TOC	 ?vials.	 ?	 ?i. Use	 ?a	 ?volumetric	 ?pipet	 ?to	 ?dispense	 ?20	 ?ppm	 ?standard,	 ?and	 ?an	 ?analytical	 ?balance	 ?(pouring,	 ?then	 ?Pasteur	 ?pipet)	 ?to	 ?add	 ?water	 ?as	 ?follows:	 ? 	 ?	 ?	 ?	 ?Concentration	 ? Volume	 ?of	 ?20	 ?ppm	 ?std	 ? Mass	 ?of	 ?water	 ?0.125	 ?ppm	 ? 0.25	 ?mL	 ? 39.75	 ?g	 ?0.25	 ?ppm	 ?	 ? 0.5	 ?mL	 ? 39.5	 ?g	 ?0.5	 ?ppm	 ?	 ? 1	 ?mL	 ? 39.0	 ?g	 ?1	 ?ppm	 ?	 ? 2	 ?mL	 ? 38.0	 ?g	 ?2	 ?ppm	 ? 4	 ?mL	 ? 36.0	 ?g	 ?Table	 ?24:	 ?TOC	 ?Analyzer	 ?Calibration	 ?Standards	 ?d. Cap	 ?vials	 ?and	 ?inverted	 ?to	 ?mix	 ?e. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?3. Spikes	 ?a. Prepared	 ?approximately	 ?350	 ?ppm	 ?(of	 ?C)	 ?SR	 ?NOM	 ?solution	 ?in	 ?DD	 ?water	 ?(7	 ?mg	 ?/10	 ?mL)	 ?b. Added	 ?100	 ??L	 ?to	 ?(1)	 ?DD	 ?water	 ?(2)	 ?Waterfillz	 ?water	 ?(3)	 ?Tap	 ?water	 ?c. Capped	 ?and	 ?inverted	 ?to	 ?mix	 ?d. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ? 	 ?	 ?	 ?Appendix	 ?H	 ??	 ?Brown-??Forsythe	 ?F-??test	 ?Results	 ?Description	 ?Following	 ?log10	 ?transforms,	 ?HPC	 ?results	 ?showed	 ?a	 ?visibly	 ?improved	 ?fit.	 ?In	 ?order	 ?to	 ?statistically	 ?confirm	 ?homogeneity	 ?of	 ?variance	 ?(HOV),	 ?a	 ?Brown-??Forsythe	 ?F-??test	 ?(aka	 ?modified	 ?Levene?s	 ?test)	 ?was	 ?performed	 ?on	 ?the	 ?transformed	 ?data.	 ?Including	 ?only	 ?two	 ?samples	 ?for	 ?each	 ?Waterfillz	 ?station	 ?in	 ?the	 ?analysis,	 ?HOV	 ?could	 ?not	 ?be	 ?confirmed.	 ?Including	 ?conclusive	 ?preliminary	 ?results	 ?by	 ?membrane	 ?filtration	 ?from	 ?Waterfillz	 ?stations	 ?2	 ?and	 ?4	 ?in	 ?the	 ?analysis,	 ?HOV	 ?could	 ?be	 ?confirmed	 ?with	 ?uncertainty	 ?p	 ?<	 ?0.05.	 ?However,	 ?by	 ?including	 ?this	 ?data,	 ?the	 ?analysis	 ?considered	 ?test	 ?groups	 ?with	 ?different	 ?sample	 ?numbers,	 ?and	 ?sample	 ?size	 ?was	 ?still	 ?relatively	 ?small,	 ?both	 ?have	 ?which	 ?have	 ?been	 ?shown	 ?to	 ?limit	 ?the	 ?robustness	 ?of	 ?the	 ?test	 ?(Lim	 ?and	 ?Loh,	 ?1996;	 ?Lee	 ?et	 ?al.,	 ?2010).	 ?Sample	 ?Calculations	 ?The	 ?Brown-??Forsythe	 ?test	 ?is	 ?a	 ?variation	 ?of	 ?Levene?s	 ?F-??test,	 ?both	 ?of	 ?which	 ?test	 ?the	 ?significance	 ?level	 ?for	 ?homoscedasticity	 ?or	 ?homogeneity	 ?of	 ?variance	 ?(HOV).	 ?Levene?s	 ?test	 ?is	 ?essentially	 ?an	 ?analysis	 ?of	 ?variance	 ?(ANOVA)	 ?of	 ?an	 ?array	 ?of	 ?absolute	 ?differences	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?sample	 ?mean,	 ?as	 ?represented	 ?by	 ?the	 ?following:	 ?Levene?s	 ?Sample	 ?F-??Statistic	 ?=	 ?ANOVA{ ?? ? ? ? }	 ?A	 ?limitation	 ?of	 ?Levene?s	 ?F-??test	 ?is	 ?that	 ?sample	 ?data	 ?is	 ?assumed	 ?to	 ?follow	 ?a	 ?normal	 ?distribution.	 ?The	 ?Brown-??Forsythe	 ?F-??test	 ?improves	 ?on	 ?Levene?s	 ?method	 ?by	 ?analyzing	 ?the	 ?sample	 ?median	 ?(?)	 ?as	 ?opposed	 ?to	 ?the	 ?sample	 ?mean.	 ?As	 ?a	 ?result,	 ?it	 ?is	 ?more	 ?robust	 ?to	 ?non-??normality	 ?in	 ?the	 ?sample	 ?data.	 ?It	 ?is	 ?represented	 ?by:	 ?Brown-??Forsythe	 ?F-??Statistic	 ?=	 ?ANOVA{ ?? ? ? }	 ?Manual	 ?calculations	 ?for	 ?the	 ?Brown-??Forsythe	 ?F-??statistic,	 ?denoted	 ?by	 ??,	 ?involves	 ?the	 ?following	 ?calculations	 ?for	 ??	 ?=	 ?1,	 ?2,	 ??	 ?,	 ??	 ?groups	 ?with	 ??	 ?=	 ?1,	 ?2,	 ??,	 ??? 	 ?samples	 ?per	 ?group	 ?and	 ??? 	 ?samples	 ?overall:	 ?? =  ? (? ? ?)(? ? 1) ??(??. ? ?..)????? (?? ? ??.????? )????? 	 ?Where:	 ??? =  ? ?? ? ?? 	 ??.. = ??? ? ???  ? ?  ? ??  ??? = 1? ??????????? 	 ???. = ??? ? ???  ? ?  ? ??  ???  ? ?  ? ????  ?? = 1?? ??????? 	 ?Some	 ?preliminary	 ?calculations	 ?for	 ??	 ?were	 ?performed	 ?in	 ?Excel,	 ?however,	 ?for	 ?faster	 ?and	 ?more	 ?reliable	 ?data	 ?processing,	 ?IBM	 ?SPSS	 ?Statistic	 ?was	 ?employed.	 ?The	 ?following	 ?section	 ?provides	 ?the	 ?IBM	 ?SPSS	 ?Statistic	 ?	 ?	 ?analysis	 ?protocol	 ?and	 ?results	 ?for	 ?HPC	 ?data.	 ?Reported	 ?results	 ?represent	 ?the	 ?Brown-??Forsythe	 ?test;	 ?normality	 ?was	 ?not	 ?assumed	 ?for	 ?the	 ?data.	 ?IBM	 ?SPSS	 ?Analysis	 ?Protocol	 ?The	 ?following	 ?provides	 ?instructions	 ?on	 ?how	 ?to	 ?perform	 ?ANOVA	 ?on	 ?an	 ?array	 ?of	 ?differences	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?mean	 ?or	 ?median,	 ?representing	 ?the	 ?Levene	 ?and	 ?Brown-??Forsythe	 ?F-??test,	 ?respectively.	 ?1. With	 ?IBM	 ?SPSS	 ?Statistic	 ?installed	 ?and	 ?running,	 ?make	 ?a	 ?new	 ?data	 ?file	 ?2. Input	 ?the	 ?Waterfillz	 ?station	 ?number	 ?in	 ?the	 ?first	 ?column	 ?as	 ?variable	 ?1	 ?(Waterfillz_Station#)	 ?3. Input	 ?the	 ?sample	 ?data	 ?for	 ?each	 ?station	 ?in	 ?the	 ?second	 ?column	 ?for	 ?variable	 ?2	 ?(i_Sample_Values,	 ?i_logSample_Values,	 ?etc.)	 ?4. Note:	 ?SPSS	 ?categorizes	 ?samples	 ?by	 ?group	 ?(Waterfillz_Station#),	 ?so	 ?different	 ?variables	 ?must	 ?be	 ?used	 ?for	 ?samples	 ?values,	 ?transformed	 ?values,	 ?and	 ?different	 ?combinations	 ?of	 ?values	 ?to	 ?ensure	 ?that	 ?subsequent	 ?calculations	 ?reference	 ?the	 ?correct	 ?dependent	 ?variable	 ?5. Calculate	 ?the	 ?median	 ?of	 ?the	 ?sample	 ?values:	 ?a. Under	 ?the	 ??Data?	 ?heading,	 ?select	 ?the	 ??Aggregate?	 ?option	 ?i. Select	 ?the	 ?independent	 ?variable	 ?(Waterfillz_Station#)	 ?as	 ?the	 ??break	 ?variable(s)?	 ?ii. Select	 ?the	 ?dependent	 ?variable	 ?to	 ?be	 ?analyzed,	 ?enter	 ?into	 ??Summaries	 ?of	 ?Variable(s)?	 ?6. For	 ?Levene?s	 ?test,	 ?click	 ??function?	 ?and	 ?select	 ??mean?	 ?7. For	 ?the	 ?Brown-??Forsythe	 ?test,	 ?click	 ??function?	 ?and	 ?select	 ??median?	 ?a. Click	 ??OK?	 ?and	 ?a	 ?new	 ?variable	 ?for	 ?mean	 ?or	 ?median	 ?will	 ?be	 ?created	 ?(ii_median_Sample_Values,	 ?ii_median_logSample_Values,	 ?etc.)	 ?8. Calculate	 ?the	 ?absolute	 ?difference	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?mean	 ?or	 ?median:	 ?a. Under	 ?the	 ??Transform?	 ?heading,	 ?select	 ?the	 ??Compute	 ?Variable?	 ?option:	 ?i. Under	 ?the	 ?heading	 ??Function	 ?Group?	 ?select	 ??all?	 ?ii. Navigate	 ?to	 ?and	 ?input	 ??abs?	 ?into	 ?the	 ??numeric	 ?expression?	 ?iii. Enter	 ?the	 ?sample	 ?value	 ?(ex.	 ?i_Sample_Values)	 ?iv. Input	 ?a	 ?subtraction	 ?operator	 ??-???	 ?v. Enter	 ?the	 ?sample	 ?mean	 ?or	 ?median	 ?value	 ?(ex.	 ?ii_median_Sample_Values)	 ?vi. Identify	 ?the	 ?target	 ?variable	 ?label	 ?(diff_i_ii1,	 ?diff_i_ii2,	 ?etc.)	 ?b. Click	 ??OK?	 ?and	 ?a	 ?new	 ?variable	 ?for	 ?the	 ?absolute	 ?difference	 ?of	 ?sample	 ?value	 ?and	 ?sample	 ?mean	 ?or	 ?median	 ?will	 ?be	 ?created	 ?9. Calculate	 ?the	 ?Levene?s	 ?test	 ?(using	 ?the	 ?mean)	 ?or	 ?Brown-??Forsythe	 ?(using	 ?the	 ?median)	 ?F-??Statistic	 ?a. Select	 ?the	 ?array	 ?of	 ?absolute	 ?differences	 ?between	 ?sample	 ?value	 ?and	 ?sample	 ?mean	 ?or	 ?median	 ?to	 ?be	 ?analyzed	 ?b. Under	 ?the	 ??Analyze?	 ?heading,	 ?select	 ?the	 ??Compare	 ?Means?	 ?tab,	 ?and	 ?then	 ?select	 ?the	 ??One-??way	 ?Anova??	 ?option:	 ?i. Select	 ?the	 ?independent	 ?variable	 ?(Waterfillz_Station#)	 ?as	 ?the	 ??Factor:?	 ?ii. Select	 ?the	 ?dependent	 ?variable	 ?(diff_i_ii1,	 ?diff_i_ii2,	 ?etc.)	 ?to	 ?be	 ?analyzed	 ?c. Click	 ??OK?	 ?and	 ?the	 ?results	 ?are	 ?output	 ?in	 ?a	 ?separate	 ?window	 ?10. Variances	 ?can	 ?be	 ?reported	 ?as	 ?equal	 ?with	 ?less	 ?than	 ?5%	 ?error	 ?if	 ?the	 ?reported	 ??Sig.?	 ?is	 ?below	 ?0.05	 ? 	 ?	 ?SUPPORTING	 ?INFORMATION	 ?APPENDICES	 ?A-??H	 ?	 ?Aesthetic	 ?Assessment	 ?of	 ?Drinking	 ?Water	 ?at	 ?UBC:	 ?A	 ?Comparison	 ?of	 ?Waterfillz	 ?and	 ?Tap	 ?Water	 ?Civil	 ?562	 ?Project	 ?Submitted	 ?April	 ?8th,	 ?2013	 ?to	 ?Pierre	 ?B?rub?	 ?Sam	 ?Bailey	 ?Shona	 ?Robinson	 ?	 ? 	 ?	 ?	 ?Appendix	 ?A	 ?-??	 ?Preliminary	 ?Study	 ?The	 ?following	 ?outlines	 ?the	 ?preliminary	 ?range-??finding	 ?study,	 ?which	 ?was	 ?conducted	 ?in	 ?order	 ?to	 ?determine	 ?the	 ?aesthetic	 ?factors	 ?of	 ?interest	 ?as	 ?well	 ?as	 ?necessary	 ?sample	 ?number	 ?and	 ?aliquot	 ?volumes.	 ?As	 ?quality	 ?assurance	 ?was	 ?not	 ?carried	 ?out	 ?for	 ?any	 ?of	 ?these	 ?findings,	 ?the	 ?authors	 ?assign	 ?no	 ?statistical	 ?validity	 ?to	 ?the	 ?results	 ?and	 ?emphasize	 ?that	 ?they	 ?are	 ?purely	 ?exploratory.	 ?Preliminary	 ?sample	 ?collection	 ?Aliquots	 ?were	 ?collected	 ?on	 ?2013/02/07	 ?at	 ?5pm,	 ?as	 ?well	 ?as	 ?2013/02/08	 ?at	 ?8am	 ?from	 ?W1	 ?and	 ?W3	 ?using	 ?the	 ?protocol	 ?outlined	 ?in	 ?Appendix	 ?D.	 ?Aliquots	 ?were	 ?collected	 ?for	 ?HPC	 ?(20	 ?mL),	 ?TOC	 ?(40	 ?mL),	 ?temperature	 ?(50	 ?mL,	 ?onsite),	 ?chlorine	 ?(25	 ?mL,	 ?onsite),	 ?conductivity,	 ?turbidity,	 ?colour,	 ?and	 ?pH	 ?analysis	 ?(50	 ?mL	 ?total	 ?for	 ?these).	 ?Preliminary	 ?sample	 ?analysis	 ?Water	 ?was	 ?analyzed	 ?for	 ?bacteria	 ?using	 ?the	 ?spread-??plate	 ?agar	 ?method,	 ?similar	 ?to	 ?that	 ?outlined	 ?in	 ?Appendix	 ?D.	 ?However,	 ?instead	 ?of	 ?filtration	 ?of	 ?water,	 ?0.25	 ?mL	 ?of	 ?the	 ?aliquot	 ?was	 ?applied	 ?directly	 ?to	 ?the	 ?agar	 ?plate.	 ?Temperature,	 ?chlorine	 ?and	 ?TOC	 ?analyses	 ?used	 ?the	 ?protocols	 ?used	 ?in	 ?the	 ?main	 ?experiment	 ?(Appendix	 ?D).	 ?Conductivity,	 ?pH,	 ?turbidity	 ?and	 ?colour	 ?were	 ?measured	 ?using	 ?laboratory	 ?instruments.	 ?An	 ?Oakton	 ?300	 ?Series	 ?conductivity	 ?meter	 ?was	 ?used	 ?to	 ?estimate	 ?salinity	 ?of	 ?each	 ?water	 ?source.	 ?The	 ?pH	 ?was	 ?measured	 ?using	 ?a	 ?Beckmann	 ??44	 ?pH	 ?meter.	 ?Turbidity	 ?was	 ?measured	 ?using	 ?a	 ?Hach	 ?2100P	 ?Turbidimeter.	 ?Apparent	 ?colour	 ?(PtCo	 ?units)	 ?was	 ?assessed	 ?using	 ?a	 ?Hach	 ?DR2810	 ?UV-??Vis	 ?Spectrophotometer.	 ?Methods	 ?used	 ?for	 ?each	 ?instrument	 ?were	 ?as	 ?specified	 ?by	 ?the	 ?manufacturer.	 ?Preliminary	 ?results	 ?&	 ?discussion	 ?The	 ?results	 ?of	 ?our	 ?preliminary	 ?sampling	 ?are	 ?presented	 ?in	 ?Table	 ?1,	 ?below.	 ?Sample	 ?identifiers	 ?are	 ?like	 ?those	 ?in	 ?the	 ?main	 ?experiment,	 ?described	 ?in	 ?Table	 ?5,	 ?Appendix	 ?D.	 ?	 ? 2013/02/07,	 ?5pm	 ? 2013/02/08,	 ?8am	 ?W1	 ? T1	 ? W4	 ? T4	 ? W1	 ? T1	 ? W4	 ? T4	 ?Temperature	 ?(?C)	 ? 11.7	 ? 6.8	 ? 13.7	 ? 7.5	 ? 11.5	 ? 8.6	 ? 11.2	 ? 6.3	 ?Chlorine	 ?(ppm)	 ? 0	 ? 0.64	 ? 0	 ? 0.6	 ? 0	 ? 0.6	 ? 0	 ? 0.5	 ?HPC	 ?(CFU/100	 ?mL?)	 ? 0	 ? 266	 ? 600	 ? 0	 ? 100	 ? -??	 ? 100	 ? -??	 ?TOC	 ?(ppm)	 ? 0.86	 ? 0.78	 ? 0.12	 ? 0.78	 ? 0.70	 ? 0.84	 ? 0.11	 ? 0.82	 ?Conductivity	 ?(?S/cm)	 ? 32.3	 ? 33.5	 ? 32.8	 ? 33.0	 ? 27.5	 ? 26.4	 ? 26.9	 ? 26.8	 ?pH	 ? 6.74	 ? 6.64	 ? 6.57	 ? 6.69	 ? 6.04	 ? 6.42	 ? 6.23	 ? 6.41	 ?Turbidity	 ?(NTU)	 ? 0.040	 ? 0.047	 ? 0.027	 ? 0.093	 ? 0.067	 ? 0.127	 ? 0.100	 ? 0.200	 ?Colour	 ?(PtCo	 ?units)	 ? 1.7	 ? 1.3	 ? 1	 ? 1.3	 ? 1.3	 ? 1.3	 ? 1	 ? 2.7	 ?Table	 ?1.	 ?Data	 ?for	 ?all	 ?preliminary	 ?parameters.	 ??CFU/mL,	 ?spread	 ?plate	 ?method,	 ?48	 ?hrs/35?C,	 ?Difco?	 ?Agar	 ?	 ?Based	 ?on	 ?the	 ?above	 ?results,	 ?temperature,	 ?chlorine,	 ?and	 ?TOC	 ?showed	 ?the	 ?most	 ?interesting	 ?results	 ?when	 ?considered	 ?in	 ?conjunction	 ?with	 ?aesthetically	 ?relevant	 ?levels.	 ?Although	 ?conductivity	 ?(a	 ?surrogate	 ?for	 ?dissolved	 ?salts)	 ?and	 ?pH	 ?can	 ?both	 ?affect	 ?taste,	 ?the	 ?levels	 ?observed	 ?for	 ?tap	 ?and	 ?Waterfillz	 ?water	 ?were	 ?not	 ?noticeably	 ?different	 ?making	 ?comparison	 ?unnecessary.	 ?The	 ?turbidity	 ?and	 ?colour	 ?were	 ?detected	 ?by	 ?	 ?	 ?instruments	 ?but	 ?were	 ?not	 ?visually	 ?discernable	 ?suggesting	 ?they	 ?were	 ?so	 ?low	 ?as	 ?to	 ?be	 ?aesthetically	 ?irrelevant.	 ?The	 ?HPC	 ?results	 ?above,	 ?which	 ?used	 ?the	 ?spread	 ?plate	 ?method,	 ?required	 ?further	 ?investigation.	 ?A	 ?follow-??up	 ?test	 ?using	 ?the	 ?membrane	 ?filtration	 ?method	 ?provided	 ?far	 ?more	 ?informative	 ?data.	 ?These	 ?results,	 ?presented	 ?in	 ?Table	 ?2,	 ?included	 ?some	 ?inaccurate,	 ?out	 ?of	 ?range	 ?counts,	 ?but	 ?informed	 ?the	 ?dilutions	 ?required	 ?for	 ?subsequent	 ?samples.	 ?	 ? 2013/02/14	 ?W1	 ? T1	 ? W2	 ? T2	 ? W3	 ? T3	 ? W4	 ? T4	 ?HPC	 ?(CFU/100	 ?mL?)	 ? <200	 ? 67	 ? 7267	 ? 167	 ? >20000	 ? 400	 ? 18533	 ? 0	 ?Table	 ?2.	 ?Data	 ?from	 ?preliminary	 ?HPC	 ?membrane	 ?filtration	 ?test,	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?	 ?	 ? 	 ?	 ?	 ?Appendix	 ?B	 ??	 ?Sizing	 ?Experiment	 ?Description	 ?To	 ?determine	 ?the	 ?sample	 ?size	 ?required	 ?for	 ?the	 ?main	 ?experiment,	 ?the	 ?following	 ?calculations	 ?were	 ?performed.	 ?Sample	 ?sizing	 ?was	 ?considered	 ?with	 ?respect	 ?to	 ?only	 ?the	 ?first	 ?(main)	 ?objective.	 ?The	 ?preliminary	 ?study	 ?identified	 ?marked	 ?differences	 ?in	 ?chlorine,	 ?TOC	 ?and	 ?temperature.	 ?Chlorine	 ?showed	 ?complete	 ?removal	 ?in	 ?all	 ?instances,	 ?so	 ?would	 ?be	 ?the	 ?least	 ?conservative	 ?parameter	 ?for	 ?sizing.	 ?Total	 ?organic	 ?carbon	 ?showed	 ?marked	 ?but	 ?widely	 ?varying	 ?removal.	 ?Population	 ?variance	 ?was	 ?too	 ?high	 ?to	 ?provide	 ?a	 ?reasonable	 ?estimate	 ?of	 ?experiment	 ?sizing.	 ?Temperature	 ?showed	 ?obvious	 ?differences	 ?and	 ?had	 ?relatively	 ?constant	 ?variance,	 ?so	 ?was	 ?used	 ?for	 ?sizing.	 ?	 ?Calculations	 ?Sample	 ?size	 ?was	 ?calculated	 ?assuming	 ?a	 ?pre-??specified	 ?margin	 ?of	 ?error	 ?(?)	 ?for	 ?temperature,	 ?t-??statistic,	 ?a	 ?95%	 ?confidence	 ?interval	 ?and	 ?sample	 ?variance	 ?(?).	 ?Sample	 ?size	 ?is	 ?then	 ?calculated	 ?by	 ?the	 ?following:	 ?? =  ? (?????,???? ??)?1 + (?????,???? ??)?/?	 ?Where	 ??,	 ?the	 ?total	 ?population	 ?size,	 ?is	 ?large	 ?in	 ?comparison	 ?to	 ?the	 ?sample	 ?size,	 ?the	 ?denominator	 ?simplifies	 ?to	 ?1	 ?+	 ?(0).	 ?The	 ?same	 ?methods,	 ?detailed	 ?in	 ?Appendix	 ?F,	 ?were	 ?used	 ?to	 ?calculate	 ?paired	 ?difference	 ?and	 ?sample	 ?standard	 ?deviation	 ?for	 ?preliminary	 ?temperature	 ?results.	 ?Sample	 ?standard	 ?deviation	 ?was	 ?1.37?C.	 ?An	 ?acceptable	 ?margin	 ?of	 ?error	 ?was	 ?initially	 ?set	 ?at	 ?3?C.	 ?	 ?Assuming	 ?an	 ?initial	 ?estimate	 ?for	 ??	 ?(using	 ?? ? 1	 ?for	 ?t-??statistic)	 ?the	 ?equation	 ?above	 ?can	 ?be	 ?iterated	 ?to	 ?obtain	 ?the	 ?actual	 ?value	 ?of	 ??.	 ?pair	 ? ?(W-??T)	 ?(?C)	 ? mean,	 ?x	 ?(?C)	 ? margin,	 ??	 ?(?C)	 ? d	 ?=	 ?x	 ?-??	 ??	 ?(?C)	 ? s	 ?(?C)	 ?1	 ? 4.87	 ? 4.71	 ? 3	 ? 1.71	 ? 1.37	 ?2	 ? 6.23	 ?3	 ? 2.9	 ?4	 ? 4.83	 ?Table	 ?3:	 ?Preliminary	 ?temperature	 ?results	 ?with	 ?sample	 ?standard	 ?deviation	 ?(s)	 ?and	 ?pre-??specified	 ?margin	 ?of	 ?error	 ?(d)	 ?initial	 ?n	 ? t-??value	 ?(n-??1)	 ? calculated	 ?n	 ?5	 ? 2.571	 ? 4.26	 ?4	 ? 3.182	 ? 6.52	 ?Table	 ?4:	 ?Iterated	 ?calculations	 ?for	 ?sample	 ?size	 ?based	 ?on	 ?an	 ?initial	 ?guess	 ?of	 ?n	 ?As	 ?shown	 ?in	 ?table	 ?4,	 ?the	 ?required	 ?sample	 ?size,	 ?calculated	 ?based	 ?on	 ?temperature,	 ?lies	 ?somewhere	 ?between	 ?4<n<	 ?5.	 ?Because	 ?this	 ?sample	 ?size	 ?is	 ?relatively	 ?small,	 ?n=8	 ?was	 ?chosen	 ?to	 ?overestimate	 ?and	 ?allow	 ?for	 ?two	 ?data	 ?points	 ?per	 ?Waterfillz	 ?machine/tap	 ?pair.	 ?Subsequent	 ?sampling	 ?identified	 ?that	 ?the	 ?initial	 ?estimate	 ?for	 ?margin	 ?of	 ?error	 ?was	 ?conservative.	 ?Using	 ?8	 ?samples,	 ?d	 ?was	 ?as	 ?high	 ?as	 ?5?C,	 ?which	 ?correlated	 ?to	 ?perceivable	 ?thresholds	 ?identified	 ?in	 ?literature.	 ?	 ?	 ?Appendix	 ?C	 ?-??	 ?Safety	 ?Considerations	 ?Analyst	 ?safety	 ?considerations	 ?For	 ?all	 ?analyses,	 ?appropriate	 ?safety	 ?protocols	 ?were	 ?followed.	 ?Lab	 ?coats,	 ?gloves	 ?and	 ?safety	 ?glasses	 ?were	 ?worn	 ?in	 ?the	 ?laboratory.	 ?Safety	 ?equipment	 ?was	 ?not	 ?worn	 ?for	 ?fieldwork,	 ?with	 ?the	 ?exception	 ?of	 ?nitrile	 ?gloves	 ?for	 ?on-??site	 ?chlorine	 ?analysis.	 ?	 ?Disposal	 ?considerations	 ?All	 ?samples	 ?were	 ?disposed	 ?of	 ?directly	 ?to	 ?the	 ?drain	 ?after	 ?analysis,	 ?with	 ?the	 ?exception	 ?of	 ?the	 ?HPC	 ?agar	 ?plates	 ?and	 ?the	 ?acidic	 ?waste	 ?from	 ?the	 ?total	 ?organic	 ?carbon	 ?detector.	 ?The	 ?HPC	 ?agar	 ?plates	 ?are	 ?a	 ?potential	 ?biohazard,	 ?so	 ?they	 ?are	 ?autoclaved	 ?and	 ?disposed	 ?of	 ?in	 ?a	 ?separate	 ?bin	 ?in	 ?the	 ?lab.	 ?The	 ?acidic	 ?TOC	 ?waste	 ?was	 ?neutralized	 ?with	 ?calcium	 ?carbonate	 ?to	 ?above	 ?a	 ?pH	 ?of	 ?5	 ?before	 ?disposal	 ?to	 ?the	 ?drain.	 ?Notes	 ?for	 ?selected	 ?reagents	 ?Please	 ?refer	 ?to	 ?MSDS	 ?for	 ?comprehensive	 ?information	 ?on	 ?reagents.	 ?Phosphoric	 ?acid,	 ?85%	 ?-??	 ?reagent	 ?for	 ?TOC	 ?analyzer	 ?	 ? -??	 ?highly	 ?corrosive	 ?hazard	 ?	 ? -??	 ?severe	 ?irritant	 ?case	 ?of	 ?skin/eye	 ?contact	 ?or	 ?ingestion	 ?	 ? -??	 ?slight	 ?inhalation	 ?hazard	 ?Sodium	 ?hypochlorite,	 ?5.25%	 ?-??	 ?for	 ?preparation	 ?of	 ?chlorine	 ?spikes	 ?	 ? -??irritant	 ?hazard	 ?in	 ?case	 ?of	 ?skin/eye	 ?contact,	 ?ingestion	 ?or	 ?inhalation	 ?Sodium	 ?persulfate	 ?-??	 ?reagent	 ?for	 ?TOC	 ?analyzer	 ?	 ? -??very	 ?hazardous	 ?irritant	 ?in	 ?case	 ?of	 ?skin/eye	 ?contact	 ?	 ? -??hazard	 ?in	 ?case	 ?of	 ?ingestion	 ?	 ? -??highly	 ?reactive	 ?with	 ?reducing	 ?agents,	 ?organic	 ?material	 ? 	 ?	 ?	 ?Appendix	 ?D	 ?-??	 ?Sampling	 ?&	 ?Analysis	 ?Protocols	 ?Sample	 ?collection	 ?Sampling	 ?of	 ?each	 ?Waterfillz	 ?station	 ?was	 ?performed	 ?in	 ?pair	 ?with	 ?the	 ?nearest	 ?tap	 ?or	 ?fountain	 ?water	 ?source.	 ?It	 ?was	 ?assumed	 ?that	 ?taps	 ?and	 ?fountains	 ?were	 ?in	 ?direct	 ?connection	 ?to	 ?the	 ?municipal	 ?distribution	 ?system	 ?with	 ?no	 ?intermediate	 ?treatment	 ?or	 ?storage,	 ?beyond	 ?the	 ?volume	 ?held	 ?in	 ?piping,	 ?thereby	 ?providing	 ?a	 ?representative	 ?sample	 ?of	 ?a	 ?common	 ?background	 ?water	 ?supply.	 ?The	 ?measured	 ?chlorine	 ?residual	 ?for	 ?taps	 ?and	 ?fountains	 ?(see	 ?Appendix	 ?E)	 ?was	 ?consistent,	 ?and	 ?similar	 ?to	 ?the	 ?municipal	 ?dose	 ?(Metro	 ?Vancouver,	 ?2011b)	 ??	 ?evidence	 ?of	 ?a	 ?direct	 ?connection	 ?to	 ?the	 ?wider	 ?distribution	 ?system.	 ?The	 ?location	 ?and	 ?identification	 ?of	 ?each	 ?sample	 ?source	 ?is	 ?provided	 ?in	 ?Table	 ?5.	 ?Source	 ? Abbreviated	 ?I.D.	 ? Location	 ?Waterfillz	 ?station	 ? W1	 ? SUB	 ?main	 ?floor	 ?W2	 ? SUB	 ?basement	 ?W3	 ? Swing	 ?Space	 ?main	 ?floor	 ?W4	 ? MacMillan	 ?main	 ?floor	 ?Water	 ?fountain	 ? T1	 ? SUB	 ?main	 ?floor	 ?Washroom	 ?tap	 ?water	 ? T2	 ? SUB	 ?basement	 ?T3	 ? Swing	 ?Space	 ?main	 ?floor	 ?T4	 ? MacMillan	 ?main	 ?floor	 ?Field	 ?blank	 ?(opened	 ?at	 ?location	 ?#)	 ?B1	 ? SUB	 ?main	 ?floor	 ?B2	 ? SUB	 ?basement	 ?B3	 ? Swing	 ?Space	 ?main	 ?floor	 ?B4	 ? MacMillan	 ?main	 ?floor	 ?Trip	 ?blank	 ? B*1	 ? N/A	 ?B*2	 ? N/A	 ?Suffix	 ? Date	 ?a	 ? 2013/02/26	 ?b	 ? 2013/03/19	 ?Table	 ?5:	 ?List	 ?of	 ?sample	 ?identifiers	 ?Sample	 ?Population	 ?and	 ?Scheme	 ?The	 ?sampling	 ?procedure	 ?was	 ?designed	 ?acknowledging	 ?that	 ?short-??term	 ?fluctuations	 ?in	 ?water	 ?quality	 ?are	 ?inherent;	 ?however,	 ?they	 ?would	 ?be	 ?inconsequential	 ?to	 ?the	 ?objectives	 ?of	 ?the	 ?study.	 ?The	 ?aim	 ?of	 ?experimentation	 ?was	 ?to	 ?identify	 ?differences	 ?in	 ?the	 ?typical	 ?output	 ?quality	 ?of	 ?taps	 ?and	 ?Waterfillz,	 ?with	 ?the	 ?expectation	 ?that	 ?they	 ?would	 ?both	 ?produce	 ?a	 ?relatively	 ?stable	 ?product	 ?during	 ?a	 ?month	 ?of	 ?sampling.	 ?The	 ?temporal	 ?trends	 ?of	 ?interest	 ?were	 ?long-??term,	 ?measured	 ?by	 ?the	 ?service	 ?life	 ?of	 ?the	 ?different	 ?Waterfillz	 ?stations	 ?as	 ?indicated	 ?by	 ?the	 ?number	 ?of	 ??bottles	 ?filled?	 ?displayed	 ?on	 ?each	 ?station.	 ?As	 ?such,	 ?the	 ?sampling	 ?procedure	 ?was	 ?structured	 ?as	 ?stratified	 ?sampling	 ?of	 ?Waterfillz	 ?stations	 ?paired	 ?to	 ?tap	 ?water.	 ?Judgment	 ?indicated	 ?that	 ?water	 ?collected	 ?on	 ?Tuesday	 ?at	 ?11	 ?am	 ?would	 ?provide	 ?a	 ?representative	 ?sample	 ?of	 ?the	 ?typical	 ?water	 ?quality	 ?available	 ?to	 ?students	 ?due	 ?to	 ?high	 ?traffic	 ?observed	 ?at	 ?this	 ?time,	 ?without	 ?the	 ?variability	 ?that	 ?might	 ?be	 ?introduced	 ?from	 ?decreased	 ?use	 ?over	 ?the	 ?weekend.	 ?Another	 ?important	 ?factor	 ?was	 ?the	 ?	 ?	 ?convenience	 ?of	 ?this	 ?schedule.	 ?Sampling	 ?at	 ?11	 ?am	 ?on	 ?Tuesday	 ?allowed	 ?time	 ?in	 ?the	 ?afternoon	 ?to	 ?process	 ?samples,	 ?and	 ?consequently,	 ?incubated	 ?HPC	 ?could	 ?be	 ?made	 ?the	 ?following	 ?Friday	 ?before	 ?the	 ?weekend.	 ?Overall	 ?Sampling	 ?Method	 ?Prior	 ?to	 ?sample	 ?collection,	 ?source	 ?water	 ?was	 ?run	 ?for	 ?1	 ?minute	 ?for	 ?several	 ?reasons.	 ?This	 ?duration	 ?was	 ?chosen	 ?to	 ?promote	 ?a	 ?the	 ?flushing	 ?time	 ?that	 ?UBC	 ?Risk	 ?Management	 ?Services	 ?(2013)	 ?recommends	 ?prior	 ?to	 ?consumption,	 ?for	 ?aesthetic	 ?reasons.	 ?Also,	 ?because	 ?chlorine	 ?tends	 ?to	 ?decay	 ?when	 ?water	 ?sits	 ?stagnant	 ?in	 ?pipes,	 ?the	 ?flush	 ?was	 ?intended	 ?to	 ?bring	 ?a	 ?fresh	 ?stream	 ?of	 ?water,	 ?with	 ?an	 ?undiminished	 ?dose	 ?of	 ?chlorine	 ?residual	 ?from	 ?the	 ?distribution	 ?system.	 ?Finally,	 ?Standard	 ?Methods	 ?(APHA,	 ?2005)	 ?recommends	 ?flushing	 ?to	 ?obtain	 ?samples	 ?that	 ?represent	 ?the	 ?microbial	 ?count	 ?of	 ?the	 ?source	 ?water	 ?and	 ?not	 ?bacteria	 ?that	 ?may	 ?have	 ?accumulated	 ?in	 ?or	 ?on	 ?the	 ?spout.	 ?However,	 ?they	 ?recommend	 ?a	 ?flush	 ?time	 ?of	 ?2	 ?to	 ?3	 ?minutes,	 ?or	 ?enough	 ?time	 ?to	 ?clear	 ?the	 ?service	 ?line.	 ?Because	 ?the	 ?sample	 ?sources	 ?were	 ?in	 ?relatively	 ?high	 ?traffic	 ?areas,	 ?with	 ?some	 ?being	 ?visited	 ?by	 ?3	 ?or	 ?more	 ?users	 ?immediately	 ?prior	 ?to	 ?sampling,	 ?a	 ?1-??minute	 ?flush	 ?was	 ?deemed	 ?adequate	 ?to	 ?clear	 ?the	 ?line.	 ?Furthermore,	 ?a	 ?2	 ?to	 ?3	 ?minute	 ?flush	 ?would	 ?have	 ?been	 ?an	 ?inconveniently	 ?long	 ?interruption	 ?to	 ?tap	 ?users.	 ?	 ?After	 ?the	 ?1-??minute	 ?flush,	 ?samples	 ?were	 ?taken	 ?in	 ?quick	 ?succession	 ?for	 ?the	 ?four	 ?analyses	 ?(to	 ?follow).	 ?As	 ?these	 ?were	 ?collected	 ?rapidly,	 ?they	 ?are	 ?assumed	 ?to	 ?represent	 ?the	 ?same	 ?aliquot	 ?for	 ?purposes	 ?of	 ?analysis	 ?in	 ?this	 ?report.	 ?Temperature	 ?Method	 ?Temperature	 ?was	 ?measured	 ?at	 ?point	 ?of	 ?collection	 ?to	 ?forego	 ?any	 ?changes	 ?that	 ?might	 ?have	 ?occurred	 ?in	 ?transport.	 ?Care	 ?was	 ?taken	 ?not	 ?to	 ?warm	 ?the	 ?sample	 ?by	 ?limiting	 ?hand	 ?contact	 ?with	 ?the	 ?sample	 ?container.	 ?Analysis	 ?Procedure	 ?0. Select	 ?a	 ?container	 ?large	 ?enough	 ?to	 ?submerge	 ?a	 ?thermometer	 ?(i.e.	 ?Falcon	 ?tube)	 ?? One	 ?container	 ?can	 ?be	 ?used;	 ?contamination	 ?unimportant	 ?to	 ?temperature	 ?readings	 ?1. Sampling	 ?a. Transport	 ?container	 ?and	 ?thermometer	 ?to	 ?sampling	 ?site	 ?b. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Fill	 ?container	 ?with	 ?sample	 ?d. Let	 ?stand	 ?for	 ?1	 ?minute,	 ?holding	 ?container	 ?between	 ?thumb	 ?and	 ?forefinger	 ?? Wait	 ?time	 ?allows	 ?container	 ?to	 ?equilibrate	 ?to	 ?water	 ?temperature	 ?? Minimal	 ?hand	 ?contact	 ?limits	 ?warming	 ?of	 ?sample	 ?e. Empty	 ?container	 ?f. Refill	 ?container	 ?with	 ?sample	 ?g. Place	 ?the	 ?thermometer	 ?in	 ?the	 ?container	 ?h. Measure	 ?reading	 ?over	 ?30	 ?seconds	 ?? Reading	 ?should	 ?be	 ?stable	 ?for	 ?most	 ?of	 ?the	 ?30	 ?second	 ?duration	 ?? Otherwise,	 ?repeat	 ?equilibration	 ?steps	 ?c.	 ?to	 ?h.	 ?i. Record	 ?reading	 ?j. Empty	 ?container	 ?and	 ?repeat	 ?step	 ?1	 ?for	 ?subsequent	 ?samples	 ?	 ?	 ?Chlorine	 ?Method	 ?Total	 ?chlorine	 ?was	 ?analyzed	 ?using	 ?a	 ?HACH	 ?Chlorine	 ?(Free	 ?and	 ?Total)	 ?Test	 ?Kit,	 ?which	 ?uses	 ?N,	 ?N-??diethyl-??p-??phenylene	 ?diamine	 ?(DPD)	 ?colourimetry,	 ?allowing	 ?for	 ?the	 ?immediate	 ?on-??site	 ?evaluation	 ?of	 ?samples.	 ?Knowing	 ?that	 ?municipal	 ?chlorine	 ?residuals	 ?tend	 ?to	 ?be	 ?around	 ?0.5	 ?mg/L,	 ?measurements	 ?were	 ?performed	 ?using	 ?the	 ?low	 ?range	 ?(0-??0.7	 ?mg/L)	 ?variation	 ?offered	 ?by	 ?the	 ?test	 ?kit.	 ?	 ?Analysis	 ?Procedure	 ?1. Sampling	 ?a. Ensure	 ?Hach	 ?Chlorine	 ?(Free	 ?&	 ?Total)	 ?Test	 ?Kit	 ?is	 ?equipped	 ?with:	 ?i. Viewing	 ?apparatus,	 ?complete	 ?with	 ?colour	 ?wheel	 ?and	 ?mirror	 ?ii. Square-??bottom	 ?container	 ?and	 ?lids	 ?iii. Cylindrical	 ?vials	 ?iv. 25	 ?mL	 ?total	 ?chlorine	 ?DPD	 ?reagent	 ?pillows	 ?v. A	 ?sufficient	 ?volume	 ?of	 ?chlorine	 ?free,	 ?distilled,	 ?deionized,	 ?0.22	 ??m	 ?Millipore	 ?filtered	 ?water	 ?(hereafter	 ?abbreviated	 ?as	 ?DD	 ?water)	 ?for	 ?rinsing	 ?b. Transport	 ?test	 ?kit	 ?to	 ?sampling	 ?site	 ?c. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?d. With	 ?the	 ?square-??bottom	 ?container	 ?held	 ?at	 ?an	 ?approximate	 ?45?	 ?angle,	 ?close	 ?to	 ?the	 ?source	 ?spout,	 ?fill	 ?with	 ?approximately	 ?25	 ?mL	 ?sample	 ?? Angle	 ?and	 ?proximity	 ?to	 ?source	 ?spout	 ?limit	 ?potential	 ?chlorine	 ?volatilization	 ?e. Writing	 ?right-??ways-??up,	 ?tap	 ?the	 ?bottom	 ?edge	 ?of	 ?the	 ?reagent	 ?pillow	 ?on	 ?a	 ?flat	 ?surface	 ?? Ensures	 ?all	 ?reagent	 ?collects	 ?at	 ?the	 ?bottom	 ?of	 ?the	 ?pillow	 ?f. Open	 ?reagent	 ?package	 ?and	 ?add	 ?to	 ?the	 ?25	 ?mL	 ?of	 ?sample	 ?g. Place	 ?lid	 ?on	 ?the	 ?square-??bottom	 ?container	 ?h. Mix	 ?sample	 ?and	 ?reagent	 ?with	 ?rigorous	 ?shaking	 ?i. Allow	 ?3	 ?minutes,	 ?but	 ?no	 ?more	 ?than	 ?6	 ?minutes	 ?for	 ?reaction	 ?to	 ?equilibrate	 ?? Presence	 ?of	 ?chlorine	 ?is	 ?indicated	 ?by	 ?a	 ?pink	 ?colour	 ?2. Reading	 ?result	 ?a. Open	 ?the	 ?viewing	 ?apparatus	 ?	 ?	 ?b. Fit	 ?viewing	 ?apparatus	 ?with	 ?the	 ?reflective	 ?mirror	 ?and	 ?colour	 ?wheel	 ?? Mirror	 ?allows	 ?entire	 ?length	 ?of	 ?vials	 ?to	 ?be	 ?viewed	 ?for	 ?better	 ?low	 ?range	 ?accuracy	 ?c. Following	 ?at	 ?least	 ?3	 ?minutes	 ?of	 ?reaction,	 ?transfer	 ?approximately	 ?15	 ?mL	 ?of	 ?reacted	 ?sample	 ?from	 ?square-??bottom	 ?container	 ?to	 ?a	 ?cylindrical	 ?vial	 ?d. Fill	 ?another	 ?cylindrical	 ?vial	 ?with	 ?15	 ?mL	 ?of	 ?unreacted	 ?water	 ?from	 ?the	 ?source	 ?? Provides	 ?a	 ?blank	 ?reference	 ?for	 ?colourimetric	 ?readings	 ?e. Place	 ?the	 ?reacted	 ?sample	 ?vial	 ?in	 ?the	 ?right	 ?most	 ?slot	 ?of	 ?the	 ?viewing	 ?apparatus	 ?? Colour	 ?wheel	 ?is	 ?transparent	 ?on	 ?this	 ?side	 ?f. Place	 ?the	 ?unreacted	 ?water	 ?vial	 ?in	 ?the	 ?left	 ?most	 ?slot	 ?of	 ?the	 ?viewing	 ?apparatus	 ?? Colour	 ?wheel	 ?has	 ?a	 ?pink	 ?gradient	 ?on	 ?this	 ?side	 ?g. Point	 ?the	 ?tops	 ?of	 ?the	 ?two	 ?vials	 ?towards	 ?a	 ?light	 ?source	 ?h. Adjust	 ?colour	 ?wheel	 ?until	 ?left	 ?and	 ?right	 ?viewing	 ?slots	 ?show	 ?matching	 ?pink	 ?colour	 ?i. Record	 ?the	 ?reading	 ?indicated	 ?by	 ?the	 ?gradations	 ?on	 ?the	 ?bottom	 ?of	 ?the	 ?colour	 ?wheel	 ?	 ?	 ?? Have	 ?team	 ?members	 ?repeat	 ?steps	 ?h	 ?and	 ?i	 ?to	 ?ensure	 ?precision	 ?j. Empty	 ?square-??bottom	 ?container	 ?and	 ?cylindrical	 ?vials	 ?k. Rinse	 ?square-??bottom	 ?container	 ?and	 ?cylindrical	 ?vials	 ?with	 ?DD	 ?water	 ?Heterotrophic	 ?Plate	 ?Count	 ?Method	 ?Measurements	 ?of	 ?heterotrophic	 ?plate	 ?count	 ?include	 ?a	 ?few	 ?different	 ?procedures,	 ?two	 ?of	 ?which	 ??	 ?spread	 ?plate	 ? and	 ?membrane	 ? filtration	 ? ?	 ?were	 ? used	 ? in	 ? this	 ? study.	 ? The	 ? spread	 ? plate	 ?method	 ?was	 ? only	 ? used	 ? in	 ?explorative	 ? preliminary	 ? tests	 ? and	 ? was	 ? mostly	 ? inconclusive.	 ? The	 ? membrane	 ? filtration	 ? was	 ? practiced,	 ?perfected	 ?and	 ?employed	 ? for	 ?use	 ? in	 ?primary	 ?sampling.	 ? In	 ?combination	 ?with	 ?R2A	 ?agar,	 ? filtration	 ?enables	 ?different	 ? volumes	 ? of	 ? sample	 ? to	 ? be	 ? used,	 ? and	 ? allows	 ? more	 ? flexible	 ? evaluations	 ? to	 ? provide	 ? results	 ? for	 ?water	 ? very	 ? low	 ? in	 ? bacteria	 ? (Uhl	 ? and	 ? Schaule,	 ? 2004;	 ? APHA,	 ? 2005).	 ? The	 ?membrane	 ? filtration	 ?method	 ? is	 ?discussed	 ?in	 ?more	 ?detail.	 ?	 ?Analysis	 ?Procedure	 ?Note:	 ?considerable	 ?attention	 ?must	 ?be	 ?paid	 ?to	 ?perform	 ?the	 ?following	 ?procedure	 ?aseptically,	 ?to	 ?limit	 ?error	 ?introduced	 ?from	 ?the	 ?environment.	 ?0. Determine	 ?the	 ?expected	 ?range	 ?of	 ?bacteria	 ?concentration	 ?in	 ?samples	 ?from	 ?literature	 ?or	 ?through	 ?a	 ?preliminary	 ?run	 ?of	 ?the	 ?following	 ?method	 ?1. Prepare	 ?sample	 ?containers,	 ?travel	 ?and	 ?field	 ?blanks	 ?a. Choose	 ?containers	 ?	 ?i. Must	 ?be	 ?adequate	 ?size	 ?to	 ?hold	 ?required	 ?sample	 ?volume	 ?plus	 ?head	 ?space	 ?ii. All	 ?samples	 ?must	 ?be	 ?run	 ?in,	 ?at	 ?least,	 ?duplicate	 ?aliquot	 ?measurements	 ?iii. Containers	 ?and	 ?their	 ?lids	 ?must	 ?be	 ?temperature	 ?resistant	 ?to	 ?at	 ?least	 ?120?C	 ?b. Rinse	 ?containers	 ?and	 ?lids	 ?in	 ?hot,	 ?soapy	 ?water	 ?c. Rinse	 ?containers	 ?and	 ?lids	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?d. Add	 ?to	 ?all	 ?containers,	 ?0.1	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?(10%,	 ?Fisher	 ?Scientific)	 ?for	 ?every	 ?120	 ?mL	 ?of	 ?sample	 ?to	 ?be	 ?collected	 ?e. For	 ?travel	 ?and	 ?field	 ?blanks,	 ?fill	 ?containers	 ?with	 ?appropriate	 ?volume	 ?of	 ?DD	 ?water	 ?? The	 ?blank	 ?volume	 ?used	 ?should	 ?equal	 ?the	 ?largest	 ?volume	 ?of	 ?sample	 ?needed	 ?f. Loosely	 ?fit	 ?lids	 ?onto	 ?containers	 ?2. Prepare	 ?rinse	 ?water	 ?a. Calculate	 ?the	 ?amount	 ?of	 ?rinse	 ?water	 ?needed:	 ?i. Each	 ?sample	 ?filtered	 ?will	 ?require	 ?roughly	 ?60	 ?mL	 ?of	 ?rinse	 ?and	 ?carrying	 ?water	 ?ii. Rinse	 ?water	 ?can	 ?also	 ?be	 ?used	 ?for	 ?lab	 ?blanks	 ?b. Fill	 ?a	 ?conical	 ?flask	 ?with	 ?the	 ?required	 ?volume	 ?of	 ?DD	 ?water	 ?c. Add	 ?1	 ?mL	 ?each	 ?of	 ?K2H2PO4	 ?(85	 ?g/L)	 ?and	 ?MgCl	 ?(81	 ?g/L)	 ?to	 ?distilled/deionized	 ?water	 ?? Without	 ?adding	 ?these	 ?for	 ?osmotic	 ?pressure,	 ?DD	 ?water	 ?can	 ?lyse	 ?bacteria	 ?d. Mix	 ?with	 ?gentle	 ?rotation	 ?e. Loosely	 ?cover	 ?the	 ?conical	 ?flask	 ?with	 ?tin	 ?foil	 ?3. Prepare	 ?blanks	 ?a. Fill	 ?a	 ?container	 ?with	 ?the	 ?appropriate	 ?volume	 ?of	 ?blank	 ?(mentioned	 ?previously)	 ?b. Loosely	 ?fit	 ?lids	 ?onto	 ?containers	 ?	 ?	 ?4. Prepare	 ?pipette	 ?tips	 ?? Note:	 ?auto-??pipettes	 ?are	 ?used	 ?in	 ?this	 ?analysis	 ?a. Calibrate	 ?auto-??pipettes	 ?by	 ?measuring	 ?known	 ?volume	 ?of	 ?distilled	 ?water	 ?on	 ?a	 ?scale	 ?? 1	 ?mL	 ?of	 ?water	 ?=	 ?1	 ?g	 ?b. Collect	 ?appropriate	 ?size	 ?pipette	 ?tips	 ?for	 ?samples	 ?and	 ?blanks	 ?? Use	 ?a	 ?different	 ?tip	 ?for	 ?each	 ?sample	 ?and	 ?blank	 ?c. Collect	 ?5	 ?mL	 ?pipette	 ?tip	 ?for	 ?distributing	 ?agar	 ?d. Place	 ?a	 ?cotton	 ?plug	 ?in	 ?the	 ?top	 ?of	 ?each	 ?pipette	 ?tip	 ?? Auto-??pipettes	 ?cannot	 ?be	 ?autoclaved	 ?? This	 ?prevents	 ?them	 ?from	 ?contaminating	 ?samples	 ?	 ?e. Place	 ?pipette	 ?tips	 ?in	 ?a	 ?beaker	 ?and	 ?loosely	 ?cover	 ?with	 ?tin	 ?foil	 ?5. Prepare	 ?agar	 ?a. Calculate	 ?the	 ?amount	 ?of	 ?agar/water	 ?solution	 ?required:	 ?i. Each	 ?sample	 ?will	 ?require	 ?roughly	 ?5	 ?mL	 ?of	 ?agar	 ?ii. Note:	 ?later,	 ?boiling	 ?agar	 ?reduces	 ?volume;	 ?advise	 ?adding	 ?25%	 ?to	 ?calculated	 ?value	 ?b. Add	 ?calculated	 ?volume	 ?of	 ?water	 ?to	 ?an	 ?appropriately	 ?sized,	 ?heat	 ?resistant	 ?beaker	 ?c. To	 ?beaker,	 ?add	 ?16.82	 ?g	 ?of	 ?R2A	 ?agar	 ?powder	 ?for	 ?every	 ?liter	 ?of	 ?water	 ?d. Place	 ?a	 ?magnetic	 ?stir	 ?bar	 ?in	 ?the	 ?beaker	 ?(do	 ?not	 ?remove	 ?until	 ?after	 ?step	 ?8)	 ?e. Place	 ?the	 ?beaker	 ?on	 ?a	 ?magnetic	 ?stirred	 ?hot	 ?plate	 ?f. Turn	 ?on	 ?stirring	 ?to	 ?a	 ?low	 ?setting	 ?for	 ?gentle	 ?agitation	 ?g. Turn	 ?on	 ?heating	 ?to	 ?medium-??high	 ?? Medium-??high	 ?prevents	 ?potential	 ?heat	 ?shock	 ?cracking	 ?of	 ?glassware	 ?h. Continue	 ?to	 ?heat	 ?and	 ?stir	 ?until	 ?boiling	 ?i. Boil	 ?for	 ?1	 ?minute	 ?j. Remove	 ?from	 ?heat	 ?k. Loosely	 ?cover	 ?beaker	 ?with	 ?tin	 ?foil	 ?6. Prepare	 ?filter	 ?holder(s)	 ?a. Collect	 ?filter	 ?holder(s)	 ?b. Place	 ?filter	 ?holders	 ?in	 ?autoclave	 ?ready	 ?plastic	 ?bag	 ?c. Loosely	 ?close	 ?the	 ?bag	 ?7. Autoclave	 ?(Market	 ?Forge	 ?Sterilmatic)	 ?materials	 ?? Safety	 ?Note:	 ?avoid	 ?direct	 ?contact	 ?with	 ?steam	 ?exiting	 ?the	 ?autoclave	 ?a. Ensure	 ?the	 ?autoclave	 ?is	 ?not	 ?in	 ?use	 ?? Temperature	 ?and	 ?pressure	 ?gauges	 ?should	 ?show	 ?ambient	 ?levels	 ?(20?C,	 ?0	 ?psig)	 ?b. Put	 ?on	 ?a	 ?temperature	 ?resistant	 ?glove	 ?c. Stand	 ?to	 ?one	 ?side	 ?of	 ?the	 ?autoclave	 ?d. Open	 ?the	 ?autoclave	 ?with	 ?your	 ?gloved	 ?hand	 ?e. Remove	 ?glove	 ?f. Close	 ?the	 ?autoclave	 ?drain	 ?valve	 ?g. Fill	 ?the	 ?autoclave	 ?with	 ?water	 ?to	 ?the	 ?marked	 ?level	 ?(roughly	 ?10	 ?L)	 ?h. Place	 ?all	 ?the	 ?materials	 ?collected	 ?in	 ?steps	 ?1-??5	 ?in	 ?the	 ?autoclave	 ?chamber	 ?	 ?	 ?i. Close	 ?the	 ?autoclave	 ?j. Firmly	 ?secure	 ?the	 ?autoclave	 ?door	 ?lever	 ?k. Set	 ?the	 ?exhaust	 ?selector	 ?to	 ?the	 ??slow?	 ?option	 ?? Ensures	 ?that	 ?liquids	 ?do	 ?not	 ?vaporize	 ?when	 ?pressure	 ?is	 ?released	 ?	 ?l. Turn	 ?the	 ?timer	 ?dial	 ?to	 ?20	 ?minutes	 ?? This	 ?ensure	 ?sufficient	 ?time	 ?to	 ?sterilize	 ?liquids	 ?m. After	 ?20	 ?minutes,	 ?wait	 ?for	 ?temperature	 ?and	 ?pressure	 ?gauges	 ?to	 ?return	 ?to	 ?ambient	 ?levels	 ?n. Put	 ?on	 ?a	 ?heat	 ?resistant	 ?glove	 ?o. Stand	 ?to	 ?one	 ?side	 ?of	 ?the	 ?autoclave	 ?p. Open	 ?the	 ?autoclave	 ?with	 ?your	 ?gloved	 ?hand	 ?q. Allow	 ?any	 ?and	 ?all	 ?steam	 ?to	 ?escape	 ?r. Remove	 ?equipment	 ?s. Tightly	 ?seal	 ?lids	 ?and	 ?tin	 ?foil	 ?caps	 ?to	 ?all	 ?containers	 ?and	 ?tightly	 ?wrap	 ?bags	 ?around	 ?filter	 ?holders	 ?for	 ?storage	 ?8. Pour	 ?agar	 ?plates	 ?? Note:	 ?prepare	 ?plates	 ?in	 ?a	 ?horizontal-??laminar	 ?air	 ?flow	 ?hood	 ?or	 ?area	 ?free	 ?of	 ?draft	 ?a. Before	 ?agar	 ?has	 ?a	 ?chance	 ?to	 ?cool,	 ?transfer	 ?back	 ?to	 ?magnetic	 ?stirred	 ?hot	 ?plate	 ?? Heat	 ?and	 ?stir	 ?at	 ?a	 ?low	 ?setting,	 ?just	 ?enough	 ?to	 ?maintain	 ?agar	 ?as	 ?liquid	 ?b. Disinfect	 ?work	 ?surface	 ?with	 ?ethanol	 ?c. Lay	 ?out	 ?the	 ?required	 ?number	 ?of	 ?sterile	 ?Millipore	 ?petri	 ?dishes	 ?(plates)	 ?d. Open	 ?plate	 ?lids	 ?just	 ?before	 ?transferring	 ?agar	 ?e. Transfer	 ?enough	 ?agar	 ?by	 ?auto-??pipette	 ?to	 ?cover	 ?the	 ?bottom	 ?of	 ?each	 ?plate	 ?(roughly)	 ?f. Seal	 ?each	 ?plate	 ?	 ?g. Allow	 ?agar	 ?to	 ?cool/solidify	 ?at	 ?room	 ?temperature	 ?h. Label	 ?all	 ?plates	 ?appropriately	 ?i. Store	 ?plates	 ?agar	 ?side	 ?up	 ?in	 ?a	 ?sealed	 ?plastic	 ?bag	 ?at	 ?6?C	 ?for	 ?a	 ?maximum	 ?of	 ?2	 ?weeks	 ?9. Collect	 ?Samples	 ?a. Transport	 ?sealed,	 ?autoclaved	 ?sample	 ?containers,	 ?travel	 ?and	 ?field	 ?blanks	 ?to	 ?sampling	 ?site	 ?in	 ?a	 ?cooler	 ?b. Run	 ?tap	 ?or	 ?waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Remove	 ?lid	 ?from	 ?sample	 ?container	 ?just	 ?before	 ?sample	 ?collection	 ?? Ensures	 ?minimal	 ?environmental	 ?contamination	 ?d. Fill	 ?sample	 ?container:	 ?i. Without	 ?splashing	 ?or	 ?overflow	 ?ii. Collect	 ?required	 ?volume	 ?of	 ?sample,	 ?leaving	 ?head	 ?space	 ?for	 ?mixing	 ?e. Reseal	 ?container	 ?lid	 ?f. Momentarily	 ?open	 ?the	 ?container	 ?lids	 ?for	 ?field	 ?blanks	 ?g. Place	 ?all	 ?samples	 ?and	 ?blanks	 ?back	 ?into	 ?cooler	 ?and	 ?return	 ?to	 ?lab	 ?10. Prepare	 ?Sample	 ?Processing	 ?Workspace	 ?	 ?	 ?? Note:	 ?process	 ?samples	 ?as	 ?soon	 ?after	 ?collection	 ?as	 ?possible;	 ?sampling	 ?and	 ?analysis	 ?must	 ?be	 ?performed	 ?within	 ?8	 ?hours	 ?of	 ?collection	 ?a. Disinfect	 ?work	 ?surface	 ?with	 ?ethanol	 ?b. Collect	 ?0.45	 ??m,	 ?47	 ?mm	 ?filters	 ?and	 ?place	 ?at	 ?workspace	 ?c. Remove	 ?plates	 ?from	 ?fridge	 ?and	 ?place	 ?at	 ?workspace	 ?d. Remove	 ?samples	 ?from	 ?cooler	 ?and	 ?arrange	 ?at	 ?workspace	 ?e. Place	 ?rinse	 ?water	 ?at	 ?workspace	 ?f. Set-??up	 ?vacuum	 ?filtration	 ?apparatus:	 ?i. Attach	 ?flasks	 ?with	 ?male	 ?hose	 ?fittings	 ?to	 ?vacuum	 ?hoses	 ?ii. Ensure	 ?vacuum	 ?source	 ?is	 ?off	 ?iii. Attach	 ?hoses	 ?to	 ?vacuum	 ?source	 ?iv. Remove	 ?filter	 ?holders	 ?from	 ?autoclaved	 ?bags	 ?v. Fit	 ?filter	 ?holders	 ?into	 ?the	 ?flasks	 ?g. Fill	 ?a	 ?beaker	 ?with	 ?roughly	 ?10	 ?mL	 ?of	 ?ethanol	 ?h. Place	 ?tweezer	 ?tips	 ?in	 ?ethanol	 ?i. Attach	 ?Bunsen	 ?burner	 ?to	 ?gas	 ?source	 ?j. Place	 ?flint	 ?over	 ?Bunsen	 ?burner	 ?outlet	 ?k. When	 ?ready,	 ?turn	 ?on	 ?gas	 ?and	 ?strike	 ?flint	 ?to	 ?light	 ?flame	 ?? Safety	 ?note:	 ?do	 ?not	 ?leave	 ?open	 ?flames	 ?unattended	 ?11. Filter	 ?Samples	 ?a. Remove	 ?tweezers	 ?from	 ?ethanol	 ?and	 ?burn	 ?off	 ?excess	 ?over	 ?a	 ?flame	 ?? Ensures	 ?sterilization	 ?between	 ?steps	 ?b. Open	 ?a	 ?sterile	 ?filter	 ?package	 ?c. Remove	 ?the	 ?filter	 ?from	 ?the	 ?package	 ?with	 ?the	 ?sterilized	 ?tweezers	 ?d. Place	 ?filter	 ?on	 ?the	 ?filter	 ?holder	 ?grid-??side	 ?up	 ?e. Place	 ?the	 ?tweezers	 ?back	 ?in	 ?the	 ?ethanol	 ?f. Put	 ?filter	 ?holder	 ?cover	 ?in	 ?place	 ?and	 ?securely	 ?fasten	 ?g. Put	 ?10-??20	 ?mL	 ?of	 ?rinse	 ?water	 ?in	 ?the	 ?cover	 ?	 ?h. Apply	 ?vacuum	 ?i. Repeat	 ?steps	 ?g	 ?and	 ?h	 ?j. For	 ?small	 ?samples	 ?(<10	 ?mL):	 ?i. Put	 ?10-??20	 ?mL	 ?of	 ?rinse	 ?water	 ?in	 ?the	 ?cover	 ?ii. Pipette	 ?required	 ?volume	 ?of	 ?sample	 ?into	 ?cover	 ?iii. Apply	 ?vacuum	 ?k. For	 ?large	 ?samples	 ?(?10	 ?mL):	 ?i. Pipette	 ?required	 ?volume	 ?of	 ?sample	 ?into	 ?cover	 ?ii. Apply	 ?vacuum	 ?l. Remove	 ?filter	 ?holder	 ?cover	 ?m. Open	 ?an	 ?agar	 ?plate	 ?n. Remove	 ?tweezers	 ?from	 ?ethanol	 ?and	 ?burn	 ?off	 ?excess	 ?over	 ?a	 ?flame	 ?o. Transfer	 ?filter,	 ?grid-??side	 ?up	 ?to	 ?agar	 ?plate	 ?	 ?	 ?? Ensure	 ?that	 ?there	 ?is	 ?no	 ?air	 ?between	 ?the	 ?filter	 ?and	 ?agar	 ?? If	 ?necessary,	 ?smooth	 ?out	 ?air	 ?bubbles	 ?with	 ?sterilized	 ?tweezers	 ?p. Reseal	 ?the	 ?agar	 ?plate	 ?q. Repeat	 ?steps	 ?a	 ??	 ?p	 ?for	 ?all	 ?samples	 ?r. Place	 ?plates	 ?agar-??side	 ?up	 ?in	 ?a	 ?plastic	 ?bag	 ?? Where	 ?ambient	 ?moisture	 ?may	 ?be	 ?limited,	 ?place	 ?a	 ?moist	 ?towel	 ?in	 ?the	 ?bag	 ?? Note:	 ?may	 ?be	 ?excessive	 ?for	 ?lab	 ?analysis	 ?in	 ?Vancouver	 ?s. Seal	 ?plastic	 ?bag	 ?t. Incubate	 ?at	 ?35?C	 ?for	 ?72	 ?hours	 ?12. Enumerating	 ?Samples	 ?a. Remove	 ?plates	 ?from	 ?incubator	 ?and	 ?plastic	 ?bag	 ?b. Remove	 ?plate	 ?cover	 ?prior	 ?to	 ?counting	 ?c. Place	 ?opened	 ?plates	 ?under	 ?light	 ?and	 ?magnification	 ?d. Count	 ?all	 ?distinguishable	 ?colonies	 ?? Reliable	 ?results	 ?lie	 ?in	 ?the	 ?range	 ?of	 ?20-??200	 ?counts	 ?per	 ?plate	 ?e. Record	 ?counts	 ?as	 ?CFU/100	 ?mL	 ?of	 ?sample,	 ?method,	 ?incubation	 ?time/temperature,	 ?medium	 ?? Example:	 ?X	 ?CFU/100	 ?mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?f. Report	 ?results	 ?rounded	 ?to	 ?the	 ?two	 ?left	 ?most	 ?significant	 ?figures	 ?? Example:	 ?12480	 ?CFU/100	 ?mL	 ???	 ?12000	 ?CFU/100mL	 ?Total	 ?Organic	 ?Carbon	 ?Method	 ?	 ?Total	 ?organic	 ?carbon	 ?was	 ?analyzed	 ?using	 ?a	 ?Phoenix	 ?8000	 ?UV	 ?Persulfate	 ?TOC	 ?Analyzer	 ?with	 ?Zero	 ?Air.	 ?Analysis	 ?used	 ?1000	 ?ppm	 ?(0.5312g	 ?Potassium	 ?Hydrogen	 ?Phthalate	 ?per	 ?250	 ?mL)	 ?as	 ?standard.	 ?Analysis	 ?Procedure	 ?1. Prepare	 ?caps	 ?a. Wash	 ?with	 ?hot,	 ?soapy	 ?water	 ?b. Rinse	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?c. Store	 ?in	 ?a	 ?clean,	 ?carbon-??free	 ?container	 ?2. Prepare	 ?Amber	 ?40	 ?mL	 ?TOC	 ?vials	 ?a. Wash	 ?with	 ?hot,	 ?soapy	 ?water	 ?b. Rinse	 ?thoroughly	 ?with	 ?distilled	 ?water	 ?c. Bake	 ?in	 ?an	 ?aluminum	 ?tray	 ?for	 ?2	 ?h	 ?at	 ?500	 ??C	 ?to	 ?remove	 ?traces	 ?of	 ?organic	 ?carbon	 ?d. Cool	 ?gradually	 ?to	 ?room	 ?temperature	 ?e. Cap	 ?with	 ?prepared	 ?inserts/caps	 ?once	 ?cool	 ?to	 ?minimize	 ?contamination	 ?3. Sampling	 ?a. Transport	 ?prepared	 ?40	 ?mL	 ?TOC	 ?vials	 ?to	 ?sampling	 ?site	 ?b. Run	 ?tap	 ?or	 ?Waterfillz	 ?for	 ?60	 ?seconds	 ?prior	 ?to	 ?sampling	 ?c. Fill	 ?vial	 ?to	 ?within	 ?1	 ?cm	 ?of	 ?maximum	 ?d. Cap	 ?securely	 ?and	 ?return	 ?to	 ?lab	 ?in	 ?a	 ?plastic	 ?cooler	 ?for	 ?analysis	 ?4. Prepare	 ?acid	 ?solution	 ?for	 ?TOC	 ?analyzer	 ?	 ?	 ?a. Measure	 ?188	 ?mL	 ?of	 ?DD	 ?water	 ?into	 ?analyzer?s	 ?acid	 ?container	 ?b. Add	 ?37	 ?mL	 ?of	 ?concentrated	 ?phosphoric	 ?acid,	 ?(to	 ?acidify	 ?and	 ?remove	 ?inorganic	 ?carbon	 ?from	 ?sample)	 ?c. Cap	 ?container	 ?securely	 ?and	 ?shake	 ?to	 ?mix	 ?d. Replace	 ?reagent	 ?at	 ?instrument	 ?5. Prepare	 ?oxidant	 ?solution	 ?for	 ?TOC	 ?analyzer	 ?a. Measure	 ?426	 ?mL	 ?of	 ?DD	 ?water	 ?into	 ?analyzer?s	 ?acid	 ?container	 ?b. Add	 ?18	 ?mL	 ?of	 ?concentrated	 ?phosphoric	 ?acid	 ?c. Add	 ?50	 ?g	 ?NaS2O8,	 ?(to	 ?oxidize	 ?total	 ?organic	 ?carbon	 ?in	 ?sample,	 ?producing	 ?CO2	 ?for	 ?analysis)	 ?d. Cap	 ?container	 ?securely	 ?and	 ?shake	 ?to	 ?mix	 ?e. Replace	 ?reagent	 ?at	 ?instrument	 ?6. Instrumental	 ?protocol	 ?a. Open	 ?zero-??air	 ?gas	 ?valve	 ?on	 ?TOC	 ?analyzer,	 ?ensuring	 ?that	 ?flow	 ?is	 ?200?2	 ?cm3/s	 ?b. Ensure	 ?DD	 ?water	 ?container	 ?is	 ?full	 ?c. Ensure	 ?waste	 ?container	 ?is	 ?empty	 ?d. Uncap	 ?all	 ?samples	 ?and	 ?place	 ?in	 ?autosampler	 ?rack	 ?e. Set	 ?up	 ?acquisition	 ?software	 ?according	 ?to	 ?manufacturer?s	 ?instructions	 ?in	 ?the	 ?0.1	 ?-??	 ?5	 ?ppm	 ?range.	 ?f. Take	 ?three	 ?measurements	 ?per	 ?vial,	 ?recording	 ?the	 ?average	 ?value.	 ?g. Begin	 ?run	 ?with	 ?three	 ?lab	 ?blanks	 ?(DD	 ?water)	 ?to	 ?clear	 ?lines.	 ?h. Distribute	 ?each	 ?sample	 ?type	 ?(e.g.	 ?standards,	 ?blanks,	 ?tap,	 ?Waterfillz)	 ?uniformly	 ?throughout	 ?each	 ?run.	 ?i. Start	 ?instrument	 ?j. Once	 ?run	 ?is	 ?complete,	 ?close	 ?the	 ?gas	 ?cylinder	 ?and	 ?export	 ?data	 ?to	 ?Excel.	 ? 	 ?	 ?	 ?Appendix	 ?E	 ?-??	 ?Sample	 ?Data	 ?Summary	 ?The	 ?following	 ?section	 ?provides	 ?all	 ?of	 ?the	 ?raw	 ?data	 ?collected	 ?during	 ?primary	 ?experimentation	 ?and	 ?sampling,	 ?referred	 ?to	 ?as	 ?sampling	 ?run	 ?a	 ?and	 ?b.	 ?Independent	 ?Variable:	 ?Machine	 ?Use	 ?Waterfillz	 ?machine	 ?use	 ?was	 ?recorded	 ?at	 ?each	 ?time	 ?of	 ?sampling	 ?as	 ?shown	 ?in	 ?Table	 ?6.	 ?	 ?The	 ?mean	 ?weekly	 ?use	 ?for	 ?each	 ?machine	 ?was	 ?also	 ?determined	 ?from	 ?four	 ?separate	 ?observations	 ?made	 ?at	 ?1-??week	 ?intervals,	 ?as	 ?shown	 ?in	 ?Table	 ?7.	 ?The	 ?total	 ?number	 ?of	 ?bottles	 ?filled	 ?had	 ?positive	 ?correlation	 ?to	 ?average	 ?fill	 ?rate.	 ?Recognizing	 ?this	 ?relationship,	 ?the	 ?total	 ?number	 ?of	 ?bottles	 ?filled	 ?was	 ?maintained	 ?as	 ?the	 ?x-??ordinate.	 ?	 ?Location	 ? Total	 ?bottles	 ?filled	 ?	 ??a?	 ?samples	 ? Total	 ?bottles	 ?filled	 ??b?	 ?samples	 ?W1	 ? 333792	 ? 353903	 ?W2	 ? 120271	 ? 128770	 ?W3	 ? 8246	 ? 12806	 ?W4	 ? 2421	 ? 3942	 ?Table	 ?6.	 ?Total	 ?bottles	 ?filled	 ?from	 ?Waterfillz	 ?machines	 ?on	 ?sampling	 ?days	 ?'a'	 ?and	 ?'b'	 ?Station	 ?ID	 ? T=0	 ?weeks	 ? T=1	 ?week	 ? T=2	 ?weeks	 ? T=3	 ?weeks	 ? Avg.	 ?fill	 ?rate	 ?(bottles/week)	 ? Sample	 ?Deviation	 ?26-??Feb	 ? 05-??Mar	 ? 12-??Mar	 ? 19-??Mar	 ?1	 ? 333792	 ? 339854	 ? 347046	 ? 353903	 ? 6704	 ? 580.39	 ?2	 ? 120271	 ? 123000	 ? 125906	 ? 128770	 ? 2833	 ? 92.48	 ?3	 ? 8246	 ? 9669	 ? 11243	 ? 12806	 ? 1520	 ? 84.18	 ?4	 ? 2421	 ? 2880	 ? 3378	 ? 3942	 ? 507	 ? 53.08	 ?Table	 ?7.	 ?Weekly	 ?Waterfillz	 ?machine	 ?reported	 ?total	 ?use	 ?	 ? 	 ?	 ?	 ?Dependent	 ?Variables:	 ?Parameters	 ?of	 ?Interest	 ?Temperature,	 ?chlorine,	 ?HPC	 ?and	 ?TOC	 ?data	 ?are	 ?as	 ?follows.	 ?Details	 ?on	 ?calibration	 ?for	 ?each	 ?method	 ?are	 ?included	 ?in	 ?the	 ?relevant	 ?methods	 ?section.	 ?Sample	 ?ID	 ? Temperature	 ?(?C)	 ? Chlorine	 ?(ppm)	 ? HPC	 ?(CFU/100	 ?mL?)	 ? TOC	 ?(ppm)	 ?W1a	 ? 11.5	 ? 0*	 ? 65	 ? 0.510	 ?T1a	 ? 5.3	 ? 0.5	 ? 1.67*	 ? 0.716	 ?B1a	 ? 	 ? 0*	 ? 0*	 ? 0.036*	 ?W2a	 ? 11.5	 ? 0*	 ? 5050	 ? 0.379	 ?T2a	 ? 5.5	 ? 0.6	 ? 1.67*	 ? 0.737	 ?B2a	 ? 	 ? 0*	 ? 0*	 ? 0.016*	 ?W3a	 ? 12.3	 ? 0*	 ? 33500	 ? 0.312	 ?T3a	 ? 6.9	 ? 0.6	 ? 527	 ? 0.603	 ?B3a	 ? 	 ? 0*	 ? 0*	 ? 0.008*	 ?W4a	 ? 10.9	 ? 0*	 ? 20900	 ? 0.063*	 ?T4a	 ? 6.6	 ? 0.5	 ? 0*	 ? 0.616	 ?B4a	 ? 	 ? 0*	 ? 0*	 ? 0.003*	 ?W1b	 ? 12	 ? 0*	 ? 68	 ? 0.567	 ?T1b	 ? 6.1	 ? 0.56	 ? 20*	 ? 0.645	 ?B1b	 ? 	 ? 0*	 ? 0*	 ? 0.008*	 ?W2b	 ? 12.5	 ? 0*	 ? 11200	 ? 0.402	 ?T2b	 ? 6.0	 ? 0.52	 ? 1.67*	 ? 0.631	 ?B2b	 ? 	 ? 0*	 ? 0*	 ? 0.014*	 ?W3b	 ? 12.9	 ? 0*	 ? 9150	 ? 0.434	 ?T3b	 ? 6.5	 ? 0.54	 ? 203	 ? 0.637	 ?B3b	 ? 	 ? 0*	 ? 0*	 ? 0.014*	 ?W4b	 ? 11.5	 ? 0*	 ? 20600	 ? 0.043*	 ?T4b	 ? 6.0	 ? 0.54	 ? 0*	 ? 0.585	 ?B4b	 ? 	 ? 0*	 ? 0*	 ? 0.002*	 ?B*1	 ? 	 ? 0*	 ? 0*	 ? 0.003*	 ?B*2	 ? 	 ? 0*	 ? 0	 ?*	 ? 0.001*	 ?Table	 ?8.	 ?Raw	 ?data	 ?from	 ?taps	 ?and	 ?Waterfillz	 ?units	 ?for	 ?all	 ?blanks	 ?and	 ?samples.	 ?*below	 ?the	 ?limit	 ?of	 ?detection	 ?**between	 ?the	 ?limit	 ?of	 ?detection	 ?and	 ?limit	 ?of	 ?quantification	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar.	 ?Table	 ?9	 ?displays	 ?the	 ?specific	 ?volumes	 ?analyzed	 ?for	 ?HPC	 ?for	 ?each	 ?sample	 ?source	 ?and	 ?blanks.	 ?Two	 ?different	 ?volumes	 ?were	 ?used	 ?to	 ?ensure	 ?that	 ?counts	 ?were	 ?captured	 ?with	 ?the	 ?range	 ?of	 ?20	 ??	 ?200	 ?CFU,	 ?providing	 ?reliable	 ?results.	 ?	 ?T1	 ? T2	 ? T3	 ? T4	 ? W1	 ? W2	 ? W3	 ? W4	 ? B	 ?or	 ?B*	 ?10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 10	 ?mL	 ? 0.5	 ?mL	 ? 0.5	 ?mL	 ? 0.5	 ?mL	 ? -??	 ?30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 30	 ?mL	 ? 1.0	 ?mL	 ? 1.0	 ?mL	 ? 1.0	 ?mL	 ? 30	 ?mL	 ?Table	 ?9:	 ?Volumes	 ?analyzed	 ?by	 ?HPC	 ?membrane	 ?filtration	 ?method	 ?for	 ?each	 ?source	 ?and	 ?blanks	 ?	 ?	 ? 	 ?	 ?	 ?Appendix	 ?F	 ?-??	 ?Data	 ?Analysis	 ?General	 ?Calculations	 ?All	 ?of	 ?the	 ?sample	 ?data	 ?collected	 ?was	 ?subsequently	 ?evaluated	 ?by	 ?paired	 ?analysis.	 ?The	 ?difference	 ?(???)	 ?in	 ?the	 ?measured	 ?parameter	 ?values	 ?(??)	 ?between	 ?Waterfillz	 ?stations	 ?and	 ?the	 ?corresponding	 ?taps	 ?was	 ?determined	 ?with	 ?the	 ?following	 ?formula:	 ???, ????????? ? ??, ?? = ??? 	 ?Objective	 ?1	 ?Sample	 ?Calculations	 ?Objective	 ?1	 ?was	 ?to	 ?determine	 ?mean	 ?differences	 ?between	 ?Waterfillz	 ?and	 ?tap	 ?water.	 ?The	 ?sample	 ?mean	 ?(?? ?)	 ?of	 ?the	 ?differences	 ?was	 ?calculated	 ?using	 ?the	 ?excel	 ?function	 ??average?;	 ?otherwise	 ?defined	 ?as:	 ??? ? = (???)????? 	 ?The	 ?sample	 ?standard	 ?deviation	 ?was	 ?calculated	 ?using	 ?the	 ?excel	 ?function	 ??stdev.s?;	 ?otherwise	 ?defined	 ?as:	 ?s? ? = (??? ? ?? ?)???? ? ? 1 	 ?The	 ?standard	 ?error	 ?of	 ?the	 ?differences	 ?is	 ?the	 ?standard	 ?deviation	 ?divided	 ?by	 ?the	 ?number	 ?of	 ?paired	 ?of	 ?samples	 ?(n=8):	 ?? ??? = ? ?? ?? 	 ?The	 ?t-??value	 ?for	 ?a	 ?95%	 ?confidence	 ?interval	 ?was	 ?2.365,	 ?and	 ?the	 ?confidence	 ?interval	 ?(CI)	 ?was	 ?calculated	 ?using	 ?the	 ?following	 ?formula:	 ? ?? ? ??. ?? ,????? ? ? ???	 ?Objective	 ?2	 ?Sample	 ?Calculations	 ?Objective	 ?2	 ?was	 ?to	 ?determine	 ?the	 ?presence	 ?of	 ?trends.	 ?Linear	 ?regression	 ?was	 ?performed	 ?with	 ?the	 ?results	 ?of	 ?the	 ?paired	 ?analysis.	 ?A	 ?linear	 ?trend	 ?estimates	 ?the	 ?dependent	 ?variable	 ?(?)	 ?based	 ?on	 ?the	 ?input	 ?of	 ?an	 ?independent	 ?variable	 ?(x)	 ?represented	 ?by	 ?the	 ?following	 ?model:	 ?? = ?? + ??x	 ?An	 ?initial	 ?estimate	 ?of	 ?the	 ?equation	 ?intercept	 ?(??)	 ?is	 ?derived	 ?from	 ?the	 ?sample	 ?mean	 ?(??),	 ?given	 ?by:	 ??? = ? ? ?  ???x	 ?The	 ?slope	 ?of	 ?the	 ?model	 ?(??)	 ?is	 ?calculated	 ?using	 ?the	 ?sum	 ?of	 ?differences	 ?between	 ?dependent	 ?(??)	 ?and	 ?independent	 ?(??)	 ?sample	 ?values	 ?and	 ?their	 ?respective	 ?means	 ?with	 ?the	 ?following	 ?formula:	 ?	 ?	 ??? = [(?????? ?  ?x)(?? ? ? ?)][(?????? ?  ?x)] 	 ?Calculating	 ?the	 ?Parameter	 ?variation	 ?first	 ?requires	 ?calculating	 ?the	 ?mean	 ?residual	 ?sum	 ?of	 ?squares	 ?(s2),	 ?with	 ?the	 ?denominator	 ?representing	 ?sample	 ?size	 ?minus	 ?a	 ?degree	 ?of	 ?freedom	 ?for	 ?each	 ?parameter	 ?estimated	 ?(i.e.	 ?2),	 ?as	 ?indicated	 ?by:	 ??? = (?? ? ?)????? ? 2 	 ?Variance	 ?of	 ?the	 ?intercept	 ?parameter	 ?(??)	 ?is	 ?then:	 ??? ?? = ??(1? + x?(?? ?  ?x)????? )	 ?Variance	 ?of	 ?the	 ?slope	 ?parameter	 ?(??)	 ?is	 ?then:	 ?? ? ?? = ??( 1(?? ?  ?x)????? )	 ?Variance	 ?of	 ?the	 ?predicted	 ?value	 ?(??)	 ?around	 ?a	 ?known	 ?value	 ?(??)	 ?is	 ?then:	 ??? ?? = ??(1? + (?? ?  ?x)?(?? ?  ?x)????? )	 ?Two	 ?tailed	 ?confidence	 ?intervals	 ?(1-?? ??)	 ?for	 ?each	 ?parameter	 ?are	 ?calculated	 ?as	 ?follows:	 ???  ?? ??,?/? ?? ?? 	 ???  ?? ??,?/? ?? ?? 	 ?? = (?? + ????)  ?? ??,?/? ?? ?? 	 ?Given	 ?a	 ?certain	 ?confidence	 ?interval,	 ?if	 ?a	 ?trend	 ?exists	 ?the	 ?range	 ?of	 ?values	 ?calculated	 ?for	 ?the	 ?slope	 ?will	 ?not	 ?include	 ?the	 ?value	 ?of	 ?0.	 ?In	 ?this	 ?report,	 ?95%	 ?confidence	 ?intervals	 ?were	 ?used	 ?to	 ?determine	 ?significance.	 ?Anything	 ?under	 ?80%	 ?is	 ?deemed	 ?insignificant.	 ?	 ?	 ? 	 ?	 ?	 ?Results	 ?from	 ?Manipulated	 ?Data	 ?Temperature	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?T,	 ??C	 ?1a	 ? 6.2	 ?2a	 ? 6.0	 ?3a	 ? 5.4	 ?4a	 ? 4.3	 ?1b	 ? 5.9	 ?2b	 ? 6.5	 ?3b	 ? 6.4	 ?4b	 ? 5.5	 ?mean	 ? 5.78	 ?std	 ?error	 ? 0.25	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.365	 ?upper	 ?CI	 ? 6.37	 ?lower	 ?CI	 ? 5.18	 ?Aesthetically	 ?relevant	 ?difference	 ? 5	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? -??1	 ?Table	 ?10:	 ?Temperature	 ?results	 ?relating	 ?to	 ?the	 ?first	 ?objective,	 ?a	 ?comparison	 ?of	 ?Waterfillz	 ?to	 ?nearby	 ?tap	 ?water	 ?Objective	 ?2	 ?Results	 ?Sample	 ?ID	 ? ?T,	 ??C	 ?1a	 ? 6.2	 ?2a	 ? 6	 ?3a	 ? 5.4	 ?4a	 ? 4.3	 ?1b	 ? 5.9	 ?2b	 ? 6.5	 ?3b	 ? 6.4	 ?4b	 ? 5.5	 ?mean	 ? 5.8	 ?b0	 ? 