Open Collections

UBC Graduate Research

Solar Photovoltaics in British Columbia: A Scoping Review of Residential, Grid-Connected Systems 2010

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
SCARP_2010_gradproject_Tynan.pdf
SCARP_2010_gradproject_Tynan.pdf [ 2.74MB ]
Metadata
JSON: 1.0107195.json
JSON-LD: 1.0107195+ld.json
RDF/XML (Pretty): 1.0107195.xml
RDF/JSON: 1.0107195+rdf.json
Turtle: 1.0107195+rdf-turtle.txt
N-Triples: 1.0107195+rdf-ntriples.txt
Citation
1.0107195.ris

Full Text

	
  	
  	
  	
  	
  	
  	
   	
  by	
  	
  SEAN	
  TYNAN	
  	
  A	
  PROJECT	
  SUBMITTED	
  IN	
  PARTIAL	
  FULFILLMENT	
  OF	
  THE	
  REQUIREMENTS	
  FOR	
  THE	
  DEGREE	
  OF	
  	
  	
  MASTER	
  OF	
  ARTS	
  (PLANNING)	
  	
  in	
  	
  	
  THE	
  FACULTY	
  OF	
  GRADUATE	
  STUDIES	
  	
  School	
  of	
  Community	
  and	
  Regional	
  Planning	
  	
  We	
  accept	
  this	
  project	
  as	
  conforming	
  to	
  the	
  required	
  standard	
  	
  ……………………………………………………………..	
  	
  ……………………………………………………………..	
  	
  ……………………………………………………………..	
  	
  THE	
  UNIVERSITY	
  OF	
  BRITISH	
  COLUMBIA	
  Vancouver	
  April,	
  2010	
   ©	
  Sean	
  Tynan,	
  2010	
   Solar	
  Photovoltaics	
  in	
  British	
  Columbia	
   A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
    	
   Abstract	
  	
  This	
  document	
  provides	
  information	
  regarding	
  recent	
  developments	
  in	
  small-­‐scale	
  residential,	
  grid-­‐connected	
  photovoltaic	
  systems.	
  The	
  purpose	
  of	
  the	
  document	
  is	
  three-­‐fold:	
  to	
  explore	
  the	
  current	
  status	
  and	
  potential	
  of	
  these	
  systems	
  within	
  the	
  Province	
  of	
  British	
  Columbia,	
  to	
  identify	
  the	
  major	
  barriers	
  to	
  PV	
  systems,	
  and	
  to	
  examine	
  the	
  key	
  policy	
  interventions	
  that	
  would	
  be	
  required	
  to	
  bring	
  about	
  widespread	
  uptake	
  of	
  these	
  systems.	
  	
  	
  	
  Research	
  was	
  conducted	
  primarily	
  through	
  a	
  review	
  of	
  the	
  literature.	
  This	
  information	
  was	
  supplemented	
  through	
  a	
  market	
  survey	
  and	
  interviews	
  with	
  key	
  informants	
  from	
  both	
  the	
  public	
  and	
  private	
  sector.	
  	
  	
  The	
  document	
  contains	
  two	
  substantive	
  findings.	
  Firstly,	
  there	
  are	
  environmental	
  benefits	
  (greenhouse	
  gas	
  reductions)	
  that	
  will	
  result	
  from	
  the	
  uptake	
  of	
  residential	
  PV	
  systems	
  within	
  the	
  Province.	
  Secondly,	
  cost	
  is	
  by	
  far	
  the	
  largest	
  barrier	
  to	
  PV	
  system	
  uptake.	
  A	
  major	
  policy	
  intervention	
  to	
  rebalance	
  the	
  economics	
  of	
  PV	
  systems	
  in	
  BC	
  would	
  be	
  required	
  to	
  support	
  their	
  widespread	
  adoption	
  within	
  the	
  next	
  decade.	
  	