5.5	 ?b1	 ? 2.02E-??06	 ?Parameter	 ?deviation	 ? 0.699	 ?var(b0)	 ? 0.108	 ?var(b1)	 ? 3.22E-??12	 ?CI	 ?80%	 ?(t=1.440)	 ? upper	 ?b1	 ? 4.61E-??06	 ?lower	 ?b1	 ? -??5.64E-??07	 ?Includes	 ??0??	 ? YES	 ?Significant	 ?linear	 ?trend?	 ? NO	 ?Table	 ?11.	 ?Temperature	 ?results	 ?relating	 ?to	 ?the	 ?second	 ?objective,	 ?an	 ?assessment	 ?of	 ?performance	 ?during	 ?use.	 ?	 ?	 ?Observations/Comments	 ?Temperature	 ?is	 ?well	 ?explained	 ?by	 ?objective	 ?1,	 ?as	 ?evidenced	 ?by	 ?the	 ?relatively	 ?narrow	 ?interval	 ?(?T	 ?=	 ?5.78	 ??	 ?0.59?C	 ?(?	 ?10%)).	 ?Objective	 ?2	 ?can	 ?be	 ?assumed	 ?inapplicable	 ?to	 ?temperature,	 ?as	 ?there	 ?is	 ?no	 ?apparent	 ?trend	 ?at	 ?a	 ?confidence	 ?interval	 ?of	 ?80%.	 ?	 ?Chlorine	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?Chlorine,	 ?ppm	 ?1a	 ? -??0.50	 ?2a	 ? -??0.60	 ?3a	 ? -??0.60	 ?4a	 ? -??0.50	 ?1b	 ? -??0.56	 ?2b	 ? -??0.52	 ?3b	 ? -??0.54	 ?4b	 ? -??0.54	 ?mean	 ? -??0.545	 ?std	 ?error	 ? 0.014	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.365	 ?upper	 ?CI	 ? -??0.51	 ?lower	 ?CI	 ? -??0.58	 ?Aesthetically	 ?relevant	 ?difference	 ? 0.5	 ?ppm	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? +1	 ?Table	 ?12.	 ?Chlorine	 ?results	 ?for	 ?the	 ?first	 ?objective.	 ?Objective	 ?2	 ?Results	 ?Because	 ?Waterfillz	 ?consistently	 ?output	 ?water	 ?with	 ?a	 ?chlorine	 ?residual	 ?of	 ?0,	 ?any	 ?analysis	 ?of	 ?trend	 ?would	 ?be	 ?for	 ?the	 ?values	 ?obtained	 ?from	 ?tap	 ?water	 ?alone,	 ?which	 ?was	 ?not	 ?the	 ?intent	 ?of	 ?the	 ?study.	 ?Therefore,	 ?objective	 ?2	 ?was	 ?inherently	 ?irrelevant	 ?for	 ?chlorine.	 ?Observations/Comments	 ?Chlorine	 ?is	 ?well	 ?explained	 ?by	 ?objective	 ?1,	 ?as	 ?evidenced	 ?by	 ?the	 ?narrow	 ?interval	 ?(?Chlorine	 ?=	 ?-??0.545	 ??	 ?0.0331?C	 ?(?	 ?6%)).	 ?	 ?	 ? 	 ?	 ?	 ?HPC	 ?Results	 ?Objective	 ?1	 ?Results	 ?Sample	 ?ID	 ? ?HPC,	 ?CFU/100	 ?mL?	 ?1a	 ? 63	 ?2a	 ? 5048	 ?3a	 ? 32973	 ?4a	 ? 20900	 ?1b	 ? 48	 ?2b	 ? 11198	 ?3b	 ? 8947	 ?4b	 ? 20600	 ?mean	 ? 12472	 ?std	 ?error	 ? 4086	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.37	 ?upper	 ?CI	 ? 22135	 ?lower	 ?CI	 ? 2809	 ?Aesthetically	 ?relevant	 ?difference	 ? Any	 ?significant	 ?change	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? -??1	 ?Table	 ?13.	 ?HPC	 ?results,	 ?relating	 ?to	 ?objective	 ?1	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?	 ?Figure	 ?1.	 ?Image	 ?of	 ?membrane	 ?filtration	 ?plate	 ?results	 ?	 ?	 ?	 ?W4	 ? 	 ?	 ?	 ?	 ?	 ?	 ?W3	 ? 	 ? 	 ?W2	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?W1	 ?	 ?	 ?Objective	 ?2	 ?Results	 ?Sample	 ?ID	 ? ?HPC,	 ?CFU/100	 ?mL?	 ?1a	 ? 63	 ?2a	 ? 5048	 ?3a	 ? 32973	 ?4a	 ? 20900	 ?1b	 ? 48	 ?2b	 ? 11198	 ?3b	 ? 8947	 ?4b	 ? 20600	 ?mean	 ? 12472	 ?b0	 ? 19952	 ?b1	 ? -??6.21E-??02	 ?Parameter	 ?deviation	 ? 7640	 ?var(b0)	 ? 12883304	 ?var(b1)	 ? 3.85E-??04	 ?CI	 ?95%	 ?(t=2.447)	 ? upper	 ?b1	 ? -??1.41E-??02	 ?lower	 ?b1	 ? -??1.10E-??01	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?14.	 ?HPC	 ?results,	 ?relating	 ?to	 ?objective	 ?1?CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?Observations/Comments	 ?The	 ?HPC	 ?data	 ?is	 ?shows	 ?a	 ?wide	 ?range	 ?of	 ?values	 ?as	 ?determined	 ?for	 ?objective	 ?1:	 ??HPC	 ?=	 ?12472	 ??	 ?9684	 ?CFU/100	 ?mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?(?	 ?78%),	 ?which	 ?suggests	 ?that	 ?another	 ?explanation	 ?might	 ?be	 ?more	 ?adequate.	 ?For	 ?the	 ?data	 ?presented	 ?above,	 ?evaluations	 ?for	 ?objective	 ?2	 ?confirm	 ?with	 ?95%	 ?confidence	 ?that	 ?a	 ?downward	 ?trend	 ?exists.	 ?	 ?However,	 ?one	 ?of	 ?the	 ?key	 ?factors	 ?for	 ?the	 ?success	 ?of	 ?linear	 ?regression	 ?is	 ?homoscedasticity,	 ?or	 ?homogeneity	 ?of	 ?variance	 ?(HOV).	 ?Each	 ?paired	 ?HPC	 ?sample	 ?has	 ?an	 ?observably	 ?wide-??ranging	 ?variance,	 ?as	 ?seen	 ?in	 ?Table	 ?15,	 ?so	 ?it	 ?cannot	 ?be	 ?assumed	 ?equal,	 ?which	 ?limits	 ?confidence	 ?in	 ?the	 ?stated	 ?trend.	 ?With	 ?this	 ?in	 ?mind,	 ?a	 ?log10	 ?transform	 ?was	 ?applied	 ?to	 ?each	 ?sample	 ?value.	 ?This	 ?is	 ?a	 ?technique	 ?recommended	 ?by	 ?Brown	 ?and	 ?Berthouex	 ?(2002).	 ?	 ? HPC,	 ?CFU/100	 ?mL?	 ? Sample	 ?Deviation	 ? LOG(HPC)	 ? Sample	 ?Deviation	 ?waterfillz\n	 ? 1	 ? 2	 ? 1	 ? 2	 ?1(a&b)	 ? 63	 ? 48	 ? 11	 ? 1.80	 ? 1.68	 ? 0.085	 ?2(a&b)	 ? 5048	 ? 11198	 ? 4349	 ? 3.70	 ? 4.05	 ? 0.245	 ?3(a&b)	 ? 32973	 ? 8947	 ? 16989	 ? 4.52	 ? 3.95	 ? 0.401	 ?4(a&b)	 ? 20900	 ? 20600	 ? 212	 ? 4.32	 ? 4.31	 ? 0.004	 ?Table	 ?15.	 ?Indication	 ?that	 ?HPC	 ?variances	 ?differ	 ?substantially	 ??CFU/mL,	 ?membrane	 ?filtration	 ?method,	 ?72	 ?hrs/35?C,	 ?R2A	 ?agar	 ?The	 ?log10	 ?transformed	 ?data	 ?was	 ?similarly	 ?tested	 ?for	 ?a	 ?trend,	 ?and	 ?the	 ?results	 ?are	 ?presented	 ?in	 ?Table	 ?16.	 ?Analysis	 ?confirms	 ?the	 ?presence	 ?of	 ?a	 ?downward	 ?slope	 ?within	 ?a	 ?95%	 ?confidence	 ?interval.	 ?	 ?	 ?Sample	 ?ID	 ? log(?HPC)	 ?1a	 ? 1.80	 ?2a	 ? 3.70	 ?3a	 ? 4.52	 ?4a	 ? 4.32	 ?1b	 ? 1.68	 ?2b	 ? 4.05	 ?3b	 ? 3.95	 ?4b	 ? 4.31	 ?mean	 ? 3.54	 ?b0	 ? 4.45	 ?b1	 ? -??7.49E-??06	 ?Parameter	 ?deviation	 ? 0.311	 ?var(b0)	 ? 2.13E-??02	 ?var(b1)	 ? -??7.49E-??06	 ?CI	 ?95%	 ?(t=2.447)	 ? upper	 ?b1	 ? -??5.54E-??06	 ?lower	 ?b1	 ? -??9.44E-??06	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?16.	 ?Log-??transform	 ?HPC	 ?data,	 ?for	 ?statistically	 ?appropriate	 ?comparison.	 ?A	 ?Brown-??Forsythe	 ?F-??test	 ?was	 ?performed	 ?in	 ?a	 ?trial	 ?copy	 ?of	 ?IBM	 ?SPSS	 ?Statistics	 ?to	 ?statistically	 ?evaluate	 ?the	 ?HOV	 ?of	 ?the	 ?transformed	 ?data.	 ?The	 ?results	 ?are	 ?presented	 ?in	 ?Appendix	 ?H.	 ?The	 ?8	 ?samples	 ?obtained	 ?during	 ?the	 ?first	 ?and	 ?second	 ?test	 ?run	 ?were	 ?insufficient,	 ?resulting	 ?in	 ?a	 ??0?	 ?in	 ?the	 ?denominator	 ?of	 ?test	 ?calculations.	 ?By	 ?incorporating	 ?an	 ?extra	 ?2	 ?points	 ?of	 ?within-??range	 ?data	 ?from	 ?the	 ?preliminary	 ?results	 ?(i.e.	 ?counts	 ?returned	 ?within	 ?20-??200	 ?CFU),	 ?similarly	 ?transformed	 ?with	 ?log10,	 ?the	 ?variances	 ?could	 ?be	 ?confirmed	 ?as	 ?equal	 ?with	 ?less	 ?than	 ?5%	 ?error	 ?(p<0.05).	 ?However,	 ?studies	 ?suggest	 ?that	 ?Brown-??Forsythe	 ?F-??tests	 ?are	 ?less	 ?robust	 ?when	 ?used	 ?to	 ?analyze	 ?groups	 ?with	 ?different	 ?sample	 ?numbers	 ?(Lim	 ?and	 ?Loh,	 ?1996;	 ?Lee	 ?et	 ?al.,	 ?2010),	 ?as	 ?was	 ?the	 ?case	 ?when	 ?incorporating	 ?preliminary	 ?data.	 ?Therefore,	 ?while	 ?the	 ?result	 ?of	 ?the	 ?Brown-??Forsythe	 ?test	 ?suggests	 ?equal	 ?variance,	 ?it	 ?cannot	 ?be	 ?claimed	 ?definitively.	 ?Therefore,	 ?the	 ?results	 ?of	 ?objective	 ?2	 ?evaluations	 ?are	 ?presented	 ?to	 ?suggest	 ?the	 ?trend	 ?with	 ?recognition	 ?of	 ?this	 ?limitation.	 ?	 ?	 ?	 ?Figure	 ?2:	 ?HPC	 ?results	 ?using	 ?un-??transformed	 ?y-??axis	 ?	 ?Figure	 ?3.	 ?HPC	 ?results	 ?using	 ?transformed	 ?y-??axis	 ?	 ?y	 ?=	 ?-??0.0621x	 ?+	 ?19952	 ?R?	 ?=	 ?0.62536	 ?0	 ?5000	 ?10000	 ?15000	 ?20000	 ?25000	 ?30000	 ?35000	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ??HPC,	 ?CFU/100	 ?mL)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?y	 ?=	 ?-??7E-??06x	 ?+	 ?4.4452	 ?R?	 ?=	 ?0.93626	 ?0.00	 ?1.00	 ?2.00	 ?3.00	 ?4.00	 ?5.00	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ?log	 ?(?HPC,	 ?CFU/100	 ?mL)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?	 ?	 ?TOC	 ?Results	 ?Objective	 ?1	 ?Results	 ? Sample	 ?ID	 ? ?TOC, ppm	 ?1a	 ? -??0.21	 ?2a	 ? -??0.36	 ?3a	 ? -??0.29	 ?4a	 ? -??0.55	 ?1b	 ? -??0.08	 ?2b	 ? -??0.23	 ?3b	 ? -??0.20	 ?4b	 ? -??0.54	 ?mean	 ? -??0.31	 ?std	 ?error	 ? 0.06	 ?t-??value	 ?(95%CI,	 ?alpha/2=0.025,	 ?n-??1=7)	 ? 2.37	 ?upper	 ?CI	 ? -??0.17	 ?lower	 ?CI	 ? -??0.45	 ?	 ? 	 ?Aesthetically	 ?relevant	 ?difference	 ? any	 ?Was	 ?the	 ?above	 ?observed?	 ? yes	 ?+1	 ?if	 ?improvement,	 ?-??1	 ?if	 ?gets	 ?worse	 ? 1	 ?Table	 ?17.	 ?TOC	 ?results	 ?for	 ?objective	 ?1.	 ?Objective	 ?2	 ?Results	 ? Sample	 ?ID	 ? ?TOC,	 ?ppm	 ?1a	 ? -??0.21	 ?2a	 ? -??0.36	 ?3a	 ? -??0.29	 ?4a	 ? -??0.55	 ?1b	 ? -??0.08	 ?2b	 ? -??0.23	 ?3b	 ? -??0.20	 ?4b	 ? -??0.54	 ?mean	 ? -??0.31	 ?b0	 ? -??0.40	 ?b1	 ? 7.84E-??07	 ?Parameter	 ?deviation	 ? 0.132	 ?var(b0)	 ? 3.87E-??03	 ?var(b1)	 ? 1.15E-??13	 ?CI	 ?90%	 ?(t=1.943)	 ? upper	 ?b1	 ? 1.44E-??06	 ?lower	 ?b1	 ? 1.24E-??07	 ?Includes	 ??0??	 ? NO	 ?Significant	 ?linear	 ?trend?	 ? YES	 ?Table	 ?18.	 ?TOC	 ?results	 ?for	 ?objective	 ?2,	 ?without	 ?log-??transform	 ?of	 ?x	 ?axis	 ?	 ?	 ?Observations/Comments	 ?The	 ?TOC	 ?data	 ?is	 ?shows	 ?a	 ?wide	 ?range	 ?of	 ?values	 ?as	 ?determined	 ?for	 ?objective	 ?1:	 ??TOC	 ?=	 ?-??0.31	 ??	 ?0.14	 ?ppm	 ?(?	 ?46%),	 ?which	 ?suggests	 ?that	 ?another	 ?explanation	 ?might	 ?be	 ?more	 ?adequate.	 ?For	 ?the	 ?data	 ?presented	 ?above,	 ?evaluations	 ?for	 ?objective	 ?2	 ?show	 ?with	 ?90%	 ?confidence	 ?that	 ?a	 ?downward	 ?trend	 ?exists.	 ?This	 ?confidence	 ?falls	 ?outside	 ?the	 ?range	 ?of	 ?predetermined	 ?quality	 ?objectives.	 ?	 ?	 ?Figure	 ?4.	 ?Change	 ?in	 ?TOC	 ?concentration	 ?between	 ?tap	 ?and	 ?Waterfillz,	 ?with	 ?respect	 ?to	 ?the	 ?number	 ?of	 ?bottles	 ?filled.	 ?	 ?Figure	 ?5.	 ?Change	 ?in	 ?TOC	 ?concentration	 ?between	 ?tap	 ?and	 ?Waterfillz,	 ?with	 ?respect	 ?to	 ?the	 ?log10	 ?of	 ?number	 ?of	 ?bottles	 ?filled.	 ?The	 ?rationale	 ?for	 ?modeling	 ?TOC	 ?performance	 ?depreciation	 ?using	 ?a	 ?log	 ?x-??axis	 ?is	 ?based	 ?on	 ?observations	 ?of	 ?granular	 ?media	 ?filters?	 ?ability	 ?to	 ?remove	 ?TOC	 ?(Crittenden	 ?et	 ?al.,	 ?2005).	 ?It	 ?was	 ?observed	 ?that	 ?rather	 ?than	 ?a	 ?typical	 ?breakthrough	 ?curve,	 ?carbon	 ?filters	 ?show	 ?exponentially	 ?decreasing	 ?ability	 ?to	 ?remove	 ?TOC.	 ?To	 ?confirm	 ?that	 ?this	 ?relationship	 ?is	 ?linear	 ?with	 ?respect	 ?to	 ?log(Volume),	 ?data	 ?points	 ?were	 ?extracted	 ?manually	 ?from	 ?Figure	 ?15-??28	 ?(page	 ?1328),	 ?and	 ?re-??plotted,	 ?as	 ?shown	 ?below:	 ?y	 ?=	 ?8E-??07x	 ?-??	 ?0.4019	 ?R?	 ?=	 ?0.47013	 ?-??0.60	 ?-??0.50	 ?-??0.40	 ?-??0.30	 ?-??0.20	 ?-??0.10	 ?0.00	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ?Change	 ?in	 ?TOC	 ?(ppm)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?y	 ?=	 ?0.1478x	 ?-??	 ?0.9772	 ?R?	 ?=	 ?0.59473	 ?-??0.60	 ?-??0.50	 ?-??0.40	 ?-??0.30	 ?-??0.20	 ?-??0.10	 ?0.00	 ?3.00	 ? 3.50	 ? 4.00	 ? 4.50	 ? 5.00	 ? 5.50	 ? 6.00	 ?Change	 ?in	 ?TOC	 ?(ppm)	 ?Log(number	 ?of	 ?bo?es	 ?filled)	 ?	 ?	 ?Volume	 ?treated,	 ?L/g	 ?GAC	 ? Log(Volume	 ?Treated)	 ? TOC	 ?Concentration	 ?in	 ?Effluent	 ?(mg/L)	 ?2	 ? 0.306	 ? 0.32	 ?3	 ? 0.48	 ? 0.45	 ?4	 ? 0.60	 ? 0.6	 ?5	 ? 0.70	 ? 0.7	 ?7.5	 ? 0.88	 ? 0.95	 ?10	 ? 1.00	 ? 1.35	 ?12.5	 ? 1.10	 ? 1.58	 ?15	 ? 1.18	 ? 1.75	 ?20	 ? 1.30	 ? 1.9	 ?25	 ? 1.40	 ? 1.9	 ?30	 ? 1.48	 ? 1.95	 ?35	 ? 1.54	 ? 2.05	 ?40	 ? 1.60	 ? 2.2	 ?Table	 ?19.	 ?Data	 ?points	 ?selected	 ?from	 ?Water	 ?Treatment	 ?Figure	 ?15-??28,	 ?page	 ?1328,	 ?for	 ?justification	 ?of	 ?log-??x	 ?in	 ?TOC	 ?analysis	 ?for	 ?second	 ?objective.	 ?	 ?Figure	 ?6:	 ?Log-??transform	 ?plot	 ?of	 ?data	 ?extracted	 ?from	 ?Water	 ?Treatment,	 ?p.	 ?1328	 ? 	 ?y	 ?=	 ?1.5533x	 ?-??	 ?0.2574	 ?R?	 ?=	 ?0.97266	 ?0	 ?0.5	 ?1	 ?1.5	 ?2	 ?2.5	 ?0	 ? 0.5	 ? 1	 ? 1.5	 ? 2	 ?TOC	 ?Concentra?n	 ?in	 ?Effluent	 ?(mg/L)	 ?Log	 ?(Volume	 ?Treated)	 ?	 ?	 ?Appendix	 ?G:	 ?QA/QC	 ?Temperature	 ?Sample	 ?Collection	 ?Quality	 ?control	 ?for	 ?temperature	 ?was	 ?informed	 ?by	 ?preliminary	 ?results.	 ?Readings	 ?became	 ?more	 ?precise	 ?as	 ?a	 ? sample	 ? tube	 ? was	 ? filled	 ? and	 ? refilled,	 ? suggesting	 ? that	 ? the	 ? temperature	 ? of	 ? the	 ? tube	 ? itself	 ? could	 ? alter	 ?results.	 ?This	 ?sensitivity	 ?suggested	 ?that	 ?hand	 ?warmth	 ?might	 ?also	 ?alter	 ?readings,	 ?so	 ?care	 ?was	 ?taken	 ?to	 ?limit	 ?hand	 ? contact	 ? with	 ? the	 ? tube	 ? by	 ? holding	 ? its	 ? top	 ? edge	 ? with	 ? thumb	 ? and	 ? forefinger.	 ? Considering	 ? these	 ?factors,	 ?the	 ?vial	 ?was	 ?filled	 ?once,	 ?allowed	 ?to	 ?acclimatize	 ?over	 ?30	 ?seconds,	 ?filled	 ?again,	 ?measured	 ?over	 ?30	 ?seconds	 ?and	 ?the	 ?result	 ?was	 ?then	 ?recorded.	 ?Chlorine	 ?Sample	 ?Collection	 ?Prior	 ?to	 ?sample	 ?collection,	 ?containers	 ?were	 ?rinsed	 ?with	 ?the	 ?target	 ?sample	 ?to	 ?limit	 ?contamination	 ?or	 ?dilution.	 ?Upon	 ?sample	 ?collection,	 ?containers	 ?were	 ?held	 ?close	 ?and	 ?at	 ?a	 ?shallow	 ?angle	 ?to	 ?the	 ?source,	 ?allowing	 ?sample	 ?to	 ?stream	 ?down	 ?the	 ?side,	 ?thereby	 ?limiting	 ?the	 ?potential	 ?for	 ?volatilization.	 ?Spike	 ?Evaluation	 ?Description	 ?A	 ?primary	 ?source	 ?of	 ?interference	 ?with	 ?the	 ?DPD	 ?method	 ?for	 ?chlorine	 ?detection	 ?is	 ?the	 ?presence	 ?of	 ?oxidized	 ?manganese	 ?compounds	 ?(APHA,	 ?2005).	 ?Metals	 ?have	 ?been	 ?shown	 ?to	 ?decrease	 ?after	 ?Waterfillz	 ?treatment	 ?(Tran	 ?et	 ?al.,	 ?2012),	 ?so	 ?Waterfillz	 ?water	 ?could	 ?reasonably	 ?be	 ?assumed	 ?to	 ?have	 ?either	 ?the	 ?same	 ?or	 ?lowered	 ?concentration	 ?of	 ?manganese	 ?in	 ?comparison	 ?to	 ?tap	 ?water.	 ?A	 ?conservative	 ?measurement	 ?of	 ?matrix	 ?effects	 ?would	 ?test	 ?tap	 ?water.	 ?As	 ?mentioned,	 ?chlorine	 ?detection	 ?was	 ?performed	 ?using	 ?the	 ?low-??range	 ?(0	 ??	 ?0.7	 ?mg/L)	 ?total	 ?chlorine	 ?variation	 ?of	 ?the	 ?Hach	 ?test	 ?kit.	 ?Sample	 ?measurements	 ?consistently	 ?returned	 ?values	 ?around	 ?0.5	 ?and	 ?0.6	 ?mg/L.	 ?Spike	 ?methods	 ?typically	 ?employ	 ?the	 ?addition	 ?of	 ?a	 ?concentrated	 ?solution	 ?to	 ?equal	 ?the	 ?magnitude	 ?of	 ?measurements.	 ?In	 ?this	 ?case,	 ?traditional	 ?techniques	 ?could	 ?involve	 ?spiking	 ?with	 ?a	 ?certain	 ?volume	 ?of	 ?concentrated	 ?solution	 ?to	 ?attain	 ?a	 ?concentration	 ?around	 ?1	 ?mg/L.	 ?A	 ?low	 ?concentration	 ?spike	 ?to	 ?obtain	 ?a	 ?result	 ?below	 ?the	 ?upper	 ?limit	 ?of	 ?the	 ?test	 ?range	 ?(0.6-??0.7	 ?mg/L)	 ?might	 ?not	 ?be	 ?distinguishable	 ?from	 ?sample	 ?measurements,	 ?and	 ?inversely,	 ?spiking	 ?to	 ?1	 ?mg/L	 ?would	 ?exceed	 ?the	 ?range.	 ?Therefore,	 ?a	 ?method	 ?to	 ?simultaneously	 ?spike	 ?samples	 ?and	 ?dilute	 ?them	 ?with	 ?chlorine-??demand	 ?free	 ?distilled/deionized	 ?water	 ?was	 ?developed.	 ?	 ?Tap	 ?water	 ?was	 ?tested	 ?in	 ?solution	 ?with	 ?destilled/deionized	 ?water	 ?and	 ?a	 ?bleach	 ?(hypochlorite)	 ?solution	 ?diluted	 ?to	 ?0.3	 ?and	 ?0.5	 ?mg/L.	 ?Hypochlorite,	 ?a	 ?free	 ?chlorine	 ?specie,	 ?is	 ?used	 ?here	 ?as	 ?a	 ?surrogate	 ?spike	 ?for	 ?total	 ?chlorine,	 ?which	 ?is	 ?a	 ?measure	 ?of	 ?both	 ?free	 ?and	 ?combined	 ?chlorine.	 ?Any	 ?reaction	 ?converting	 ?hypochlorite	 ?to	 ?combined	 ?chlorine	 ?would	 ?be	 ?accounted	 ?for	 ?in	 ?the	 ?measurement.	 ?Further,	 ?combined	 ?chlorine	 ?is	 ?generally	 ?more	 ?stable	 ?than	 ?free	 ?chlorine.	 ?If	 ?any	 ?matrix	 ?effects	 ?were	 ?present,	 ?hypochlorite	 ?would	 ?be	 ?preferentially	 ?consumed,	 ?providing	 ?a	 ?sensitive	 ?indicator	 ?for	 ?interference.	 ?	 ?	 ?The	 ?precision	 ?of	 ?the	 ?test	 ?kit	 ?is	 ?0.02	 ?mg/L	 ?(HACH,	 ?2013a);	 ?all	 ?measurements	 ?returned	 ?results	 ?around	 ?the	 ?expected	 ?value,	 ??0.02	 ?mg/L.	 ?Therefore,	 ?no	 ?significant	 ?matrix	 ?effects	 ?have	 ?been	 ?identified.	 ?Protocol	 ?1. Prepare	 ?bleach	 ?(Hypochlorite)	 ?solution:	 ?a. Add	 ?approximately	 ?250	 ?mL	 ?of	 ?distilled/deionized	 ?(DD)	 ?water	 ?to	 ?a	 ?250	 ?mL	 ?conical	 ?flask	 ?b. Add	 ?approximately	 ?5	 ?mL	 ?of	 ?6%	 ?commercial	 ?bleach	 ?to	 ?the	 ?DD	 ?water	 ?c. Mix	 ?with	 ?gentle	 ?rotation	 ?d. Transfer	 ?bleach	 ?solution	 ?to	 ?a	 ?burette	 ?for	 ?standardization	 ?e. Record	 ?initial	 ?volume	 ?of	 ?burette,	 ?A	 ?(14.6	 ?mL)	 ?2. Prepare	 ?indicator	 ?solution:	 ?a. Add	 ?approximately	 ?50	 ?mL	 ?of	 ?DD	 ?water	 ?to	 ?a	 ?250	 ?mL	 ?conical	 ?flask	 ?b. Add	 ?approximately	 ?1	 ?g	 ?of	 ?potassium	 ?iodide	 ?(KI,	 ?Fisher	 ?Scientific)	 ?c. Add	 ?approximately	 ?5	 ?mL	 ?of	 ?acetic	 ?acid	 ?solution	 ?(99.7%	 ?Acetic	 ?Acid	 ?Glacial,	 ?Fisher	 ?Scientific,	 ?dilute	 ?in	 ?10-??25	 ?mL	 ?of	 ?DD	 ?water)	 ?d. Add	 ?exactly	 ?10	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?(0.025	 ?N,	 ?Fisher	 ?Scientific)	 ?e. Add	 ?an	 ?eyedropper	 ?full	 ?of	 ?starch	 ?solution	 ?3. Standardize	 ?bleach	 ?solution:	 ?a. Insert	 ?magnetic	 ?stir	 ?bar	 ?into	 ?the	 ?flask	 ?containing	 ?the	 ?indicator	 ?solution	 ?b. Position	 ?a	 ?stir	 ?plate	 ?beneath	 ?the	 ?burette	 ?containing	 ?the	 ?bleach	 ?solution	 ?c. Place	 ?the	 ?flask	 ?containing	 ?the	 ?indicator	 ?solution	 ?on	 ?the	 ?stir	 ?plate	 ?d. Turn	 ?on	 ?the	 ?stir	 ?plate	 ?to	 ?a	 ?low	 ?setting	 ?for	 ?gentle	 ?mixing	 ?e. Titrate	 ?the	 ?bleach	 ?solution	 ?into	 ?the	 ?indicator	 ?solution	 ?until	 ?a	 ?steady	 ?blue	 ?end	 ?point	 ?is	 ?met	 ?f. Record	 ?final	 ?volume	 ?of	 ?burette,	 ?B	 ?(6	 ?mL)	 ?g. Concentration	 ?of	 ?the	 ?bleach	 ?solution,	 ?reported	 ?as	 ?mg	 ?Cl2/L	 ?is	 ?calculated	 ?by:	 ?	 ? ? = 10 ?? ?0.025 ?? ?35450? ? ? = 1030.52 ? ?  ? ? ?/?	 ?Where:	 ?? 10	 ?=	 ?10	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?? 0.025	 ?=	 ?0.025	 ?N	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?? 34,450	 ?=	 ?scalar	 ?representing	 ?the	 ?ratio	 ?of	 ?chlorine	 ?quenched	 ?by	 ?sodium	 ?thiosulfate	 ?and	 ?unit	 ?conversions	 ?4. Prepare	 ?diluted	 ?solutions	 ?of	 ?desired	 ?concentration	 ?a. Knowing	 ?concentration	 ?of	 ?standardized	 ?bleach	 ?solution	 ?and	 ?desired	 ?concentration	 ?and	 ?volume	 ?of	 ?diluted	 ?solutions,	 ?calculate	 ?required	 ?dilutions:	 ???? . = ??? .???? .??? . 	 ?	 ? Where:	 ?? Vreq.	 ?=	 ?volume	 ?of	 ?standard	 ?required	 ?per	 ?volume	 ?of	 ?desired	 ?diluted	 ?solution	 ?(Vdes.)	 ?? Cdes.	 ?=	 ?desired	 ?concentration	 ?of	 ?diluted	 ?solution	 ?? Cstd.	 ?=	 ?known	 ?concentration	 ?of	 ?standard	 ?solution	 ?	 ?	 ?b. Pipette	 ?the	 ?required	 ?volume	 ?(Vreq.)	 ?of	 ?standard	 ?solution	 ?into	 ?a	 ?volume	 ?of	 ?DD	 ?water	 ?equivalent	 ?to	 ?the	 ?desired	 ?volume	 ?(Vdes.)	 ?Results	 ?of	 ?Chlorine	 ?Spike	 ?	 ? 	 ? Chlorine	 ?(ppm)	 ?Composition	 ? Duplicate	 ? Result	 ? Average	 ? Expected	 ?result	 ?Tap	 ?Water	 ? 1	 ? 0.50	 ? 0.49	 ?2	 ? 0.48	 ?DD	 ?Water	 ? 1	 ? 0.00	 ? 0.00	 ? 0.00	 ?2	 ? 0.00	 ?40/60	 ?-??	 ?Tap/DD	 ?Water	 ? 1	 ? 0.20	 ? 0.20	 ? 0.20	 ?2	 ? 0.20	 ?0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.30	 ? 0.30	 ? 0.30	 ?2	 ? 0.30	 ?40/60	 ?-??	 ?Tap/0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.36	 ? 0.36	 ? 0.38	 ?2	 ? 0.36	 ?60/40	 ?-??	 ?Tap/0.3	 ?ppm	 ?sol.	 ? 1	 ? 0.40	 ? 0.41	 ? 0.40	 ?2	 ? 0.42	 ?20/80	 ?-??	 ?Tap/0.3	 ?ppm	 ?solution	 ? 1	 ? 0.36	 ? 0.35	 ? 0.34	 ?2	 ? 0.34	 ?0.5	 ?ppm	 ?sol	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?40/60	 ?-??	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.48	 ? 0.49	 ? 0.50	 ?2	 ? 0.50	 ?60/40	 ?-??	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?80/20	 ?Tap/0.5	 ?ppm	 ?sol.	 ? 1	 ? 0.50	 ? 0.50	 ? 0.50	 ?2	 ? 0.50	 ?Table	 ?20	 ?Results	 ?of	 ?the	 ?chlorine	 ?spike	 ?analysis	 ?-??	 ?different	 ?compositions	 ?and	 ?their	 ?resulting	 ?value	 ?compared	 ?to	 ?tap	 ?water	 ?Heterotrophic	 ?Plate	 ?Count	 ?Sample	 ?Collection	 ?Samples	 ?containers	 ?were	 ?spiked	 ?with	 ?0.1	 ?mL	 ?of	 ?sodium	 ?thiosulfate	 ?solution	 ?(10%,	 ?Fisher	 ?Scientific)	 ?per	 ?120	 ?mL	 ?of	 ?sample	 ?to	 ?quench	 ?and	 ?eliminate	 ?the	 ?effects	 ?of	 ?chlorine	 ?on	 ?bacterial	 ?growth.	 ?Containers	 ?were	 ?autoclaved	 ?and	 ?sealed	 ?until	 ?sample	 ?collection.	 ?Two	 ?travel	 ?blanks	 ?as	 ?well	 ?as	 ?a	 ?field	 ?blank	 ?for	 ?each	 ?of	 ?the	 ?four	 ?test	 ?locations	 ?were	 ?evaluated	 ?for	 ?both	 ?sample	 ?runs.	 ?	 ?Total	 ?Organic	 ?Carbon	 ?Sample	 ?Collection	 ?Containers	 ?were	 ?baked	 ?to	 ?remove	 ?organic	 ?carbon	 ?content,	 ?then	 ?capped	 ?and	 ?sealed	 ?until	 ?collection.	 ?	 ?	 ?TOC	 ?Quantification	 ?To	 ?quantify	 ?TOC	 ?concentration	 ?in	 ?samples,	 ?a	 ?calibration	 ?curve	 ?was	 ?constructed	 ?as	 ?follows.	 ?All	 ?values	 ?reported	 ?are	 ?concentrations,	 ?as	 ?determined	 ?from	 ?this	 ?curve:	 ?	 ?Table	 ?21.	 ?TOC	 ?calibration	 ?curve.	 ?Slope	 ?is	 ?approximately	 ?1	 ?due	 ?to	 ?pre-??programmed	 ?instrumental	 ?calibration	 ?Blanks	 ?and	 ?0.5ppm	 ?standards	 ?were	 ?analyzed	 ?throughout	 ?the	 ?run.	 ?The	 ?LOD	 ?and	 ?LOQ	 ?were	 ?determined	 ?to	 ?be	 ?0.082	 ?ppm	 ?and	 ?0.273	 ?ppm,	 ?respectively,	 ?based	 ?on	 ?the	 ?pooled	 ?standard	 ?deviation,	 ?as	 ?follows:	 ?Replicate	 ?Number	 ? 0.5	 ?ppm	 ?TOC	 ?Standard	 ? Instrumental	 ?Blank	 ?1	 ? 0.539	 ? 0.051	 ?2	 ? 0.534	 ? 0.056	 ?3	 ? 0.480	 ? 0.013	 ?4	 ? 0.496	 ? 0.002	 ?5	 ? 0.500	 ? -??0.013	 ?6	 ? 0.484	 ? -??0.003	 ?7	 ? 0.564	 ? 0.030	 ?	 ? 	 ? 	 ?Mean	 ? 0.514	 ? 0.019	 ?Sample	 ?Standard	 ?Dev.	 ? 0.025	 ? 0.029	 ?Table	 ?22.	 ?Replicates	 ?of	 ?blank	 ?and	 ?standard	 ?used	 ?in	 ?determination	 ?of	 ?LOD	 ?and	 ?LOQ.	 ????? = ?? ? 1 ??? + (?? ? 1)????? + ?? ? 2 = 0.027 ? ??  ?	 ??? = 3 ? ???? = 0.082 ? ?? 	 ??? = 10 ? ???? = 0.273 ? ?? 	 ?y	 ?=	 ?0.9658x	 ?+	 ?0.006	 ?R?	 ?=	 ?0.99974	 ?0	 ?0.5	 ?1	 ?1.5	 ?2	 ?2.5	 ?0	 ? 0.5	 ? 1	 ? 1.5	 ? 2	 ? 2.5	 ?Instrument	 ?Response	 ?(rela?ve)	 ?TOC	 ?Concentra?n	 ?(ppm)	 ?	 ?	 ?TOC	 ?Spike	 ?Evaluation	 ?Description	 ?Spikes	 ?were	 ?performed	 ?by	 ?adding	 ?known	 ?amounts	 ?of	 ?concentrated	 ?Suwanee	 ?River	 ?NOM	 ?(aq)	 ?to	 ?both	 ?Waterfillz	 ?and	 ?tap	 ?samples.	 ?These	 ?were	 ?compared	 ?to	 ?identically	 ?spiked	 ?blanks.	 ?It	 ?was	 ?determined	 ?that	 ?the	 ?matrix	 ?has	 ?no	 ?statistically	 ?significant	 ?effect	 ?(95%	 ?confidence)	 ?on	 ?the	 ?instrumental	 ?response.	 ?The	 ?95%	 ?confidence	 ?interval	 ?was	 ?constructed	 ?based	 ?on	 ?the	 ?standard	 ?deviations	 ?of	 ?spike	 ?and	 ?matrix	 ?samples.	 ?Standard	 ?deviations,	 ?rather	 ?than	 ?standard	 ?errors,	 ?were	 ?applied	 ?because	 ?we	 ?are	 ?comparing	 ?a	 ?measurement	 ?to	 ?an	 ?expected	 ?measurement.	 ?Confidence	 ?interval	 ?calculation	 ?was	 ?performed	 ?in	 ?the	 ?manner	 ?given	 ?in	 ?Appendix	 ?F.	 ?Values	 ?of	 ?spike	 ?and	 ?blank	 ?are	 ?given	 ?below:	 ?	 ? Aliquot	 ? NOM	 ?Spike	 ?(in	 ?blank)	 ? Aliquot	 ?+	 ?NOM	 ?Spike	 ?Water	 ?type	 ? Background	 ?TOC	 ?concentration	 ?(ppm)	 ? Spiked	 ?TOC	 ?concentration	 ?(ppm)	 ? Predicted	 ?Range	 ?of	 ?95%	 ?CI	 ?(mg/L)	 ? Concentration	 ?(mg/L)	 ?Tap	 ? 0.63	 ?ppm	 ? 0.83	 ?ppm	 ? 1.24	 ?to	 ?1.56	 ? 1.45	 ?Waterfillz	 ? 0.43	 ?ppm	 ? 0.83	 ?ppm	 ? 1.48	 ?to	 ?1.16	 ? 1.18	 ?Table	 ?23:	 ?TOC	 ?spike	 ?procedure	 ?results	 ?Protocol	 ?Vials	 ?for	 ?standards	 ?and	 ?blanks	 ?should	 ?be	 ?prepared	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?sample	 ?vials	 ?1. Three	 ?types	 ?of	 ?blanks	 ?are	 ?prepared	 ?as	 ?follows:	 ?a. Instrumental	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?DD	 ?water	 ?ii. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?b. Trip	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?DD	 ?water	 ?ii. Cap	 ?vial,	 ?carry	 ?to	 ?sampling	 ?site	 ?and	 ?back	 ?to	 ?lab	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?samples	 ?iii. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?c. Field	 ?blanks	 ?i. Fill	 ?TOC	 ?vial	 ?with	 ?40	 ?mL	 ?distilled,	 ?deionized,	 ?0.22	 ??m	 ?Millipore	 ?filtered	 ?water	 ?ii. Cap	 ?vial,	 ?carry	 ?to	 ?sampling	 ?site,	 ?open	 ?vial	 ?for	 ?30	 ?s	 ?and	 ?close	 ?again	 ?d. Transport	 ?back	 ?to	 ?lab	 ?in	 ?the	 ?same	 ?manner	 ?as	 ?samples	 ?e. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?2. Calibration	 ?Standards	 ?a. Prepare	 ?1000	 ?ppm	 ?stock	 ?solution	 ?of	 ?TOC	 ?Standard:	 ?0.5312g	 ?Potassium	 ?Hydrogen	 ?Phthalate	 ?per	 ?250	 ?mL	 ?of	 ?DD	 ?water	 ?b. To	 ?make	 ?20	 ?ppm	 ?standard,	 ?add	 ?2	 ?mL	 ?1000ppm	 ?stock	 ?solution	 ?to	 ?100	 ?mL	 ?volumetric	 ?flask,	 ?top	 ?up	 ?to	 ?line	 ?with	 ?DD	 ?water	 ?c. Prepare	 ?calibration	 ?standards	 ?in	 ?40	 ?mL	 ?TOC	 ?vials.	 ?	 ?i. Use	 ?a	 ?volumetric	 ?pipet	 ?to	 ?dispense	 ?20	 ?ppm	 ?standard,	 ?and	 ?an	 ?analytical	 ?balance	 ?(pouring,	 ?then	 ?Pasteur	 ?pipet)	 ?to	 ?add	 ?water	 ?as	 ?follows:	 ? 	 ?	 ?	 ?	 ?Concentration	 ? Volume	 ?of	 ?20	 ?ppm	 ?std	 ? Mass	 ?of	 ?water	 ?0.125	 ?ppm	 ? 0.25	 ?mL	 ? 39.75	 ?g	 ?0.25	 ?ppm	 ?	 ? 0.5	 ?mL	 ? 39.5	 ?g	 ?0.5	 ?ppm	 ?	 ? 1	 ?mL	 ? 39.0	 ?g	 ?1	 ?ppm	 ?	 ? 2	 ?mL	 ? 38.0	 ?g	 ?2	 ?ppm	 ? 4	 ?mL	 ? 36.0	 ?g	 ?Table	 ?24:	 ?TOC	 ?Analyzer	 ?Calibration	 ?Standards	 ?d. Cap	 ?vials	 ?and	 ?inverted	 ?to	 ?mix	 ?e. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ?3. Spikes	 ?a. Prepared	 ?approximately	 ?350	 ?ppm	 ?(of	 ?C)	 ?SR	 ?NOM	 ?solution	 ?in	 ?DD	 ?water	 ?(7	 ?mg	 ?/10	 ?mL)	 ?b. Added	 ?100	 ??L	 ?to	 ?(1)	 ?DD	 ?water	 ?(2)	 ?Waterfillz	 ?water	 ?(3)	 ?Tap	 ?water	 ?c. Capped	 ?and	 ?inverted	 ?to	 ?mix	 ?d. Set	 ?vial	 ?in	 ?autosampler	 ?&	 ?run	 ?using	 ?same	 ?manner	 ?as	 ?samples	 ? 	 ?	 ?	 ?Appendix	 ?H	 ??	 ?Brown-??Forsythe	 ?F-??test	 ?Results	 ?Description	 ?Following	 ?log10	 ?transforms,	 ?HPC	 ?results	 ?showed	 ?a	 ?visibly	 ?improved	 ?fit.	 ?In	 ?order	 ?to	 ?statistically	 ?confirm	 ?homogeneity	 ?of	 ?variance	 ?(HOV),	 ?a	 ?Brown-??Forsythe	 ?F-??test	 ?(aka	 ?modified	 ?Levene?s	 ?test)	 ?was	 ?performed	 ?on	 ?the	 ?transformed	 ?data.	 ?Including	 ?only	 ?two	 ?samples	 ?for	 ?each	 ?Waterfillz	 ?station	 ?in	 ?the	 ?analysis,	 ?HOV	 ?could	 ?not	 ?be	 ?confirmed.	 ?Including	 ?conclusive	 ?preliminary	 ?results	 ?by	 ?membrane	 ?filtration	 ?from	 ?Waterfillz	 ?stations	 ?2	 ?and	 ?4	 ?in	 ?the	 ?analysis,	 ?HOV	 ?could	 ?be	 ?confirmed	 ?with	 ?uncertainty	 ?p	 ?<	 ?0.05.	 ?However,	 ?by	 ?including	 ?this	 ?data,	 ?the	 ?analysis	 ?considered	 ?test	 ?groups	 ?with	 ?different	 ?sample	 ?numbers,	 ?and	 ?sample	 ?size	 ?was	 ?still	 ?relatively	 ?small,	 ?both	 ?have	 ?which	 ?have	 ?been	 ?shown	 ?to	 ?limit	 ?the	 ?robustness	 ?of	 ?the	 ?test	 ?(Lim	 ?and	 ?Loh,	 ?1996;	 ?Lee	 ?et	 ?al.,	 ?2010).	 ?Sample	 ?Calculations	 ?The	 ?Brown-??Forsythe	 ?test	 ?is	 ?a	 ?variation	 ?of	 ?Levene?s	 ?F-??test,	 ?both	 ?of	 ?which	 ?test	 ?the	 ?significance	 ?level	 ?for	 ?homoscedasticity	 ?or	 ?homogeneity	 ?of	 ?variance	 ?(HOV).	 ?Levene?s	 ?test	 ?is	 ?essentially	 ?an	 ?analysis	 ?of	 ?variance	 ?(ANOVA)	 ?of	 ?an	 ?array	 ?of	 ?absolute	 ?differences	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?sample	 ?mean,	 ?as	 ?represented	 ?by	 ?the	 ?following:	 ?Levene?s	 ?Sample	 ?F-??Statistic	 ?=	 ?ANOVA{ ?? ? ? ? }	 ?A	 ?limitation	 ?of	 ?Levene?s	 ?F-??test	 ?is	 ?that	 ?sample	 ?data	 ?is	 ?assumed	 ?to	 ?follow	 ?a	 ?normal	 ?distribution.	 ?The	 ?Brown-??Forsythe	 ?F-??test	 ?improves	 ?on	 ?Levene?s	 ?method	 ?by	 ?analyzing	 ?the	 ?sample	 ?median	 ?(?)	 ?as	 ?opposed	 ?to	 ?the	 ?sample	 ?mean.	 ?As	 ?a	 ?result,	 ?it	 ?is	 ?more	 ?robust	 ?to	 ?non-??normality	 ?in	 ?the	 ?sample	 ?data.	 ?It	 ?is	 ?represented	 ?by:	 ?Brown-??Forsythe	 ?F-??Statistic	 ?=	 ?ANOVA{ ?? ? ? }	 ?Manual	 ?calculations	 ?for	 ?the	 ?Brown-??Forsythe	 ?F-??statistic,	 ?denoted	 ?by	 ??,	 ?involves	 ?the	 ?following	 ?calculations	 ?for	 ??	 ?=	 ?1,	 ?2,	 ??	 ?,	 ??	 ?groups	 ?with	 ??	 ?=	 ?1,	 ?2,	 ??,	 ??? 	 ?samples	 ?per	 ?group	 ?and	 ??? 	 ?samples	 ?overall:	 ?? =  ? (? ? ?)(? ? 1) ??(??. ? ?..)????? (?? ? ??.????? )????? 	 ?Where:	 ??? =  ? ?? ? ?? 	 ??.. = ??? ? ???  ? ?  ? ??  ??? = 1? ??????????? 	 ???. = ??? ? ???  ? ?  ? ??  ???  ? ?  ? ????  ?? = 1?? ??????? 	 ?Some	 ?preliminary	 ?calculations	 ?for	 ??	 ?were	 ?performed	 ?in	 ?Excel,	 ?however,	 ?for	 ?faster	 ?and	 ?more	 ?reliable	 ?data	 ?processing,	 ?IBM	 ?SPSS	 ?Statistic	 ?was	 ?employed.	 ?The	 ?following	 ?section	 ?provides	 ?the	 ?IBM	 ?SPSS	 ?Statistic	 ?	 ?	 ?analysis	 ?protocol	 ?and	 ?results	 ?for	 ?HPC	 ?data.	 ?Reported	 ?results	 ?represent	 ?the	 ?Brown-??Forsythe	 ?test;	 ?normality	 ?was	 ?not	 ?assumed	 ?for	 ?the	 ?data.	 ?IBM	 ?SPSS	 ?Analysis	 ?Protocol	 ?The	 ?following	 ?provides	 ?instructions	 ?on	 ?how	 ?to	 ?perform	 ?ANOVA	 ?on	 ?an	 ?array	 ?of	 ?differences	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?mean	 ?or	 ?median,	 ?representing	 ?the	 ?Levene	 ?and	 ?Brown-??Forsythe	 ?F-??test,	 ?respectively.	 ?1. With	 ?IBM	 ?SPSS	 ?Statistic	 ?installed	 ?and	 ?running,	 ?make	 ?a	 ?new	 ?data	 ?file	 ?2. Input	 ?the	 ?Waterfillz	 ?station	 ?number	 ?in	 ?the	 ?first	 ?column	 ?as	 ?variable	 ?1	 ?(Waterfillz_Station#)	 ?3. Input	 ?the	 ?sample	 ?data	 ?for	 ?each	 ?station	 ?in	 ?the	 ?second	 ?column	 ?for	 ?variable	 ?2	 ?(i_Sample_Values,	 ?i_logSample_Values,	 ?etc.)	 ?4. Note:	 ?SPSS	 ?categorizes	 ?samples	 ?by	 ?group	 ?(Waterfillz_Station#),	 ?so	 ?different	 ?variables	 ?must	 ?be	 ?used	 ?for	 ?samples	 ?values,	 ?transformed	 ?values,	 ?and	 ?different	 ?combinations	 ?of	 ?values	 ?to	 ?ensure	 ?that	 ?subsequent	 ?calculations	 ?reference	 ?the	 ?correct	 ?dependent	 ?variable	 ?5. Calculate	 ?the	 ?median	 ?of	 ?the	 ?sample	 ?values:	 ?a. Under	 ?the	 ??Data?	 ?heading,	 ?select	 ?the	 ??Aggregate?	 ?option	 ?i. Select	 ?the	 ?independent	 ?variable	 ?(Waterfillz_Station#)	 ?as	 ?the	 ??break	 ?variable(s)?	 ?ii. Select	 ?the	 ?dependent	 ?variable	 ?to	 ?be	 ?analyzed,	 ?enter	 ?into	 ??Summaries	 ?of	 ?Variable(s)?	 ?6. For	 ?Levene?s	 ?test,	 ?click	 ??function?	 ?and	 ?select	 ??mean?	 ?7. For	 ?the	 ?Brown-??Forsythe	 ?test,	 ?click	 ??function?	 ?and	 ?select	 ??median?	 ?a. Click	 ??OK?	 ?and	 ?a	 ?new	 ?variable	 ?for	 ?mean	 ?or	 ?median	 ?will	 ?be	 ?created	 ?(ii_median_Sample_Values,	 ?ii_median_logSample_Values,	 ?etc.)	 ?8. Calculate	 ?the	 ?absolute	 ?difference	 ?between	 ?sample	 ?values	 ?and	 ?the	 ?mean	 ?or	 ?median:	 ?a. Under	 ?the	 ??Transform?	 ?heading,	 ?select	 ?the	 ??Compute	 ?Variable?	 ?option:	 ?i. Under	 ?the	 ?heading	 ??Function	 ?Group?	 ?select	 ??all?	 ?ii. Navigate	 ?to	 ?and	 ?input	 ??abs?	 ?into	 ?the	 ??numeric	 ?expression?	 ?iii. Enter	 ?the	 ?sample	 ?value	 ?(ex.	 ?i_Sample_Values)	 ?iv. Input	 ?a	 ?subtraction	 ?operator	 ??-???	 ?v. Enter	 ?the	 ?sample	 ?mean	 ?or	 ?median	 ?value	 ?(ex.	 ?ii_median_Sample_Values)	 ?vi. Identify	 ?the	 ?target	 ?variable	 ?label	 ?(diff_i_ii1,	 ?diff_i_ii2,	 ?etc.)	 ?b. Click	 ??OK?	 ?and	 ?a	 ?new	 ?variable	 ?for	 ?the	 ?absolute	 ?difference	 ?of	 ?sample	 ?value	 ?and	 ?sample	 ?mean	 ?or	 ?median	 ?will	 ?be	 ?created	 ?9. Calculate	 ?the	 ?Levene?s	 ?test	 ?(using	 ?the	 ?mean)	 ?or	 ?Brown-??Forsythe	 ?(using	 ?the	 ?median)	 ?F-??Statistic	 ?a. Select	 ?the	 ?array	 ?of	 ?absolute	 ?differences	 ?between	 ?sample	 ?value	 ?and	 ?sample	 ?mean	 ?or	 ?median	 ?to	 ?be	 ?analyzed	 ?b. Under	 ?the	 ??Analyze?	 ?heading,	 ?select	 ?the	 ??Compare	 ?Means?	 ?tab,	 ?and	 ?then	 ?select	 ?the	 ??One-??way	 ?Anova??	 ?option:	 ?i. Select	 ?the	 ?independent	 ?variable	 ?(Waterfillz_Station#)	 ?as	 ?the	 ??Factor:?	 ?ii. Select	 ?the	 ?dependent	 ?variable	 ?(diff_i_ii1,	 ?diff_i_ii2,	 ?etc.)	 ?to	 ?be	 ?analyzed	 ?c. Click	 ??OK?	 ?and	 ?the	 ?results	 ?are	 ?output	 ?in	 ?a	 ?separate	 ?window	 ?10. Variances	 ?can	 ?be	 ?reported	 ?as	 ?equal	 ?with	 ?less	 ?than	 ?5%	 ?error	 ?if	 ?the	 ?reported	 ??Sig.?	 ?is	 ?below	 ?0.05	 ? Aesthetic	 ?Assessment	 ?of	 ?Drinking	 ?Water	 ?at	 ?UBC:	 ?A	 ?Comparison	 ?of	 ?Waterfillz	 ?and	 ?Tap	 ?Water	 ?Civil	 ?562	 ?Project	 ?Submitted	 ?April	 ?8th,	 ?2013	 ?to	 ?Pierre	 ?B?rub?	 ?Sam	 ?Bailey	 ?Shona	 ?Robinson	 ?	 ? 	 ?Contents	 ?Abstract	 ?..........................................................................................................................................................	 ?	 ?Introduction	 ?.................................................................................................................................................	 ?1	 ?Background	 ?..............................................................................................................................................	 ?1	 ?Waterfillz	 ?indoor	 ?refill	 ?stations	 ?............................................................................................................	 ?1	 ?Vancouver	 ?tap	 ?water	 ?...........................................................................................................................	 ?1	 ?Problem	 ?Statement	 ?..................................................................................................................................	 ?2	 ?Objectives	 ?&	 ?Hypotheses	 ?.........................................................................................................................	 ?2	 ?Methods	 ?.......................................................................................................................................................	 ?3	 ?Water	 ?collection	 ?methods	 ?&	 ?sampling	 ?plan	 ?............................................................................................	 ?3	 ?Results	 ?&	 ?Discussion	 ?....................................................................................................................................	 ?5	 ?Conclusion	 ?...................................................................................................................................................	 ?8	 ?References	 ?.................................................................................................................................................	 ?10	 ?Appendix	 ?A	 ?-??	 ?Preliminary	 ?Study	 ?.................................................................................................................	 ?13	 ?Preliminary	 ?sample	 ?collection	 ?................................................................................................................	 ?13	 ?Preliminary	 ?sample	 ?analysis	 ?...................................................................................................................	 ?13	 ?Preliminary	 ?results	 ?&	 ?discussion	 ?............................................................................................................	 ?13	 ?Appendix	 ?B	 ??	 ?Sizing	 ?Experiment	 ?................................................................................................................	 ?15	 ?Description	 ?.............................................................................................................................................	 ?15	 ?Calculations	 ?............................................................................................................................................	 ?15	 ?Appendix	 ?C	 ?-??	 ?Safety	 ?Considerations	 ?...........................................................................................................	 ?16	 ?Analyst	 ?safety	 ?considerations	 ?................................................................................................................	 ?16	 ?Disposal	 ?considerations	 ?.........................................................................................................................	 ?16	 ?Notes	 ?for	 ?selected	 ?reagents	 ?...................................................................................................................	 ?16	 ?Appendix	 ?D	 ?-??	 ?Sampling	 ?&	 ?Analysis	 ?Protocols	 ?.............................................................................................	 ?17	 ?Sample	 ?collection	 ?...................................................................................................................................	 ?17	 ?Sample	 ?Population	 ?and	 ?Scheme	 ?............................................................................................................	 ?17	 ?Overall	 ?Sampling	 ?Method	 ?......................................................................................................................	 ?18	 ?Temperature	 ?Method	 ?............................................................................................................................	 ?18	 ?Analysis	 ?Procedure	 ?.............................................................................................................................	 ?18	 ?Chlorine	 ?Method	 ?....................................................................................................................................	 ?19	 ?Analysis	 ?Procedure	 ?.............................................................................................................................	 ?19	 ?Heterotrophic	 ?Plate	 ?Count	 ?Method	 ?.......................................................................................................	 ?20	 ?Analysis	 ?Procedure	 ?.............................................................................................................................	 ?20	 ?Total	 ?Organic	 ?Carbon	 ?Method	 ?...............................................................................................................	 ?24	 ?Analysis	 ?Procedure	 ?.............................................................................................................................	 ?24	 ?Appendix	 ?E	 ?-??	 ?Sample	 ?Data	 ?Summary	 ?..........................................................................................................	 ?26	 ?Independent	 ?Variable:	 ?Machine	 ?Use	 ?.....................................................................................................	 ?26	 ?Dependent	 ?Variables:	 ?Parameters	 ?of	 ?Interest	 ?.......................................................................................	 ?27	 ?Appendix	 ?F	 ?-??	 ?Data	 ?Analysis	 ?.........................................................................................................................	 ?28	 ?General	 ?Calculations	 ?..............................................................................................................................	 ?28	 ?Results	 ?from	 ?Manipulated	 ?Data	 ?.............................................................................................................	 ?30	 ?Temperature	 ?Results	 ?..........................................................................................................................	 ?30	 ?Chlorine	 ?Results	 ?.................................................................................................................................	 ?31	 ?HPC	 ?Results	 ?........................................................................................................................................	 ?32	 ?TOC	 ?Results	 ?........................................................................................................................................	 ?36	 ?Appendix	 ?G:	 ?QA/QC	 ?...................................................................................................................................	 ?39	 ?Temperature	 ?..........................................................................................................................................	 ?39	 ?Sample	 ?Collection	 ?..............................................................................................................................	 ?39	 ?Chlorine	 ?..................................................................................................................................................	 ?39	 ?Sample	 ?Collection	 ?..............................................................................................................................	 ?39	 ?Spike	 ?Evaluation	 ?.................................................................................................................................	 ?39	 ?Heterotrophic	 ?Plate	 ?Count	 ?.....................................................................................................................	 ?41	 ?Sample	 ?Collection	 ?..............................................................................................................................	 ?41	 ?Total	 ?Organic	 ?Carbon	 ?.............................................................................................................................	 ?41	 ?Sample	 ?Collection	 ?..............................................................................................................................	 ?41	 ?TOC	 ?Quantification	 ?.............................................................................................................................	 ?42	 ?TOC	 ?Spike	 ?Evaluation	 ?.........................................................................................................................	 ?43	 ?Description	 ?.............................................................................................................................................	 ?43	 ?Protocol	 ?.................................................................................................................................................	 ?43	 ?Appendix	 ?H	 ??	 ?Brown-??Forsythe	 ?F-??test	 ?Results	 ?............................................................................................	 ?45	 ?Description	 ?.............................................................................................................................................	 ?45	 ?Sample	 ?Calculations	 ?...............................................................................................................................	 ?45	 ?IBM	 ?SPSS	 ?Analysis	 ?Protocol	 ?....................................................................................................................	 ?46	 ?ANOVA	 ?Analysis	 ?Results	 ?-??	 ?Brown-??Forsythe	 ?Output	 ?................................................................................	 ?48	 ?Word	 ?Count:	 ?4485	 ?(excluding	 ?figures	 ?(2	 ?=	 ?500	 ?words),	 ?title	 ?page,	 ?and	 ?table	 ?of	 ?contents)	 ?Abstract	 ?At	 ?UBC	 ?campus,	 ?there	 ?are	 ?two	 ?options	 ?for	 ?public	 ?access	 ?to	 ?drinking	 ?water:	 ?taps	 ?on	 ?the	 ?municipal	 ?water	 ?supply,	 ?and	 ?re-??treated	 ?municipal	 ?tap	 ?water	 ?from	 ?designated	 ?dispensing	 ?machines.	 ?The	 ?machines,	 ?called	 ?Waterfillz	 ?stations,	 ?were	 ?designed	 ?to	 ?further	 ?filter,	 ?disinfect	 ?and	 ?chill	 ?drinking	 ?water.	 ?A	 ?foreseeable	 ?advantage	 ?to	 ?Waterfillz	 ?over	 ?tap	 ?water	 ?could	 ?be	 ?the	 ?aesthetic	 ?quality	 ?of	 ?the	 ?product.	 ?To	 ?determine	 ?whether	 ?Waterfillz	 ?or	 ?tap	 ?water	 ?is	 ?aesthetically	 ?superior,	 ?four	 ?aesthetic	 ?parameters	 ?were	 ?measured:	 ?temperature,	 ?total	 ?chlorine,	 ?heterotrophic	 ?plate	 ?count,	 ?and	 ?total	 ?organic	 ?carbon.	 ?Temperature	 ?and	 ?chlorine	 ?are	 ?commonly	 ?cited	 ?aesthetic	 ?factors,	 ?while	 ?heterotrophic	 ?plate	 ?count	 ?and	 ?total	 ?organic	 ?carbon	 ?have	 ?potential	 ?aesthetic	 ?implications.	 ?It	 ?was	 ?found	 ?that	 ?the	 ?temperature	 ?and	 ?heterotrophic	 ?plate	 ?count	 ?of	 ?the	 ?water	 ?increase	 ?from	 ?tap	 ?to	 ?Waterfillz,	 ?while	 ?chlorine	 ?and	 ?total	 ?organic	 ?carbon	 ?content	 ?decrease.	 ?As	 ?individual	 ?aesthetic	 ?preferences	 ?differ,	 ?these	 ?observations	 ?may	 ?be	 ?used	 ?to	 ?inform	 ?consumer	 ?decisions.	 ?As	 ?a	 ?secondary	 ?objective,	 ?the	 ?quality	 ?parameters	 ?were	 ?considered	 ?with	 ?respect	 ?to	 ?the	 ?extent	 ?of	 ?use	 ?for	 ?each	 ?station.	 ?Significant	 ?effects	 ?with	 ?use	 ?were	 ?observed	 ?for	 ?heterotrophic	 ?plate	 ?count,	 ?and	 ?total	 ?organic	 ?carbon:	 ?both	 ?observed	 ?effects	 ?were	 ?less	 ?pronounced	 ?for	 ?machines	 ?in	 ?heavier	 ?use.	 ?Acknowledgements:	 ?We	 ?would	 ?like	 ?to	 ?acknowledge	 ?Neshat	 ?Basiri	 ?for	 ?her	 ?significant	 ?contributions	 ?to	 ?the	 ?sampling	 ?required	 ?for	 ?preparation	 ?of	 ?this	 ?report;	 ?Paula	 ?Parkinson	 ?and	 ?Tim	 ?Ma	 ?for	 ?their	 ?guidance	 ?in	 ?lab	 ?methods	 ?and	 ?procedures;	 ?and	 ?Pierre	 ?Berube	 ?for	 ?making	 ?time	 ?to	 ?discuss	 ?sample	 ?evaluation	 ?and	 ?statistics,	 ?helping	 ?to	 ?guide	 ?and	 ?advise	 ?on	 ?the	 ?more	 ?complicated	 ?aspects	 ?of	 ?our	 ?analysis.	 ?	 ? 1	 ?Introduction	 ?Background	 ?Waterfillz	 ?indoor	 ?refill	 ?stations	 ?At	 ?the	 ?University	 ?of	 ?British	 ?Columbia,	 ?two	 ?free	 ?options	 ?are	 ?available	 ?for	 ?drinking	 ?water.	 ?Most	 ?prevalent	 ?are	 ? taps	 ? from	 ? Metro	 ? Vancouver?s	 ? municipal	 ? water	 ? supply.	 ? Also	 ? available	 ? is	 ? re-??treated	 ? municipal	 ? tap	 ?water	 ?from	 ?four	 ?designated	 ?dispensing	 ?stations,	 ?called	 ?Waterfillz	 ?stations.	 ?Two	 ?stations	 ?were	 ?installed	 ?in	 ?the	 ?Student	 ?Union	 ?Building	 ?(SUB)	 ? in	 ?September	 ?2010	 ?(AMS	 ?Sustainability,	 ?2013).	 ?Since	 ?then,	 ?Waterfillz	 ?stations	 ?have	 ?been	 ?installed	 ?in	 ?the	 ?Swing	 ?Space	 ?and	 ?MacMillan	 ?Building,	 ?a	 ?fifth	 ?station	 ?was	 ?delivered	 ?to	 ?the	 ?Kaiser	 ?Building	 ?in	 ?February	 ?2013,	 ?but	 ?is	 ?not	 ?yet	 ?operational.	 ?Waterfillz	 ?stations	 ?deliver	 ?water	 ?at	 ?a	 ?rate	 ?of	 ?3L/minute	 ?with	 ?a	 ?maximum	 ?energy	 ?consumption	 ?of	 ?46W	 ?used	 ?in	 ?the	 ?treatment	 ?process.	 ?Municipal	 ?drinking	 ?water,	 ?the	 ?influent,	 ?is	 ?first	 ?filtered	 ?via	 ?sediment	 ?filtration	 ?and	 ?activated	 ?carbon	 ?block	 ?filtration.	 ?Next,	 ?water	 ?is	 ?disinfected	 ?via	 ?a	 ?UV	 ?light.	 ?Finally,	 ?water	 ?passes	 ?through	 ?a	 ?refrigeration	 ?system	 ?to	 ?chill	 ?(Waterfillz,	 ?2013a).	 ?A	 ?Waterfillz	 ?station	 ?costs	 ?$7500.00	 ?CAD,	 ?with	 ?an	 ?additional	 ?$3,167.24	 ?for	 ?technical	 ?and	 ?decal	 ?maintenance	 ?over	 ?5	 ?years	 ?(Tran	 ?et	 ?al.,	 ?2012).	 ?However,	 ?like	 ?tap	 ?water,	 ?there	 ?is	 ?no	 ?direct	 ?cost	 ?to	 ?the	 ?end	 ?user.	 ?Vancouver	 ?tap	 ?water	 ?As	 ?detailed	 ?in	 ?the	 ?report	 ?by	 ?Metro	 ?Vancouver	 ?(2011a),	 ?Vancouver?s	 ?water	 ?quality	 ?is	 ?monitored	 ?in	 ?accordance	 ?with	 ?the	 ?British	 ?Columbia	 ?Drinking	 ?Water	 ?Protection	 ?Act	 ?and	 ?consistently	 ?complies	 ?with	 ?guidelines	 ?and	 ?objectives.	 ?To	 ?monitor	 ?for	 ?potential	 ?recontamination	 ?in	 ?regional	 ?or	 ?local	 ?distribution	 ?systems,	 ?UBC	 ?Risk	 ?Management	 ?(2013)	 ?publishes	 ?biannual,	 ?end-??of-??pipe	 ?water	 ?quality	 ?assessments	 ?for	 ?several	 ?buildings	 ?on	 ?campus.	 ?They	 ?conclude	 ?that	 ?most	 ?measurements	 ?comply	 ?with	 ?objectives	 ?with	 ?the	 ?exception	 ?of	 ?a	 ?few	 ?aesthetic	 ?and	 ?operational	 ?guidance	 ?values,	 ?although	 ?flushing	 ?the	 ?source	 ?is	 ?often	 ?enough	 ?to	 ?mitigate	 ?these	 ?issues.	 ?	 ?Despite	 ?comprehensive	 ?monitoring	 ?programs	 ?asserting	 ?the	 ?exceptional	 ?safety	 ?of	 ?Vancouver?s	 ?water	 ?supply,	 ?consumers	 ?continue	 ?to	 ?seek	 ?alternatives.	 ?Studies	 ?have	 ?identified	 ?multiple	 ?reasons,	 ?including	 ?perceived	 ?risks,	 ?satisfaction	 ?influenced	 ?by	 ?marketing,	 ?and	 ?trust	 ?in	 ?the	 ?public	 ?utility	 ?(Doria,	 ?2010;	 ?Doria,	 ?et	 ?al.,	 ?2009;	 ?Roche	 ?et	 ?al.,	 ?2012).	 ?However,	 ?flavour	 ?continually	 ?asserts	 ?itself	 ?as	 ?one	 ?of	 ?the	 ?most	 ?relevant	 ?variables	 ?and	 ?strongest	 ?influences	 ?of	 ?consumption	 ?habits,	 ?as	 ?it	 ?is	 ?the	 ?indicator	 ?most	 ?directly	 ?experienced	 ?by	 ?consumers	 ?(Doria	 ?et	 ?al.,	 ?2009).	 ?In	 ?the	 ?case	 ?of	 ?tap	 ?water,	 ?flavour	 ?is	 ?informed	 ?by	 ?the	 ?sum	 ?of	 ?human	 ?sensations	 ?incorporating	 ?information	 ?from	 ?taste,	 ?odour,	 ?colour	 ?and	 ?turbidity	 ?(Doria,	 ?2010).	 ?There	 ?are	 ?two	 ?prevailing	 ?hypotheses	 ?to	 ?explain	 ?the	 ?importance	 ?of	 ?flavour:	 ?(1)	 ?discernible	 ?differences	 ?in	 ?flavour	 ?may	 ?be	 ?perceived	 ?as	 ?safety	 ?concerns,	 ?and	 ?(2)	 ?drinking	 ?water	 ?is	 ?increasingly	 ?regarded	 ?as	 ?something	 ?to	 ?enjoy	 ?as	 ?opposed	 ?to	 ?a	 ?necessity	 ?(Doria,	 ?2010;	 ?Srinivasan	 ?and	 ?Sorial,	 ?2011;	 ?Dupont	 ?and	 ?Jahan,	 ?2012).	 ?Abundant	 ?research	 ?on	 ?drinking	 ?water	 ?aesthetics	 ?uses	 ?human	 ?subjects	 ?to	 ?assess	 ?quality	 ?(Diedrich,	 ?2003);	 ?however,	 ?a	 ?number	 ?of	 ?physical	 ?and	 ?chemical	 ?parameters	 ?that	 ?influence	 ?aesthetic	 ?preference	 ?can	 ?be	 ?measured.	 ?If	 ?well	 ?characterized,	 ?these	 ?parameters	 ?could	 ?allow	 ?consumers	 ?to	 ?choose	 ?water	 ?based	 ?on	 ?their	 ?individual	 ?preferences,	 ?though	 ?there	 ?is	 ?apparently	 ?no	 ?precedent	 ?for	 ?this	 ?approach.	 ?	 ?	 ? 2	 ?Physical	 ?and	 ?chemical	 ?parameters	 ?that	 ?can	 ?impact	 ?water	 ?aesthetics	 ?are	 ?numerous.	 ?Nine	 ?were	 ?considered	 ?in	 ?a	 ?preliminary	 ?study	 ?(Appendix	 ?A):	 ?turbidity,	 ?colour,	 ?salinity,	 ?pH,	 ?temperature,	 ?chlorine,	 ?microbial	 ?contamination,	 ?and	 ?total	 ?organic	 ?carbon	 ?(TOC).	 ?Temperature,	 ?chlorine,	 ?TOC	 ?and	 ?microbial	 ?contamination	 ?were	 ?studied	 ?here.	 ?In	 ?general	 ?consumers	 ?prefer	 ?colder	 ?water,	 ?perceiving	 ?it	 ?as	 ?more	 ?refreshing	 ?(Brunstrom	 ?et	 ?al.,	 ?1997;	 ?Guest	 ?et	 ?al.,	 ?2006).	 ?Humans	 ?show	 ?dramatic	 ?responses	 ?to	 ?5?C	 ?temperature	 ?differences	 ?(Boulze	 ?et	 ?al.,	 ?1983),	 ?thus	 ?are	 ?relatively	 ?sensitive	 ?to	 ?this	 ?parameter.	 ?Undesirable	 ?chlorine	 ?flavour	 ?and	 ?odour	 ?are	 ?identified	 ?by	 ?one	 ?third	 ?of	 ?Canadians	 ?as	 ?a	 ?shortfall	 ?of	 ?tap	 ?water	 ?(Doria,	 ?2010).	 ?Humans	 ?can	 ?taste	 ?levels	 ?as	 ?low	 ?as	 ?0.2ppm	 ?of	 ?chlorine	 ?in	 ?tap	 ?water	 ?(Puget	 ?et	 ?al.,	 ?2010a),	 ?though	 ?sensitivity	 ?varies	 ?broadly	 ?