  	
  	
  Economic	
  interventions	
  to	
  directly	
  subsidize	
  solar	
  PV	
  would	
  likely	
  be	
  expensive	
  relative	
  to	
  other	
  forms	
  of	
  renewable	
  energy	
  in	
  BC,	
  and	
  are	
  therefore	
  unlikely	
  to	
  be	
  justifiable	
  at	
  present.	
  If	
  the	
  price	
  of	
  PV	
  systems	
  reduces	
  sufficiently	
  over	
  time,	
  such	
  measures	
  could	
  be	
  considered.	
  Over	
  the	
  shorter	
  term,	
  then,	
  policies	
  which	
  support	
  PV	
  as	
  well	
  as	
  other	
  forms	
  of	
  renewable	
  energy	
  are	
  recommended.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   ii	
   Table	
  of	
  Contents	
   Abstract ........................................................................................................................i	
   Executive	
  Summary .................................................................................................... iii	
   Definitions ................................................................................................................ viii	
   1.	
  Introduction.............................................................................................................1	
   2.	
  Background..............................................................................................................4	
  Technology	
  and	
  Characteristics	
  of	
  Solar	
  PV...................................................................................................4	
  Policy	
  Context	
  in	
  British	
  Columbia.....................................................................................................................9	
   Goals	
  and	
  Objectives .................................................................................................................................................9	
   Current	
  Support	
  for	
  Solar	
  Energy	
  in	
  BC ........................................................................................................11	
   3.	
  Solar	
  Resources	
  in	
  British	
  Columbia........................................................................13	
  Available	
  Solar	
  Energy:	
  Regional	
  Scale ......................................................................................................... 13	
  Winter	
  and	
  Solar	
  Availability ............................................................................................................................ 15	
  Shading	
  and	
  Solar	
  Access .................................................................................................................................... 15	
  Estimating	
  Residential	
  PV	
  Potential	
  in	
  British	
  Columbia...................................................................... 16	
   4.	
  Environmental	
  Impacts	
  of	
  Residential	
  Solar	
  Photovoltaics	
  in	
  British	
  Columbia .......17	
  Greenhouse	
  Gas	
  Emissions	
  Profile	
  for	
  Residential	
  Solar	
  PV................................................................ 17	
  Emissions	
  from	
  status	
  quo	
  grid	
  electricity:	
  BC’s	
  “Clean”	
  Hydropower........................................... 20	
  Other	
  Environment	
  Considerations:	
  Toxins	
  and	
  Recycling ................................................................. 23	
   5.	
  The	
  Economics	
  of	
  Residential	
  Solar	
  PV	
  Systems	
  in	
  British	
  Columbia .......................28	
  Trends	
  in	
  PV	
  Module	
  Pricing	
  in	
  Canada........................................................................................................ 28	
  Current	
  Market	
  Pricing	
  for	
  Solar	
  PV	
  Systems	
  in	
  BC................................................................................. 29	
  PV	
  Cost	
  Forecast...................................................................................................................................................... 37	
  Changing	
  the	
  Economics	
  of	
  Solar:	
  Rate	
  Structures,	
  Feed-­‐in	
  Tarrifs,	
  and	
  Financing.................. 38	
   Peak	
  Demand,	
  Deferred	
  Infrastructure	
  Costs,	
  and	
  Time	
  of	
  Use	
  Rate	
  Structures ........................38	
   Feed-­in	
  Tariffs...........................................................................................................................................................41	
   6.	
  Local	
  Government:	
  Planning	
  and	
  Regulatory	
  Powers	
  for	
  Promoting	
  Solar	
  PV .........44	
  Zoning	
  to	
  Promote	
  Solar	
  Access	
  and	
  Solar	
  PV	
  Systems ......................................................................... 45	
  Development	
  Permit	
  Areas	
  (DPAs)	
  and	
  Solar	
  Access............................................................................. 45	
  Educational	
  Tools ................................................................................................................................................... 47	
  Other	
  Tools ................................................................................................................................................................ 47	
  Green	
  Building	
  Standards	
  and	
  Solar	
  PV:	
  LEED,	
  Built	
  Green,	
  and	
  R-­‐2000 ...................................... 48	
   7.	
  Conclusions	
  and	
  Recommendations .......................................................................50	
   Appendix	
  A:	
  The	
  Grid	
  Interconnection	
  Process	
  and	
  Solar	
  PV	
  in	
  British	
  Columbia ........53	
   Electrical	
  Permits	
  &	
  Fees .....................................................................................................................................53	
   Steps	
  for	
  Homeowners	
  to	
  Install	
  and	
  Operate	
  a	
  Grid-­Connected	
  PV	
  System ................................54	
   System	
  Maintenance	
  and	
  Warranties ............................................................................................................55	
   Appendix	
  B:	
  Market	
  Survey	
  of	
  PV	
  Systems	
  in	
  BC ........................................................57	
   Bibliography ..............................................................................................................62	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   iii	
   Executive	
  Summary	
  	