(Mackey	 ?et	 ?al.,	 ?2004;	 ?Piriou	 ?et	 ?al.,	 ?2004). Although	 ?total	 ?organic	 ?carbon	 ?(TOC)	 ?does	 ?not	 ?directly	 ?relate	 ?to	 ?aesthetic	 ?quality	 ?of	 ?drinking	 ?water,	 ?organic	 ?taste	 ?and	 ?odour	 ?compounds	 ?contribute	 ?to	 ?TOC.	 ?For	 ?example,	 ?geosmin	 ?and	 ?2-??methylisoborneol	 ?-??	 ?produced	 ?by	 ?cyanobacteria	 ?and	 ?filamentous	 ?bacteria	 ?(Srinivasan	 ?and	 ?Sorial,	 ?2011)	 ?-??	 ?can	 ?cause	 ?major	 ?taste	 ?and	 ?odour	 ?problems.	 ?Hydrophobic	 ?interactions	 ?with	 ?activated	 ?carbon	 ?are	 ?widely	 ?used	 ?to	 ?remove	 ?these	 ?problem	 ?compounds	 ?(Srinivasan	 ?and	 ?Sorial,	 ?2011).	 ?The	 ?same	 ?phenomenon	 ?can	 ?result	 ?in	 ?general	 ?removal	 ?of	 ?natural	 ?organic	 ?matter	 ?(NOM)	 ?from	 ?drinking	 ?water,	 ?as	 ?NOM	 ?is	 ?a	 ?prevailing	 ?contributor	 ?to	 ?total	 ?organic	 ?carbon	 ?(TOC)	 ?in	 ?drinking	 ?water	 ?(Crittenden	 ?et	 ?al.,	 ?2005).	 ?Removal	 ?of	 ?NOM	 ?based	 ?on	 ?its	 ?hydrophobic	 ?behaviour	 ?seems	 ?a	 ?reasonable	 ?indicator	 ?for	 ?removal	 ?of	 ?specific	 ?organic	 ?taste	 ?and	 ?odour	 ?compounds.	 ?The	 ?presence	 ?of	 ?microbial	 ?contamination	 ?in	 ?drinking	 ?water	 ?can	 ?cause	 ?problems	 ?with	 ?aesthetics,	 ?including	 ?tastes	 ?and	 ?odours	 ?(Payment	 ?and	 ?Robertson,	 ?2004).	 ?Furthermore,	 ?whether	 ?contributing	 ?a	 ?safety	 ?risk	 ?or	 ?not,	 ?consumers	 ?express	 ?aversion	 ?to	 ?the	 ?prospect	 ?of	 ?bacteriological	 ?contamination	 ?(Curtis,	 ?2001);	 ?these	 ?views	 ?result	 ?from	 ?societal	 ?norms	 ?as	 ?well	 ?as	 ?incidents	 ?where	 ?pathogens	 ?caused	 ?harm	 ?(Dupont	 ?et	 ?al.,	 ?2010;	 ?Dupont	 ?and	 ?Jahan,	 ?2012;	 ?Roche	 ?et	 ?al.,	 ?2012).	 ?Taste	 ?and	 ?odour,	 ?as	 ?well	 ?as	 ?perceived	 ?safety	 ?and	 ?consumer	 ?aversion,	 ?make	 ?microbial	 ?contamination	 ?an	 ?aesthetic	 ?factor.	 ?Problem	 ?Statement	 ?UBC	 ?students	 ?are	 ?presented	 ?with	 ?two	 ?options	 ?for	 ?freely	 ?available	 ?water	 ?on	 ?campus;	 ?direct	 ?municipal	 ?water	 ?supply,	 ?and	 ?re-??treated	 ?water	 ?from	 ?Waterfillz	 ?stations.	 ?It	 ?is	 ?unclear	 ?which	 ?location	 ?is	 ?superior	 ?for	 ?filling	 ?water	 ?bottles.	 ?Existing	 ?data	 ?suggest	 ?that	 ?the	 ?two	 ?water	 ?sources	 ?have	 ?comparable	 ?safety.	 ?Both	 ?sources	 ?are	 ?convenient	 ?and	 ?accessible.	 ?	 ?Thus,	 ?the	 ?deciding	 ?issue	 ?will	 ?be	 ?water	 ?aesthetics.	 ?Objectives	 ?&	 ?Hypotheses	 ?The	 ?overall	 ?aim	 ?of	 ?this	 ?study	 ?is	 ?to	 ?identify	 ?the	 ?factors	 ?that	 ?make	 ?Waterfillz	 ?water	 ?aesthetically	 ?superior/inferior	 ?to	 ?tap	 ?water.	 ?This	 ?aim	 ?was	 ?split	 ?into	 ?two	 ?objectives.	 ?The	 ?first	 ?objective	 ?is	 ?to	 ?determine	 ?whether	 ?the	 ?Waterfillz	 ?treatment	 ?provides	 ?a	 ?significant	 ?advantage	 ?relative	 ?to	 ?tap	 ?water	 ?for	 ?four	 ?measured	 ?parameters:	 ?temperature,	 ?chlorine,	 ?heterotrophic	 ?plate	 ?count,	 ?and	 ?total	 ?organic	 ?carbon.	 ?Based	 ?on	 ?the	 ?aesthetic	 ?considerations	 ?mentioned	 ?previously,	 ?we	 ?identified	 ?that	 ?a	 ?5?C	 ?change	 ?in	 ?temperature,	 ?a	 ?0.5	 ?ppm	 ?change	 ?in	 ?residual	 ?chlorine	 ?and	 ?any	 ?significant	 ?change	 ?in	 ?HPC	 ?and	 ?TOC	 ?would	 ?represent	 ?thresholds	 ?for	 ?aesthetic	 ?quality	 ?that	 ?could	 ?be	 ?perceived	 ?by	 ?consumers.	 ?Where	 ?these	 ?	 ?	 ? 3	 ?thresholds	 ?are	 ?surpassed,	 ?reporting	 ?results	 ?could	 ?help	 ?to	 ?better	 ?inform	 ?a	 ?consumer?s	 ?choice	 ?of	 ?water.	 ?We	 ?hypothesize	 ?that	 ?the	 ?Waterfillz	 ?stations	 ?will	 ?significantly	 ?change	 ?each	 ?parameter	 ?in	 ?regard	 ?to	 ?these	 ?thresholds.	 ?The	 ?second	 ?objective	 ?is	 ?to	 ?determine	 ?whether	 ?the	 ?performance	 ?of	 ?Waterfillz	 ?stations	 ?degrades	 ?with	 ?increasing	 ?use.	 ?We	 ?hypothesize	 ?that	 ?escalating	 ?use	 ?would	 ?result	 ?in	 ?the	 ?degradation	 ?of	 ?quality,	 ?as	 ?indicated	 ?by	 ?the	 ?four	 ?measured	 ?parameters.	 ?This	 ?assumes	 ?that	 ?no	 ?significant	 ?internal	 ?maintenance	 ?has	 ?been	 ?done	 ?to	 ?restore	 ?performance.	 ?Methods	 ?The	 ?sample	 ?collection	 ?protocol	 ?and	 ?analytical	 ?methods	 ?for	 ?the	 ?four	 ?analyses	 ?conducted	 ?are	 ?outlined	 ?briefly	 ?in	 ?this	 ?section.	 ?Appendix	 ?D	 ?contains	 ?more	 ?detailed	 ?information	 ?and	 ?step-??by-??step	 ?protocols.	 ?Water	 ?collection	 ?methods	 ?&	 ?sampling	 ?plan	 ?Sampling	 ?of	 ?four	 ?Waterfillz	 ?stations	 ?at	 ?UBC	 ?(W1,	 ?W2,	 ?W3,	 ?and	 ?W4)	 ?was	 ?performed	 ?in	 ?conjunction	 ?with	 ?sampling	 ?of	 ?the	 ?nearest	 ?possible	 ?cold	 ?tap	 ?sources	 ?(T1,	 ?T2,	 ?T3,	 ?and	 ?T4,	 ?respectively).	 ?This	 ?resulted	 ?in	 ?four	 ?pairs	 ?of	 ?aliquots	 ?for	 ?each	 ?of	 ?two	 ?days	 ?sampled:	 ?2013/02/26	 ?(?a?	 ?samples	 ?-??	 ?e.g.	 ?W1a	 ?was	 ?collected	 ?from	 ?Waterfillz	 ?station	 ?1	 ?on	 ?2013/02/26)	 ?and	 ?2013/03/19	 ?(?b?	 ?samples).	 ?Field	 ?blanks	 ?(B)	 ?were	 ?prepared	 ?and	 ?transported	 ?to	 ?each	 ?location	 ?on	 ?each	 ?sampling	 ?day,	 ?for	 ?a	 ?total	 ?of	 ?8	 ?B	 ?samples.	 ?In	 ?addition,	 ?two	 ?trip	 ?blanks	 ?(B*)	 ?were	 ?carried	 ?out	 ?on	 ?2013/02/26.	 ?Sample	 ?identifiers	 ?and	 ?location	 ?details	 ?are	 ?given	 ?in	 ?full	 ?in	 ?Appendix	 ?D,	 ?Table	 ?5.	 ?Taps	 ?and	 ?Waterfillz	 ?stations	 ?were	 ?run	 ?for	 ?1	 ?minute	 ?prior	 ?to	 ?collection.	 ?Vials	 ?were	 ?filled	 ?for	 ?the	 ?four	 ?analyses.	 ?Specific	 ?information	 ?on	 ?the	 ?maintenance	 ?of	 ?the	 ?machines	 ?was	 ?unavailable	 ?(AMS	 ?Sustainability,	 ?2012),	 ?so	 ?the	 ?number	 ?of	 ?bottles	 ?filled	 ?since	 ?installation	 ?was	 ?used	 ?as	 ?the	 ?metric	 ?for	 ?total	 ?machine	 ?use.	 ?As	 ?detailed	 ?in	 ?Appendix	 ?E,	 ?the	 ?total	 ?number	 ?of	 ?bottles	 ?filled	 ?correlates	 ?with	 ?the	 ?level	 ?of	 ?use.	 ?Method	 ?for	 ?Temperature	 ?Temperature	 ?was	 ?measured	 ?for	 ?all	 ?Waterfillz	 ?and	 ?tap	 ?aliquots	 ?on-??site,	 ?immediately	 ?after	 ?collection.	 ?A	 ?50	 ?mL	 ?vial,	 ?containing	 ?an	 ?alcohol	 ?thermometer,	 ?was	 ?filled,	 ?let	 ?stand	 ?for	 ?1	 ?minute,	 ?held	 ?by	 ?the	 ?rim	 ?to	 ?minimize	 ?heat	 ?transfer.	 ?The	 ?vial	 ?was	 ?emptied,	 ?re-??filled	 ?immediately	 ?and	 ?let	 ?stand	 ?for	 ?30	 ?seconds.	 ?The	 ?temperature	 ?was	 ?recorded	 ?based	 ?on	 ?this	 ?second	 ?vial.	 ?Method	 ?for	 ?Chlorine	 ?Total	 ?chlorine	 ?was	 ?analyzed	 ?using	 ?a	 ?low-??range	 ?(0-??0.7	 ?mg/L)	 ?HACH	 ?N,N-??diethyl-??p-??phenylene	 ?diamine	 ?(DPD)	 ?Colourimetric	 ?Test	 ?Kit	 ?(HACH,	 ?2013a).	 ?Glassware	 ?was	 ?rinsed	 ?thoroughly	 ?with	 ?the	 ?source	 ?aliquot	 ?prior	 ?to	 ?collection.	 ?Measurements	 ?were	 ?performed	 ?immediately	 ?on-??site;	 ?following	 ?the	 ?initial	 ?flush,	 ?the	 ?test	 ?vial	 ?was	 ?filled	 ?directly	 ?from	 ?the	 ?source	 ?with	 ?a	 ?25mL	 ?aliquot.	 ?A	 ?total	 ?chlorine	 ?DPD	 ?reagent	 ?pillow	 ?(HACH)	 ?was	 ?added	 ?immediately,	 ?and	 ?vial	 ?was	 ?mixed	 ?vigorously.	 ?After	 ?3	 ?minutes?	 ?reaction,	 ?the	 ?treated	 ?aliquot	 ?and	 ?un-??treated	 ?water	 ?were	 ?compared	 ?using	 ?a	 ?colour	 ?wheel	 ?in	 ?a	 ?viewing	 ?apparatus.	 ?Repeat	 ?observations	 ?taken	 ?separately	 ?by	 ?three	 ?team	 ?members	 ?were	 ?averaged	 ?for	 ?each	 ?measurement.	 ?To	 ?ensure	 ?data	 ?quality,	 ?blanks	 ?were	 ?measured	 ?at	 ?each	 ?site	 ?using	 ?distilled,	 ?deionized	 ?(DD)	 ?(0.22?m	 ?Millipore	 ?water)	 ?water	 ?and	 ?the	 ?above	 ?procedure.	 ?In	 ?the	 ?lab,	 ?a	 ?modified	 ?spike	 ?protocol	 ?was	 ?carried	 ?out	 ?to	 ?ensure	 ?accuracy.	 ?Details	 ?are	 ?presented	 ?in	 ?Appendix	 ?G.	 ?	 ?	 ? 4	 ?Method	 ?for	 ?Heterotrophic	 ?Plate	 ?Count	 ?The	 ?following	 ?method	 ?was	 ?performed	 ?with	 ?attention	 ?to	 ?aseptic	 ?controls	 ?to	 ?reduce	 ?error.	 ?Plastic	 ?sample	 ?collection	 ?vials	 ?(10	 ?to	 ?250mL,	 ?depending	 ?on	 ?required	 ?sample)	 ?were	 ?spiked	 ?with	 ?0.1mL	 ?sodium	 ?thiosulfate	 ?solution	 ?(10%,	 ?Fisher	 ?Scientific)	 ?per	 ?120mL	 ?vial	 ?volume	 ?to	 ?quench	 ?chlorine.	 ?Caps	 ?were	 ?loosely	 ?applied	 ?to	 ?sample	 ?collection	 ?vials.	 ?Exactly	 ?16.82g	 ?of	 ?R2A	 ?agar	 ?powder	 ?(Becton,	 ?Dickson	 ?&	 ?Company,	 ?DIFCO?	 ?R2A	 ?Agar)	 ?per	 ?litre	 ?of	 ?DD	 ?water	 ?was	 ?dissolved	 ?with	 ?heat	 ?and	 ?stirring	 ?until	 ?boiling.	 ?Pipet	 ?tips	 ?were	 ?outfitted	 ?with	 ?cotton	 ?protective	 ?plugs	 ?to	 ?limit	 ?auto-??pipette	 ?contamination.	 ?Rinse	 ?water	 ?was	 ?prepared	 ?by	 ?adding	 ?1	 ?mL	 ?each	 ?of	 ?K2H2PO4	 ?(85g	 ?K2H2PO4/L)	 ?and	 ?MgCl	 ?(81	 ?g	 ?MgCl2-??6??H2O/L)	 ?per	 ?litre	 ?of	 ?distilled/deionized	 ?water.	 ?All	 ?of	 ?the	 ?above	 ?materials	 ?were	 ?autoclaved	 ?(Market	 ?Forge	 ?Sterilmatic)	 ?at	 ?120?C	 ?for	 ?20	 ?minutes.	 ?Once	 ?cool,	 ?vial	 ?caps	 ?were	 ?tightened	 ?for	 ?storage	 ?and	 ?transport.	 ?Plates	 ?were	 ?prepared	 ?in	 ?a	 ? location	 ?with	 ?minimal	 ?draft,	 ?and	 ?lab	 ?surfaces	 ?were	 ?disinfected	 ?with	 ?ethanol.	 ?Approximately	 ? 5	 ? mL	 ? of	 ? hot,	 ? liquid	 ? agar	 ? (above)	 ? was	 ? poured	 ? onto	 ? each	 ? sterile	 ? 50*9mm	 ? petri	 ? dish	 ?(Millipore?).	 ?Dishes	 ?were	 ?allowed	 ?to	 ?cool,	 ?sealed	 ?and	 ?stored	 ?at	 ?6?C.	 ?Sample	 ? aliquots	 ? were	 ? collected	 ? in	 ? autoclaved	 ? containers.	 ? For	 ? taps	 ? and	 ? W1,	 ? 250	 ? mL	 ? was	 ? collected	 ?following	 ?the	 ?initial	 ?flush.	 ?For	 ?W2,	 ?W3	 ?and	 ?W4	 ?20	 ?mL	 ?was	 ?collected.	 ?The	 ?volume	 ?chosen	 ?was	 ?determined	 ?based	 ? on	 ? preliminary	 ? data	 ? (Appendix	 ? A)	 ? to	 ? ensure	 ? samples	 ? having	 ? appropriate	 ? counts	 ? (20	 ? to	 ? 200	 ?colonies	 ?per	 ?plate).	 ?Once	 ?filled,	 ?vials	 ?were	 ?sealed	 ?promptly	 ?and	 ?transported	 ?to	 ?the	 ?lab	 ?in	 ?a	 ?cooler.	 ?Each	 ?sample	 ?plate	 ?was	 ?run	 ?in	 ?duplicate.	 ?Sterile	 ?gridded	 ?filters	 ?(0.45?m,	 ?47mm)	 ?were	 ?rinsed	 ?and	 ?samples	 ?were	 ?filtered	 ?via	 ?vacuum.	 ?Each	 ?filter	 ?was	 ?then	 ?placed	 ?grid-??up	 ?on	 ?the	 ?agar	 ?plates	 ?and	 ?sealed.	 ?The	 ?plates	 ?were	 ? inverted,	 ? sealed	 ? in	 ?a	 ?zip-??lock	 ?bag,	 ?and	 ? incubated	 ?at	 ?35?C	 ? for	 ?72h.	 ?Tongs,	 ? tweezers,	 ? filter	 ?holders	 ?and	 ?other	 ?tools	 ?were	 ?sterilized	 ?by	 ?rinsing	 ?with	 ?ethanol	 ?and	 ?flame	 ?sterilization	 ?between	 ?samples.	 ?	 ?After	 ?incubation,	 ?distinct	 ?colonies	 ?were	 ?counted	 ?on	 ?each	 ?filter,	 ?under	 ?light	 ?and	 ?magnification	 ?(American	 ?Capital?	 ?Colony	 ?Counter).	 ?To	 ?ensure	 ?data	 ?quality,	 ?two	 ?trip	 ?blanks	 ?(B*)	 ?as	 ?well	 ?as	 ?field	 ?blanks	 ?for	 ?every	 ?location	 ?(B)	 ?were	 ?collected	 ?and	 ?filtered.	 ?To	 ?ensure	 ?maximum	 ?sensitivity,	 ?30mL	 ?was	 ?filtered	 ?for	 ?all	 ?blanks.	 ?Total	 ?Organic	 ?Carbon	 ?Amber	 ?glass	 ?40	 ?mL	 ?TOC	 ?vials	 ?and	 ?Teflon-??coated	 ?cap	 ?inserts	 ?were	 ?washed	 ?with	 ?soapy	 ?water	 ?and	 ?rinsed	 ?thoroughly	 ?with	 ?distilled	 ?water.	 ?Vials	 ?were	 ?baked	 ?for	 ?2	 ?h	 ?at	 ?500	 ??C.	 ?Vials	 ?were	 ?capped	 ?for	 ?transport	 ?to	 ?sampling	 ?site.	 ?Waterfillz	 ?machines	 ?and	 ?taps	 ?were	 ?allowed	 ?to	 ?run	 ?for	 ?1	 ?minute	 ?prior	 ?to	 ?sampling	 ?directly	 ?into	 ?TOC	 ?vials.	 ?A	 ?UV-??persulfate	 ?TOC	 ?analyzer	 ?(Phoenix	 ?8000)	 ?was	 ?used	 ?to	 ?analyze	 ?all	 ?samples	 ?using	 ?the	 ?recommended	 ?protocol	 ?(APHA,	 ?2005).	 ?Samples	 ?of	 ?each	 ?type	 ?(blanks,	 ?samples,	 ?standards)	 ?were	 ?distributed	 ?through	 ?each	 ?run	 ?account	 ?for	 ?drift.	 ?Triplicate	 ?measurements	 ?were	 ?taken	 ?for	 ?each	 ?aliquot,	 ?and	 ?the	 ?average	 ?reported.	 ?To	 ?ensure	 ?data	 ?quality,	 ?two	 ?trip	 ?blanks	 ?were	 ?prepared	 ?(B*),	 ?along	 ?with	 ?eight	 ?field	 ?blanks	 ?(B)	 ?which	 ?were	 ?opened	 ?for	 ?15	 ?seconds	 ?on	 ?site,	 ?and	 ?7	 ?instrumental	 ?blanks	 ?per	 ?run.	 ?All	 ?blanks	 ?(instrumental,	 ?trip	 ?and	 ?field)	 ?and	 ?standards	 ?contained	 ?DD	 ?water.	 ?Calibration	 ?was	 ?performed	 ?using	 ?organic	 ?carbon	 ?standards	 ?at	 ?0.125,	 ?0.25,	 ?0.5,	 ?1	 ?and	 ?2ppm.	 ?The	 ?limit	 ?of	 ?quantification	 ?was	 ?determined	 ?using	 ?replicates	 ?of	 ?the	 ?0.5ppm	 ?calibration	 ?standard	 ?as	 ?well	 ?as	 ?replicate	 ?instrumental	 ?blanks.	 ?Spikes	 ?were	 ?performed	 ?to	 ?assess	 ?matrix	 ?effects	 ?using	 ?Suwanee	 ?River	 ?NOM	 ?at	 ?~0.7ppm.	 ?	 ?	 ? 5	 ?Results	 ?&	 ?Discussion	 ?Temperature	 ?	 ?Based	 ?on	 ?the	 ?results	 ?given	 ?in	 ?Appendix	 ?F,	 ?there	 ?was	 ?a	 ?5.78?C	 ?increase	 ?in	 ?temperature	 ?between	 ?each	 ?tap	 ?and	 ?its	 ?paired	 ?Waterfillz	 ?source.	 ?The	 ?95%	 ?C.I.	 ?for	 ?temperature	 ?is	 ?5.18	 ?to	 ?6.37?C,	 ?thus	 ?the	 ?data	 ?suggests	 ?that	 ?the	 ?Waterfillz	 ?product	 ?is	 ?consistently	 ?more	 ?than	 ?5?C	 ?warmer	 ?than	 ?tap	 ?water.	 ?In	 ?general	 ?consumers	 ?prefer	 ?colder	 ?water,	 ?perceiving	 ?it	 ?as	 ?more	 ?refreshing,	 ?particularly	 ?when	 ?their	 ?mouth	 ?is	 ?dry	 ?(Brunstrom	 ?et	 ?al.,	 ?1997;	 ?Guest	 ?et	 ?al.,	 ?2006).	 ?Furthermore,	 ?colder	 ?water	 ?has	 ?lower	 ?perceived	 ?odour	 ?intensity	 ?(Srinivasan	 ?and	 ?Sorial,	 ?2011),	 ?due	 ?to	 ?inhibited	 ?volatilization.	 ?Consumers	 ?prefer	 ?cold	 ?drinking	 ?water,	 ?and	 ?can	 ?easily	 ?detect	 ?a	 ?difference	 ?of	 ?5?C	 ?or	 ?more	 ?(Boulze	 ?et	 ?al.,	 ?1983).	 ?Thus,	 ?if	 ?given	 ?a	 ?choice	 ?between	 ?Waterfillz	 ?and	 ?tap	 ?water	 ?at	 ?a	 ?particular	 ?location	 ?on	 ?campus,	 ?tap	 ?water	 ?would	 ?provide	 ?a	 ?superior	 ?product	 ?in	 ?terms	 ?of	 ?temperature.	 ?We	 ?suspect	 ?that	 ?the	 ?temperature	 ?rise	 ?during	 ?Waterfillz	 ?treatment	 ?is	 ?a	 ?result	 ?of	 ?warmth	 ?introduced	 ?by	 ?system	 ?tubing	 ?and	 ?the	 ?filtration	 ?system.	 ?As	 ?this	 ?experiment	 ?was	 ?performed	 ?in	 ?the	 ?winter	 ?season,	 ?it	 ?is	 ?unknown	 ?how	 ?the	 ?temperature	 ?change	 ?would	 ?be	 ?affected	 ?in	 ?the	 ?summer.	 ?Vancouver?s	 ?tap	 ?water	 ?is	 ?warmer	 ?in	 ?the	 ?summer	 ?(Metro	 ?Vancouver,	 ?2011b),	 ?but	 ?the	 ?ambient	 ?temperature	 ?around	 ?the	 ?Waterfillz	 ?machine	 ?may	 ?also	 ?be	 ?warmer.	 ?The	 ?relative	 ?magnitude	 ?of	 ?these	 ?effects	 ?is	 ?unknown.	 ?Furthermore,	 ?a	 ?refrigeration	 ?unit	 ?is	 ?included	 ?in	 ?the	 ?Waterfillz	 ?machines,	 ?which	 ?may	 ?be	 ?more	 ?effective	 ?at	 ?cooling	 ?the	 ?warm	 ?summer	 ?water.	 ?There	 ?was	 ?no	 ?statistically	 ?significant	 ?correlation	 ?between	 ?temperature	 ?change	 ?and	 ?the	 ?number	 ?of	 ?bottles	 ?served	 ?by	 ?the	 ?Waterfillz	 ?machine	 ?so,	 ?with	 ?respect	 ?to	 ?the	 ?second	 ?objective,	 ?the	 ?machines	 ?provided	 ?consistent	 ?quality.	 ?The	 ?results	 ?of	 ?this	 ?are	 ?shown	 ?in	 ?Appendix	 ?F.	 ?	 ?Aside	 ?from	 ?ensuring	 ?precision	 ?(Appendix	 ?G),	 ?no	 ?additional	 ?QA/QC	 ?procedures	 ?were	 ?implemented	 ?for	 ?temperature	 ?measurements.	 ?Chlorine	 ?	 ?All	 ?of	 ?the	 ?Waterfillz	 ?samples	 ?showed	 ?non-??detect	 ?(LOD	 ?=	 ?0.02ppm,	 ?(HACH,	 ?2013))	 ?chlorine	 ?levels,	 ?compared	 ?to	 ?tap	 ?water	 ?chlorine	 ?concentrations,	 ?which	 ?ranged	 ?from	 ?0.50	 ?to	 ?0.60ppm.	 ?We	 ?found	 ?that	 ?there	 ?was	 ?a	 ?reduction	 ?of	 ?chlorine	 ?concentration	 ?by	 ?0.54ppm,	 ?with	 ?a	 ?95%	 ?confidence	 ?interval	 ?of	 ?0.51	 ?to	 ?0.58ppm.	 ?However,	 ?we	 ?postulate	 ?that,	 ?based	 ?on	 ?our	 ?proposed	 ?mechanism,	 ?somewhat	 ?higher	 ?chlorine	 ?concentrations	 ?would	 ?also	 ?be	 ?removed.	 ?The	 ?mechanism	 ?of	 ?chlorine	 ?removal	 ?is	 ?likely	 ?reaction	 ?with	 ?the	 ?carbon	 ?block	 ?filter	 ?or	 ?reaction	 ?with	 ?the	 ?organic	 ?material	 ?adsorbed	 ?to	 ?the	 ?carbon	 ?block	 ?filter	 ?(Huang	 ?and	 ?Yeh,	 ?1999).	 ?The	 ?high	 ?surface	 ?area	 ?of	 ?such	 ?a	 ?filter	 ?provides	 ?ample	 ?opportunity	 ?for	 ?such	 ?reactions.	 ?Consumers,	 ?in	 ?general,	 ?find	 ?the	 ?taste	 ?of	 ?residual	 ?chlorine	 ?unappealing	 ?(Doria,	 ?2010),	 ?so	 ?the	 ?removal	 ?of	 ?chlorine	 ?taste	 ?is	 ?a	 ?benefit	 ?of	 ?Waterfillz	 ?treatment.	 ?Human	 ?aesthetic	 ?perception	 ?can	 ?detect	 ?changes	 ?of	 ?as	 ?low	 ?as	 ?0.2ppm	 ?of	 ?residual	 ?chlorine	 ?in	 ?drinking	 ?water	 ?(Puget	 ?et	 ?al.,	 ?2010).	 ?Several	 ?forms	 ?of	 ?chlorine,	 ?including	 ?free	 ?and	 ?combined	 ?chlorine,	 ?contribute	 ?to	 ?this	 ?dissatisfaction	 ?(Water	 ?Quality	 ?Association,	 ?2005;	 ?Puget	 ?et	 ?al.,	 ?2010).	 ?	 ?	 ?	 ? 6	 ?Because	 ?Waterfillz	 ?was	 ?non-??detect	 ?for	 ?chlorine,	 ?any	 ?trend	 ?would	 ?be	 ?for	 ?the	 ?values	 ?obtained	 ?from	 ?tap	 ?water	 ?alone,	 ?which	 ?was	 ?not	 ?the	 ?intent	 ?of	 ?the	 ?study.	 ?Thus,	 ?with	 ?respect	 ?to	 ?the	 ?second	 ?objective,	 ?the	 ?machines	 ?provided	 ?consistent	 ?quality.	 ?All	 ?chlorine	 ?blanks	 ?showed	 ?non-??detect	 ?chlorine.	 ?The	 ?modified	 ?spike	 ?method	 ?showed	 ?no	 ?significant	 ?matrix	 ?effects.	 ?Data	 ?from	 ?these	 ?quality	 ?assurance	 ?measures	 ?are	 ?given	 ?in	 ?Appendix	 ?G.	 ?Heterotrophic	 ?plate	 ?count	 ?Taken	 ?altogether,	 ?Waterfillz	 ?treatment	 ?caused	 ?a	 ?statistically	 ?significant	 ?increase	 ?in	 ?heterotrophic	 ?plate	 ?count.	 ?The	 ?water	 ?leaving	 ?the	 ?machines	 ?is,	 ?on	 ?average,	 ?12000	 ?CFU/100	 ?mL	 ?higher	 ?in	 ?heterotrophic	 ?bacteria	 ?than	 ?any	 ?nearby	 ?tap.	 ?However,	 ?the	 ?95%	 ?confidence	 ?interval	 ?for	 ?this	 ?observation	 ?spans	 ?the	 ?broad	 ?range	 ?of	 ?2800	 ?to	 ?22000	 ?CFU/100	 ?mL.	 ?The	 ?population	 ?variance	 ?is	 ?quite	 ?high,	 ?the	 ?causes	 ?of	 ?which	 ?are	 ?considered	 ?in	 ?the	 ?second	 ?objective.	 ?A	 ?statistically	 ?significant	 ?increase	 ?in	 ?bacteria	 ?could	 ?cause	 ?consumer	 ?aversion	 ?to	 ?a	 ?water	 ?source	 ?(Curtis,	 ?2001).	 ?Further,	 ?bacterial	 ?growth	 ?can	 ?result	 ?in	 ?taste	 ?and	 ?odour	 ?problems	 ?(Payment	 ?and	 ?Robertson,	 ?2004).	 ?Therefore,	 ?we	 ?consider	 ?increased	 ?HPC	 ?to	 ?be	 ?a	 ?disadvantage	 ?of	 ?Waterfillz.	 ?With	 ?respect	 ?to	 ?the	 ?second	 ?objective,	 ?because	 ?the	 ?variance	 ?of	 ?biological	 ?counts	 ?are	 ?inherently	 ?non-??constant,	 ?a	 ?log10	 ?transform	 ?was	 ?employed	 ?to	 ?increase	 ?the	 ?homogeneity	 ?of	 ?variance	 ?(HOV)	 ?(Brown	 ?and	 ?Berthouex,	 ?2002).	 ?Plotting	 ?the	 ?transformed	 ?data	 ?versus	 ?total	 ?bottles	 ?filled	 ?indicated	 ?a	 ?downward	 ?trend.	 ?A	 ?regression	 ?analysis	 ?verified	 ?this	 ?trend	 ?with	 ?95%	 ?confidence.	 ?Homogeneity	 ?of	 ?variance	 ?was	 ?confirmed	 ?by	 ?a	 ?Brown	 ?Forsythe	 ?F-??test,	 ?as	 ?is	 ?further	 ?discussed	 ?in	 ?Appendix	 ?H.	 ?Recognizing	 ?these	 ?limitations,	 ?regression	 ?analysis	 ?is	 ?presented	 ?in	 ?Figure	 ?1.	 ?	 ?Figure	 ?1:	 ?Heterotrophic	 ?plate	 ?count	 ?results	 ?with	 ?respect	 ?to	 ?thousands	 ?of	 ?bottles	 ?filled.	 ?The	 ?increased	 ?growth	 ?within	 ?Waterfillz	 ?machines	 ?likely	 ?relates	 ?to	 ?a	 ?build-??up	 ?of	 ?organic	 ?material	 ?on	 ?the	 ?filters,	 ?providing	 ?substrate	 ?for	 ?microbial	 ?activity	 ?(Health	 ?Canada,	 ?2008).	 ?This	 ?growth	 ?is	 ?unchecked	 ?by	 ?y	 ?=	 ?-??7E-??06x	 ?+	 ?4.4452	 ?R?	 ?=	 ?0.93626	 ?0.00	 ?1.00	 ?2.00	 ?3.00	 ?4.00	 ?5.00	 ?0	 ? 100	 ? 200	 ? 300	 ? 400	 ?log	 ?(?HPC,	 ?CFU/100	 ?mL)	 ?Number	 ?of	 ?bo?les	 ?filled	 ?(thousands)	 ?	 ?	 ? 7	 ?residual	 ?disinfectant,	 ?as	 ?chlorine	 ?was	 ?removed.	 ?Although	 ?a	 ?UV	 ?lamp	 ?is	 ?included,	 ?our	 ?observations	 ?suggest	 ?the	 ?UV	 ?dose	 ?is	 ?insufficient.	 ?This	 ?is	 ?especially	 ?true	 ?for	 ?Waterfillz	 ?machines	 ?with	 ?relatively	 ?lower	 ?use.	 ?With	 ?lower	 ?usage,	 ?water	 ?spends	 ?more	 ?time	 ?stagnant	 ?in	 ?the	 ?system.	 ?Stagnation	 ?has	 ?shown	 ?correlation	 ?to	 ?higher	 ?growth	 ?(White	 ?et	 ?el.,	 ?2010;	 ?Walker	 ?and	 ?Marsh,	 ?2007),	 ?suggesting	 ?that	 ?washout	 ?plays	 ?an	 ?important	 ?role	 ?in	 ?controlling	 ?microorganisms.	 ?	 ?Guidelines	 ?for	 ?HPC	 ?have	 ?been	 ?established	 ?in	 ?the	 ?EU	 ?and	 ?the	 ?USA	 ?(<100	 ?and	 ?500	 ?CFU/mL,	 ?respectively);	 ?however,	 ?they	 ?refer	 ?specifically	 ?to	 ?bacteria	 ?grown	 ?on	 ?nutrient	 ?rich	 ?agar,	 ?incubated	 ?for	 ?2	 ?days	 ?at	 ?20?C	 ?and	 ?36?C	 ?(Walker	 ?and	 ?Marsh,	 ?2007).	 ?Because	 ?the	 ?enumeration	 ?methods	 ?used	 ?here	 ?differ	 ?from	 ?those	 ?used	 ?to	 ?establish	 ?guidelines,	 ?a	 ?direct	 ?comparison	 ?is	 ?impossible.	 ?However,	 ?for	 ?the	 ?reasons	 ?given	 ?previously,	 ?any	 ?microbial	 ?growth	 ?has	 ?the	 ?potential	 ?to	 ?be	 ?significant.	 ?Albeit	 ?outside	 ?our	 ?scope	 ?regarding	 ?aesthetics,	 ?a	 ?higher	 ?HPC	 ?can	 ?interfere	 ?with	 ?certain	 ?methods	 ?for	 ?the	 ?detection	 ?of	 ?pathogens	 ?and	 ?heterotrophic	 ?biofilms	 ?may	 ?even	 ?enable	 ?their	 ?survival	 ?(Payment	 ?and	 ?Robertson,	 ?2004).	 ?	 ?Total	 ?organic	 ?carbon	 ?When	 ?the	 ?Waterfillz	 ?machines	 ?are	 ?considered	 ?as	 ?a	 ?whole,	 ?a	 ?statistically	 ?significant	 ?decrease	 ?in	 ?the	 ?total	 ?organic	 ?carbon	 ?present	 ?is	 ?observed.	 ?The	 ?water	 ?leaving	 ?the	 ?machines	 ?has	 ?a	 ?mean	 ?of	 ?0.31ppm	 ?less	 ?TOC	 ?than	 ?for	 ?a	 ?nearby	 ?tap.	 ?However,	 ?the	 ?95%	 ?confidence	 ?interval	 ?for	 ?this	 ?observation	 ?spans	 ?the	 ?broad	 ?range	 ?of	 ?0.17	 ?to	 ?0.45ppm.	 ?Again,	 ?this	 ?suggests	 ?that	 ?the	 ?population	 ?variance	 ?is	 ?quite	 ?high,	 ?the	 ?causes	 ?of	 ?which	 ?are	 ?considered	 ?with	 ?respect	 ?to	 ?our	 ?second	 ?objective.	 ?With	 ?respect	 ?to	 ?our	 ?second	 ?objective,	 ?we	 ?plotted	 ?the	 ?change	 ?in	 ?TOC	 ?concentration	 ?with	 ?respect	 ?to	 ?the	 ?base-??10	 ?log	 ?of	 ?the	 ?number	 ?of	 ?bottles	 ?filled	 ?(Figure	 ?2).	 ?The	 ?slope	 ?was	 ?found	 ?to	 ?be	 ?statistically	 ?significant	 ?(0.15?0.05	 ?ppm	 ?per	 ?log10	 ?bottle	 ?filled)	 ?at	 ?a	 ?95%	 ?confidence	 ?interval.	 ?This	 ?positive	 ?slope	 ?indicates	 ?that	 ?as	 ?the	 ?number	 ?of	 ?bottles	 ?filled	 ?increases,	 ?the	 ?Waterfillz	 ?machine	 ?has	 ?decreasing	 ?ability	 ?to	 ?strip	 ?TOC	 ?from	 ?the	 ?water.	 ?This	 ?is	 ?likely	 ?due	 ?to	 ?gradual	 ?saturation	 ?of	 ?the	 ?activated	 ?carbon	 ?block	 ?filter	 ?adsorption	 ?sites.	 ?Although	 ?carbon	 ?block	 ?filter	 ?temporal	 ?performance	 ?is	 ?not	 ?well	 ?characterized,	 ?it	 ?was	 ?assumed	 ?that	 ?they	 ?would	 ?be	 ?similar	 ?to	 ?granular	 ?activated	 ?carbon	 ?(GAC).	 ?Based	 ?on	 ?GAC	 ?performance	 ?data	 ?(Brown	 ?and	 ?Berthouex,	 ?2002),	 ?the	 ?log-??x	 ?axis	 ?provides	 ?an	 ?appropriate	 ?linearization	 ?of	 ?the	 ?data.	 ?The	 ?derivation	 ?of	 ?this	 ?approach	 ?is	 ?given	 ?in	 ?Figure	 ?8.	 ?	 ?	 ?	 ? 8	 ?	 ?Figure	 ?2.	 ?Change	 ?in	 ?TOC	 ?between	 ?tap	 ?and	 ?Waterfillz	 ?unit,	 ?with	 ?respect	 ?to	 ?the	 ?log-??volume	 ?filled.	 ?If	 ?properly	 ?maintained,	 ?the	 ?carbon	 ?block	 ?filter	 ?should	 ?be	 ?replaced	 ?every	 ?6-??12	 ?months	 ?(Waterfillz,	 ?2013).	 ?However,	 ?from	 ?personal	 ?correspondence	 ?with	 ?AMS	 ?Sustainability,	 ?it	 ?was	 ?indicated	 ?that	 ?Waterfillz	 ?machines	 ?on	 ?UBC	 ?campus	 ?do	 ?not	 ?yet	 ?have	 ?a	 ?confirmed	 ?maintenance	 ?schedule,	 ?so	 ?this	 ?analysis	 ?assumes	 ?that	 ?they	 ?have	 ?not	 ?been	 ?changed	 ?since	 ?the	 ?beginning	 ?of	 ?bottle	 ?count.	 ?Because	 ?TOC	 ?was	 ?chosen	 ?as	 ?a	 ?surrogate	 ?for	 ?organic	 ?taste/odour,	 ?the	 ?actual	 ?impact	 ?on	 ?aesthetics	 ?of	 ?our	 ?results	 ?would	 ?depend	 ?on	 ?the	 ?particular	 ?analytes	 ?present.	 ?Hydrophobic	 ?interactions	 ?with	 ?activated	 ?carbon	 ?are	 ?widely	 ?used	 ?to	 ?remove	 ?these	 ?problem	 ?compounds	 ?(Srinivasan	 ?and	 ?Sorial,	 ?2011).	 ?The	 ?same	 ?phenomenon	 ?can	 ?result	 ?in	 ?general	 ?removal	 ?of	 ?natural	 ?organic	 ?matter	 ?(NOM)	 ?from	 ?drinking	 ?water.	 ?Because	 ?NOM	 ?is	 ?the	 ?prevailing	 ?contributor	 ?to	 ?total	 ?organic	 ?carbon	 ?(TOC)	 ?in	 ?drinking	 ?water	 ?(Crittenden	 ?et	 ?al.,	 ?2005),	 ?removal	 ?of	 ?NOM	 ?is	 ?a	 ?reasonable	 ?indicator	 ?for	 ?removal	 ?of	 ?specific	 ?organic	 ?taste	 ?and	 ?odour	 ?compounds.	 ?Despite	 ?these	 ?unknowns,	 ?the	 ?removal	 ?of	 ?TOC	 ?from	 ?tap	 ?water	 ?by	 ?Waterfillz	 ?machines	 ?is	 ?considered	 ?a	 ?benefit	 ?to	 ?treatment;	 ?although	 ?stations	 ?that	 ?have	 ?been	 ?heavily	 ?used	 ?show	 ?a	 ?lesser	 ?benefit.	 ?If	 ?organic	 ?taste	 ?and	 ?odour	 ?compounds	 ?arise	 ?as	 ?a	 ?problem	 ?in	 ?UBC	 ?tap	 ?water,	 ?Waterfillz	 ?units	 ?could	 ?provide	 ?a	 ?solution.	 ?Conclusions	 ?Four	 ?aesthetic	 ?parameters	 ?varied	 ?between	 ?tap	 ?and	 ?Waterfillz:	 ?temperature,	 ?total	 ?chlorine,	 ?heterotrophic	 ?plate	 ?count,	 ?and	 ?total	 ?organic	 ?carbon.	 ?It	 ?was	 ?found	 ?that	 ?the	 ?temperature	 ?increases	 ?by	 ?5.78?C	 ?(95%	 ?C.I.	 ??0.59?C),	 ?which	 ?is	 ?generally	 ?associated	 ?with	 ?aesthetic	 ?deterioration.	 ?Heterotrophic	 ?plate	 ?count	 ?also	 ?increased	 ?by	 ?12000	 ?CFU/100mL	 ?(95%	 ?C.I.	 ??9700	 ?CFU/100mL),	 ?so	 ?is	 ?also	 ?aesthetically	 ?worsened,	 ?on	 ?average.	 ?However,	 ?chlorine	 ?was	 ?removed	 ?from	 ?the	 ?tap	 ?water	 ?completely:	 ?0.50ppm	 ?(95%	 ?C.I.	 ??0.033ppm).	 ?Also,	 ?total	 ?organic	 ?carbon	 ?content	 ?decreased	 ?by	 ?0.31ppm	 ?(95%	 ?C.I.	 ??0.14ppm).	 ?As	 ?individual	 ?aesthetic	 ?preferences	 ?differ,	 ?these	 ?observations	 ?may	 ?be	 ?used	 ?to	 ?inform	 ?consumer	 ?decisions.	 ?As	 ?a	 ?secondary	 ?objective,	 ?the	 ?quality	 ?parameters	 ?were	 ?considered	 ?with	 ?respect	 ?to	 ?the	 ?extent	 ?of	 ?use	 ?for	 ?each	 ?station.	 ?Significant	 ?effects	 ?with	 ?use	 ?were	 ?observed	 ?for	 ?heterotrophic	 ?plate	 ?count,	 ?and	 ?total	 ?organic	 ?y	 ?=	 ?0.1478x	 ?-??	 ?0.9772	 ?R?	 ?=	 ?0.59473	 ?-??0.60	 ?-??0.50	 ?-??0.40	 ?-??0.30	 ?-??0.20	 ?-??0.10	 ?0.00	 ?3.00	 ? 3.50	 ? 4.00	 ? 4.50	 ? 5.00	 ? 5.50	 ? 6.00	 ?Change	 ?in	 ?TOC	 ?(ppm)	 ?Log(number	 ?of	 ?bo?es	 ?filled)	 ?	 ?	 ? 9	 ?carbon:	 ?both	 ?observed	 ?effects	 ?were	 ?less	 ?pronounced	 ?for	 ?machines	 ?in	 ?heavier	 ?use.	 ?In	 ?the	 ?case	 ?of	 ?HPC,	 ?this	 ?suggests	 ?that	 ?heavy	 ?use	 ?is	 ?required	 ?to	 ?minimize	 ?opportunity	 ?for	 ?growth.	 ?In	 ?the	 ?case	 ?of	 ?TOC	 ?removal,	 ?older	 ?filters	 ?would	 ?have	 ?more	 ?limited	 ?ability	 ?to	 ?remove	 ?potential	 ?taste	 ?and	 ?odour	 ?compounds.	 ?In	 ?light	 ?of	 ?these	 ?results,	 ?a	 ?higher	 ?UV	 ?dose	 ?for	 ?disinfection,	 ?or	 ?more	 ?regular	 ?maintenance,	 ?especially	 ?for	 ?lesser-??used	 ?machines,	 ?is	 ?recommended.	 ?	 ?	 ?	 ? 	 ?	 ?	 ? 10	 ?References	 ?AMS	 ?Sustainability,	 ?2013.	 ?Waterfillz	 ?[WWW	 ?Document].	 ?URL	 ?http://amssustainability.ca/2011/09/20/ocean-??power/	 ?APHA,	 ?2005.	 ?Standard	 ?Methods	 ?for	 ?the	 ?Examination	 ?of	 ?Water	 ?and	 ?Wastewater,	 ?21st	 ?ed.	 ?American	 ?Public	 ?Health	 ?Association.	 ?Boulze,	 ?D.,	 ?Montastruc,	 ?P.,	 ?Cabanac,	 ?M.,	 ?1983a.	 ?Water	 ?intake,	 ?pleasure	 ?and	 ?water	 ?temperature	 ?in	 ?humans.	 ?Physiology	 ?&	 ?behavior	 ?30	 ?(1),	 ?97?102.	 ?Brown,	 ?L.C..,	 ?Berthouex,	 ?P.	 ?Mac,	 ?2002.	 ?Chapter	 ?7:	 ?Using	 ?Transformations.	 ?In:	 ?Statistics	 ?for	 ?Environmental	 ?Engineers.	 ?CRC	 ?Press	 ?LLC.	 ?Brunstrom,	 ?J.M.,	 ?Macrae,	 ?A.W.,	 ?Roberts,	 ?B.,	 ?1997.	 ?Mouth-??state	 ?dependent	 ?changes	 ?in	 ?the	 ?judged	 ?pleasantness	 ?of	 ?water	 ?at	 ?different	 ?temperatures.	 ?Physiology	 ?&	 ?behavior	 ?61	 ?(5),	 ?667?9.	 ?Crittenden,	 ?J.C.,	 ?Trussel,	 ?R.R.,	 ?Hand,	 ?D.W.,	 ?Howe,	 ?K.J.,	 ?Tchobanoglous,	 ?G.,	 ?2005.	 ?Water	 ?Treatment:	 ?Principles	 ?and	 ?Design,	 ?2nd	 ?ed.	 ?Doria,	 ?M.	 ?de	 ?F.,	 ?2010.	 ?Factors	 ?influencing	 ?public	 ?perception	 ?of	 ?drinking	 ?water	 ?quality.	 ?Water	 ?Policy	 ?12	 ?(1),	 ?1.	 ?Doria,	 ?M.D.F.,	 ?Pidgeon,	 ?N.,	 ?Hunter,	 ?P.R.,	 ?2009.	 ?Perceptions	 ?of	 ?drinking	 ?water	 ?quality	 ?and	 ?risk	 ?and	 ?its	 ?effect	 ?on	 ?behaviour:	 ?a	 ?cross-??national	 ?study.	 ?The	 ?Science	 ?of	 ?the	 ?total	 ?environment	 ?407	 ?(21),	 ?5455?64.	 ?Dupont,	 ?D.,	 ?Adamowicz,	 ?W.L.V.,	 ?Krupnick,	 ?A.,	 ?2010.	 ?Differences	 ?in	 ?water	 ?consumption	 ?choices	 ?in	 ?Canada:	 ?the	 ?role	 ?of	 ?socio-??demographics,	 ?experiences,	 ?and	 ?perceptions	 ?of	 ?health	 ?risks.	 ?Journal	 ?of	 ?water	 ?and	 ?health	 ?8	 ?(4),	 ?671?86.	 ?Dupont,	 ?D.P.,	 ?Jahan,	 ?N.,	 ?2012.	 ?Defensive	 ?spending	 ?on	 ?tap	 ?water	 ?substitutes:	 ?the	 ?value	 ?of	 ?reducing	 ?perceived	 ?health	 ?risks.	 ?Journal	 ?of	 ?water	 ?and	 ?health	 ?10	 ?(1),	 ?56?68.	 ?Guest,	 ?S.,	 ?Essick,	 ?G.,	 ?Young,	 ?M.,	 ?Lee,	 ?A.,	 ?Phillips,	 ?N.,	 ?McGlone,	 ?F.,	 ?2006.	 ?Oral	 ?hydration,	 ?parotid	 ?salivation	 ?and	 ?the	 ?perceived	 ?pleasantness	 ?of	 ?small	 ?water	 ?volumes.	 ?Physiology	 ?&	 ?behavior	 ?89	 ?(5),	 ?724?34.	 ?HACH,	 ?2013.	 ?Chlorine	 ?(Free	 ?and	 ?Total)	 ?Test	 ?Kit,	 ?Model	 ?CN-??80	 ?[WWW	 ?Document].	 ?URL	 ?http://www.hach.com/chlorine-??free-??and-??total-??test-??kit-??model-??cn-??80/product-??downloads?id=7640219518&callback=qs	 ?Health	 ?Canada,	 ?2008.	 ?Environmental	 ?and	 ?Workplace	 ?Health	 ?Water	 ?Treatment	 ?Devices	 ?	 ?for	 ?the	 ?Removal	 ?of	 ?Taste	 ?,	 ?Odour	 ?and	 ?Chemicals	 ?[WWW	 ?Document].	 ?URL	 ?http://www.hc-??sc.gc.ca/ewh-??semt/pubs/water-??eau/devices-??dispositifs-??eng.php	 ?Huang,	 ?W.-??J.,	 ?Yeh,	 ?H.-??H.,	 ?1999.	 ?Reaction	 ?of	 ?chlorine	 ?with	 ?NOM	 ?adsorbed	 ?on	 ?powdered	 ?activated	 ?carbon.	 ?Water	 ?Research	 ?33	 ?(1),	 ?65?72.	 ?	 ?	 ? 11	 ?Lee,	 ?H.B.,	 ?Katz,	 ?G.S.,	 ?Restori,	 ?A.F.,	 ?2010.	 ?A	 ?Monte	 ?Carlo	 ?Study	 ?of	 ?Seven	 ?Homogeneity	 ?of	 ?Variance	 ?Tests.	 ?Journal	 ?of	 ?Mathematics	 ?and	 ?Statistics	 ?6	 ?(3),	 ?359?366.	 ?Lim,	 ?T.-??S.,	 ?Loh,	 ?W.-??Y.,	 ?1996.	 ?A	 ?comparison	 ?of	 ?tests	 ?of	 ?equality	 ?of	 ?variances.	 ?Computational	 ?Statistics	 ?&	 ?Data	 ?Analysis	 ?22	 ?(3),	 ?287?301.	 ?Mackey,	 ?E.D.,	 ?Baribeau,	 ?H.,	 ?Crozes,	 ?G.F.,	 ?Suffet,	 ?I.H.,	 ?Piriou,	 ?P.,	 ?2004.	 ?Public	 ?thresholds	 ?for	 ?chlorinous	 ?flavors	 ?in	 ?U.S.	 ?tap	 ?water.	 ?Water	 ?science	 ?and	 ?technology?:	 ?a	 ?journal	 ?of	 ?the	 ?International	 ?Association	 ?on	 ?Water	 ?Pollution	 ?Research	 ?49	 ?(9),	 ?335?40.	 ?Metro	 ?Vancouver,	 ?2011a.	 ?The	 ?Greater	 ?Vancouver	 ?Water	 ?District	 ?Quality	 ?Control	 ?Annual	 ?Report	 ?2011	 ?-??	 ?Volume	 ?1.	 ?Metro	 ?Vancouver,	 ?2011b.	 ?The	 ?Greater	 ?Vancouver	 ?Water	 ?District	 ?Quality	 ?Control	 ?Annual	 ?Report	 ?2011	 ?-??	 ?Volume	 ?2.	 ?Payment,	 ?P.,	 ?Robertson,	 ?W.,	 ?2004.	 ?The	 ?microbiology	 ?of	 ?piped	 ?distribution	 ?systems	 ?and	 ?public	 ?health.	 ?In:	 ?Ainsworth,	 ?R.	 ?(Ed.),	 ?Safe	 ?Piped	 ?Water.	 ?IWA	 ?Publishing.	 ?Piriou,	 ?P.,	 ?Mackey,	 ?E.D.,	 ?Suffet,	 ?I.H.,	 ?Bruchet,	 ?a,	 ?2004.	 ?Chlorinous	 ?flavor	 ?perception	 ?in	 ?drinking	 ?water.	 ?Water	 ?science	 ?and	 ?technology?:	 ?a	 ?journal	 ?of	 ?the	 ?International	 ?Association	 ?on	 ?Water	 ?Pollution	 ?Research	 ?49	 ?(9),	 ?321?8.	 ?Puget,	 ?S.,	 ?Beno,	 ?N.,	 ?Chabanet,	 ?C.,	 ?Guichard,	 ?E.,	 ?Thomas-??Danguin,	 ?T.,	 ?2010a.	 ?Tap	 ?water	 ?consumers	 ?differ	 ?from	 ?non-??consumers	 ?in	 ?chlorine	 ?flavor	 ?acceptability	 ?but	 ?not	 ?sensitivity.	 ?Water	 ?research	 ?44	 ?(3),	 ?956?64.	 ?Roche,	 ?S.M.,	 ?Jones,	 ?a	 ?Q.,	 ?Majowicz,	 ?S.E.,	 ?McEwen,	 ?S.	 ?a,	 ?Pintar,	 ?K.D.M.,	 ?2012.	 ?Drinking	 ?water	 ?consumption	 ?patterns	 ?in	 ?Canadian	 ?communities	 ?(2001-??2007).	 ?Journal	 ?of	 ?water	 ?and	 ?health	 ?10	 ?(1),	 ?69?86.	 ?Srinivasan,	 ?R.,	 ?Sorial,	 ?G.	 ?a.,	 ?2011.	 ?Treatment	 ?of	 ?taste	 ?and	 ?odor	 ?causing	 ?compounds	 ?2-??methyl	 ?isoborneol	 ?and	 ?geosmin	 ?in	 ?drinking	 ?water:	 ?A	 ?critical	 ?review.	 ?Journal	 ?of	 ?Environmental	 ?Sciences	 ?23	 ?(1),	 ?1?13.	 ?Tran,	 ?A.,	 ?Li,	 ?B.,	 ?McNicholl,	 ?D.,	 ?Noble,	 ?J.,	 ?Van	 ?Dijk,	 ?K.,	 ?Lee,	 ?N.,	 ?2012.	 ?Assessment	 ?of	 ?Drinking	 ?Water	 ?at	 ?UBC?:	 ?A	 ?consideration	 ?of	 ?water	 ?quality	 ?,	 ?energy	 ?and	 ?economic	 ?costs	 ?,	 ?with	 ?practical	 ?recommendations.	 ?UBC	 ?Risk	 ?Management	 ?Services,	 ?2013.	 ?Water	 ?Quality	 ?Concerns	 ?[WWW	 ?Document].	 ?Uhl,	 ?W.,	 ?Schaule,	 ?G.,	 ?2004.	 ?Establishment	 ?of	 ?HPC(R2A)	 ?for	 ?regrowth	 ?control	 ?in	 ?non-??chlorinated	 ?distribution	 ?systems.	 ?International	 ?journal	 ?of	 ?food	 ?microbiology	 ?92	 ?(3),	 ?317?25.	 ?Walker,	 ?J.T.,	 ?Marsh,	 ?P.D.,	 ?2007.	 ?Microbial	 ?biofilm	 ?formation	 ?in	 ?DUWS	 ?and	 ?their	 ?control	 ?using	 ?disinfectants.	 ?Journal	 ?of	 ?dentistry	 ?35	 ?(9),	 ?721?30.	 ?Water	 ?Quality	 ?Association,	 ?2005.	 ?Chloramines.	 ?	 ?	 ? 12	 ?Waterfillz,	 ?2013.	 ?Stationary	 ?Indoor	 ?Refill	 ?Station	 ?[WWW	 ?Document].	 ?SafeStar	 ?Products	 ?Company	 ?Ltd.	 ?URL	 ?http://waterfillz.com/site/indoor-??refill-??station/	 ?White,	 ?A.S.,	 ?Godard,	 ?R.D.,	 ?Belling,	 ?C.,	 ?Kasza,	 ?V.,	 ?Beach,	 ?R.L.,	 ?2010.	 ?Beverages	 ?obtained	 ?from	 ?soda	 ?fountain	 ?machines	 ?in	 ?the	 ?U.S.	 ?contain	 ?microorganisms,	 ?including	 ?coliform	 ?bacteria.	 ?International	 ?journal	 ?of	 ?food	 ?microbiology	 ?137	 ?(1),	 ?61?6.	 ?

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.42591.1-0075774/manifest

Comment

Related Items