  Solar	
  photovoltaics	
  (PV)	
  can	
  produce	
  clean	
  electrical	
  energy	
  directly	
  from	
  sunlight.	
  This	
  rapidly	
  evolving	
  technology	
  is	
  receiving	
  increasing	
  support	
  from	
  governments	
  in	
  other	
  jurisdictions,	
  most	
  recently	
  in	
  Ontario.	
  A	
  growing	
  segment	
  of	
  the	
  PV	
  market	
  consists	
  of	
  small-­‐scale,	
  residential	
  PV	
  systems	
  that	
  can	
  input	
  power	
  into	
  the	
  existing	
  electrical	
  grid.	
  	
  	
  This	
  document	
  was	
  prepared	
  for	
  the	
  Knowledge	
  and	
  Information	
  Services	
  Branch	
  of	
  the	
  Province	
  of	
  British	
  Columbia.	
  The	
  document	
  evaluates	
  the	
  potential	
  of	
  grid-­‐connected	
  residential	
  PV	
  installations	
  to	
  meet	
  key	
  Provincial	
  objectives	
  for	
  energy	
  independence	
  and	
  greenhouse	
  gas	
  reduction,	
  and	
  explores	
  some	
  of	
  the	
  policy	
  interventions	
  that	
  would	
  likely	
  be	
  required	
  to	
  stimulate	
  PV	
  uptake.	
  The	
  document	
  updates	
  the	
  reader	
  on	
  developments	
  in	
  residential	
  PV	
  technology,	
  assesses	
  the	
  environmental	
  impact	
  of	
  PV	
  systems,	
  and	
  explores	
  economic	
  barriers	
  to	
  PV	
  uptake.	
  A	
  brief	
  exploration	
  of	
  the	
  relationship	
  between	
  local	
  government	
  regulatory	
  powers,	
  solar	
  access,	
  and	
  solar	
  PV	
  systems	
  is	
  also	
  included.	
  	
  	
   Solar	
  PV	
  Technology	
  Description	
  	
  Solar	
  PV	
  technologies	
  for	
  residential	
  applications	
  typically	
  fall	
  into	
  one	
  of	
  two	
  categories:	
  conventional	
  silicon	
  panels,	
  or	
  ‘thin-­‐film’	
  technologies.	
  Thin-­‐film	
  technologies	
  use	
  far	
  less	
  material	
  and	
  energy	
  in	
  their	
  manufacture,	
  thereby	
  reducing	
  greenhouse	
  gas	
  emissions	
  associated	
  with	
  panel	
  production.	
  Although	
  thin-­‐film	
  represents	
  an	
  increasing	
  market	
  share	
  for	
  residential	
  PV	
  systems,	
  conventional	
  silicon	
  panels	
  still	
  dominate	
  the	
  market	
  at	
  present.	
  	
  	
  Both	
  conventional	
  silicon	
  and	
  thin-­‐film	
  photovoltaic	
  panels	
  may	
  be	
  integrated	
  directly	
  into	
  building	
  materials,	
  such	
  as	
  facades,	
  rooftops,	
  or	
  windows.	
  These	
  types	
  of	
  PV	
  systems	
  are	
  called	
  Building	
  Integrated	
  Photovoltaics	
  (BIPV).	
  By	
  replacing	
  conventional	
  building	
  materials,	
  BIPV	
  can	
  offset	
  costs	
  while	
  generating	
  electricity.	
  	
  	
  	
  Other	
  emerging	
  technologies	
  include	
  organic	
  solar	
  cells	
  and	
  polymer-­‐based	
  solar	
  cells,	
  which	
  can	
  even	
  be	
  applied	
  as	
  a	
  “solar	
  paint”.	
  If	
  they	
  perform	
  as	
  promised	
  they	
  may	
  have	
  the	
  potential	
  to	
  significantly	
  reduce	
  costs	
  over	
  time,	
  but	
  these	
  technologies	
  are	
  still	
  in	
  the	
  development	
  stage	
  and	
  are	
  likely	
  years	
  from	
  commercialization.	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   iv	
   Relevant	
  Provincial	
  Objectives	
  	
  The	
  Province	
  of	
  British	
  Columbia	
  has	
  committed	
  to	
  reduce	
  greenhouse	
  gas	
  emissions	
  33%	
  by	
  2020	
  and	
  to	
  become	
  self-­‐sufficient	
  in	
  energy	
  production	
  by	
  2016.	
  The	
  two	
  objectives	
  are	
  complementary	
  as	
  BC	
  currently	
  imports	
  a	
  significant	
  portion	
  of	
  its	
  power	
  from	
  other	
  jurisdictions	
  that	
  use	
  non-­‐renewable	
  resources.	
  Substantial	
  growth	
  in	
  the	
  demand	
  for	
  electricity	
  is	
  also	
  expected	
  over	
  the	
  next	
  20	
  years,	
  therefore	
  new	
  supplies	
  of	
  clean	
  energy	
  will	
  be	
  required	
  to	
  meet	
  these	
  objectives.	
  	
  	
  	
  	
  	
   Current	
  Policies	
  to	
  Support	
  PV	
  in	
  BC	
  	
  A	
  small	
  subsidy	
  is	
  provided	
  through	
  Livesmart	
  BC,	
  and	
  solar	
  PV	
  systems	
  are	
  exempt	
  from	
  Provincial	
  Sales	
  Tax.	
  However,	
  the	
  subsidy	
  equates	
  to	
  only	
  3%	
  of	
  system	
  costs,	
  and	
  the	
  PST	
  tax	
  exemption	
  will	
  cease	
  in	
  July	
  2010	
  when	
  the	
  Harmonized	
  Sales	
  Tax	
  comes	
  into	
  effect.	
  	
  	
  Provincial	
  support	
  for	
  the	
  100,000	
  Solar	
  Roofs	
  program	
  likely	
  helps	
  to	
  raise	
  awareness	
  about	
  PV,	
  though	
  the	
  program	
  is	
  focused	
  on	
  solar	
  hot	
  water	
  at	
  present.	
  Overall	
  little	
  has	
  been	
  done	
  to	
  directly	
  support	
  the	
  uptake	
  of	
  residential	
  solar	
  PV	
  within	
  the	
  Province.	
  	
  	
  	
   Energy	
  Potential	
  of	
  PV	
  and	
  Suitability	
  to	
  BC’s	
  Climate	
  	
  There	
  is	
  substantial	
  variation	
  in	
  solar	
  PV	
  potential	
  in	
  British	
  Columbia.	
  In	
  general	
  the	
  south	
  of	
  BC,	
  and	
  especially	
  the	
  southeast,	
  have	
  significantly	
  more	
  solar	
  PV	
  potential	
  than	
  the	
  center,	
  north,	
  and	
  west	
  of	
  the	
  Province.	
  The	
  gap	
  between	
  areas	
  with	
  higher	
  and	
  lower	
  PV	
  potential	
  is	
  approximately	
  40%.	
  This	
  gap	
  can	
  substantially	
  affect	
  the	
  business	
  case	
  for	
  solar	
  PV	
  in	
  some	
  areas,	
  and	
  implies	
  a	
  need	
  for	
  regionally	
  sensitive	
  policies.	
  	
  	
  A	
  high-­‐level	
  estimate	
  suggests	
  residential	
  PV	
  potential	
  in	
  BC	
  may	
  range	
  between	
  283,000	
  and	
  850,000	
  megawatt-­‐hours	
  annually.	
  Residential	
  PV	
  systems	
  can	
  therefore	
  help	
  to	
  meet	
  a	
  portion	
  of	
  annual	
  electricity	
  demand	
  and	
  to	
  reduce	
  imported	
  electricity.	
  	
  	
   Environmental	
  Analysis	
  	
   	
  A	
  review	
  of	
  the	
  literature	
  demonstrates	
  that	
  solar	
  PV	
  uptake	
  can	
  deliver	
  environmental	
  benefits.	
  Over	
  the	
  lifecycle	
  of	
  a	
  residential	
  grid-­‐connected	
  PV	
  system	
  using	
  conventional	
  silicon	
  modules,	
  40-­‐50	
  grams	
  of	
  Co2	
  equivalent	
  (Co2e)	
  will	
  be	
  emitted	
  for	
  each	
  kilowatt-­‐hour	
  (kWh)	
  of	
  electricity	
  produced.	
  Thin-­‐film	
  modules	
  are	
  associated	
  with	
  only	
  25	
  grams	
  Co2e/kWh.	
  Life-­‐cycle	
  emissions	
  are	
  likely	
  to	
  decline	
  further	
  over	
  time	
  as	
  technological	
  progress	
  decreases	
  manufacturing	
  energy	
  and	
  increases	
  the	
  life	
  of	
  PV	
  panels.	
  In	
  addition,	
  there	
  are	
  few	
  other	
  pollutants	
  or	
  health-­‐risks	
  associated	
  with	
  PV	
  production	
  or	
  end-­‐of-­‐life	
  management.	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   v	
  By	
  reducing	
  the	
  need	
  to	
  import	
  electricity,	
  each	
  kWh	
  of	
  electricity	
  produced	
  by	
  residential	
  PV	
  systems	
  will	
  likely	
  avoid	
  between	
  27and	
  47	
  grams	
  of	
  Co2e.	
  On	
  an	
  annual	
  basis	
  a	
  small	
  (3	
  kilowatt)	
  residential	
  system	
  would	
  likely	
  reduce	
  emissions	
  by	
  81	
  to	
  141	
  kilograms	
  of	
  greenhouse	
  gases.	
  Even	
  when	
  compared	
  to	
  an	
  expansion	
  of	
  large-­‐scale	
  hydroelectric	
  capacity	
  to	
  meet	
  demand,	
  residential	
  PV	
  systems	
  compare	
  favorably.1	
  In	
  addition,	
  solar	
  PV	
  systems	
  do	
  not	
  require	
  additional	
  transmission	
  lines,	
  dams,	
  or	
  other	
  changes	
  to	
  the	
  landscape	
  in	
  BC	
  and	
  therefore	
  help	
  to	
  protect	
  the	
  natural	
  environment.	
  	
  	
  Recycling	
  can	
  further	
  increase	
  the	
  benefits	
  associated	
  with	
  PV.	
  If	
  financial	
  support	
  were	
  to	
  be	
  used	
  to	
  encourage	
  PV	
  uptake,	
  a	
  policy	
  on	
  PV	
  module	
  recycling	
  would	
  likely	
  be	
  worthy	
  of	
  consideration.	
  	
  	
   	
   Economic	
  Analysis	
  and	
  Outlook	
  	
  The	
  cost	
  of	
  PV	
  modules	
  in	
  Canada	
  has	
  been	
  declining	
  by	
  nearly	
  10%	
  annually.	
  However,	
  the	
  current	
  market	
  prices	
  of	
  solar	
  systems	
  in	
  BC	
  remains	
  between	
  $8,000	
  and	
  $10,000	
  per	
  kilowatt	
  of	
  installed	
  capacity.	
  When	
  accounting	
  for	
  maintenance	
  costs	
  (inverter	
  replacement)	
  the	
  life-­‐cycle	
  cost	
  will	
  likely	
  increase	
  by	
  another	
  $1,000-­‐$2,000	
  per	
  kilowatt.	
  Assuming	
  a	
  30	
  year	
  life-­‐cycle	
  and	
  current	
  electricity	
  prices,	
  this	
  delivers	
  electricity	
  at	
  around	
  $0.31/kWh.	
  This	
  is	
  far	
  higher	
  than	
  the	
  current	
  price	
  of	
  electricity	
  delivered	
  through	
  the	
  grid	
  in	
  BC,	
  which	
  is	
  closer	
  to	
  $0.08/kWh.	
  	
  	
  Much	
  has	
  been	
  said	
  about	
  the	
  possibilities	
  of	
  reducing	
  system	
  costs	
  through	
  Building	
  Integrated	
  Photovoltaics	
  (BIPV).	
  However,	
  BIPV	
  has	
  been	
  slow	
  to	
  uptake	
  in	
  the	
  residential	
  sector.	
  Sample	
  prices	
  suggest	
  that	
  cost	
  savings	
  from	
  BIPV	
  in	
  the	
  residential	
  sector	
  are	
  marginal,	
  and	
  that	
  BIPV	
  is	
  more	
  likely	
  to	
  be	
  selected	
  based	
  on	
  aesthetic	
  considerations	
  than	
  on	
  economic	
  grounds.	
  	
  	
  Emerging	
  technologies	
  such	
  as	
  organic	
  solar,	
  polymer-­‐based	
  solar,	
  and	
  solar	
  paint	
  appear	
  far	
  from	
  commercialization	
  and	
  are	
  unlikely	
  to	
  drive	
  down	
  the	
  price	
  of	
  PV	
  in	
  the	
  near	
  future.	
  	
  	
  Predictions	
  from	
  within	
  the	
  industry	
  show	
  continued	
  decline	
  in	
  PV	
  system	
  pricing	
  over	
  the	
  next	
  10-­‐20	
  years.	
  However,	
  even	
  optimistic	
  assumptions	
  imply	
  that	
  costs	
  will	
  exceed	
  revenue	
  by	
  $500/kW	
  over	
  the	
  life-­‐cycle	
  of	
  a	
  residential	
  PV	
  system	
  in	
  BC.	
  Potential	
  PV	
  system	
  owners	
  would	
  also	
  likely	
  still	
  need	
  to	
  pay	
  financing	
  costs	
  for	
  their	
  systems,	
  making	
  this	
  an	
  even	
  less	
  financially	
  attractive	
  investment.	
  Therefore	
  if	
  widespread	
  solar	
  PV	
  uptake	
  is	
  considered	
  desirable,	
  some	
  sort	
  of	
  policy	
  intervention	
  that	
  changes	
  the	
  balance	
  of	
  PV	
  economics	
  will	
  be	
  required.	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   1 Life-cycle emissions from large-scale hydroelectricity, including dam construction and flooding, are estimated at between 24 and 34 grams Co2e/kWh. This range of emissions is likely a low estimate as it does not account for transmission and delivery infrastructure, which is not required for residential PV systems. 	
   vi	
   	
   Considerations	
  in	
  Promoting	
  Solar	
  PV	
  	
  The	
  key	
  consideration	
  for	
  promoting	
  solar	
  PV	
  is	
  overcoming	
  the	
  economic	
  barrier.	
  While	
  simply	
  waiting	
  for	
  system	
  prices	
  to	
  decline	
  will	
  help	
  to	
  narrow	
  the	
  gap	
  between	
  the	
  cost	
  of	
  electricity	
  from	
  PV	
  and	
  the	
  current	
  price	
  of	
  electricity,	
  the	
  wait	
  could	
  last	
  for	
  decades.	
  There	
  are	
  several	
  policy	
  options	
  available	
  to	
  address	
  this	
  barrier,	
  including	
  Time	
  of	
  Use	
  rate	
  structures,	
  Feed-­‐in	
  Tariffs,	
  and	
  low	
  or	
  zero-­‐interest	
  financing.	
  	
  	
  Numerous	
  authors	
  argue	
  that	
  the	
  full	
  economic	
  benefits	
  of	
  electricity	
  from	
  solar	
  PV	
  are	
  not	
  realized	
  by	
  market	
  rates.	
  The	
  cost	
  for	
  a	
  utility	
  to	
  provide	
  electricity	
  varies	
  substantially	
  based	
  on	
  when	
  the	
  electricity	
  is	
  used,	
  with	
  the	
  highest	
  prices	
  highest	
  associated	
  with	
  peak	
  demand.	
  Time	
  of	
  Use	
  (TOU)	
  rate	
  structures	
  help	
  to	
  internalize	
  the	
  full	
  costs	
  of	
  electricity	
  by	
  pricing	
  electricity	
  based	
  on	
  peak	
  demand.	
  Time	
  of	
  Use	
  encourages	
  conservation	
  and	
  provides	
  an	
  incentive	
  to	
  shift	
  demand	
  to	
  off-­‐peak	
  periods.	
  Combining	
  TOU	
  with	
  Net	
  Metering	
  may	
  make	
  solar	
  PV	
  more	
  financially	
  attractive	
  in	
  BC.	
  However,	
  these	
  benefits	
  are	
  likely	
  smaller	
  than	
  in	
  other	
  jurisdictions,	
  such	
  as	
  California	
  or	
  Japan,	
  where	
  peak	
  demand	
  is	
  more	
  closely	
  timed	
  with	
  peak	
  PV	
  output.	
  In	
  BC	
  peak	
  demand	
  is	
  during	
  evenings,	
  especially	
  in	
  winter,	
  and	
  is	
  not	
  as	
  well	
  matched.	
  Therefore	
  TOU	
  is	
  unlikely	
  to	
  significantly	
  change	
  the	
  business	
  case	
  for	
  residential	
  PV	
  systems	
  as	
  a	
  stand-­‐alone	
  measure.	
  	
  Feed-­‐in	
  Tariffs	
  (FiTs)	
  pay	
  for	
  electricity	
  from	
  renewable	
  energy	
  at	
  above-­‐market	
  rates,	
  generally	
  between	
  $0.40	
  and	
  $0.80/kWh.	
  FiTs	
  price	
  electricity	
  in	
  order	
  to	
  provide	
  an	
  attractive	
  return	
  on	
  investment	
  in	
  PV	
  systems,	
  and	
  are	
  intended	
  to	
  lower	
  greenhouse	
  gas	
  emissions	
  through	
  increasing	
  the	
  share	
  of	
  renewable	
  energy	
  while	
  providing	
  economic	
  returns	
  through	
  the	
  creation	
  of	
  “green”	
  jobs.	
  Germany	
  has	
  supported	
  solar	
  PV	
  development	
  through	
  a	
  high	
  FiT	
  price	
  since	
  2000,	
  and	
  recently	
  these	
  policies	
  have	
  been	
  adopted	
  in	
  Ontario	
  and	
  the	
  United	
  Kingdom.	
  Unfortunately	
  the	
  GHG	
  reductions	
  will	
  be	
  much	
  smaller	
  in	
  BC	
  than	
  in	
  these	
  other	
  jurisdictions	
  due	
  to	
  the	
  already-­‐high	
  proportion	
  of	
  renewable	
  energy	
  in	
  BC.	
  In	
  addition,	
  much	
  criticism	
  of	
  the	
  German	
  FiT	
  has	
  emerged	
  recently.	
  Claims	
  that	
  high	
  FiTs	
  for	
  PV	
  are	
  justified	
  based	
  on	
  economic	
  grounds	
  should	
  be	
  examined	
  carefully	
  if	
  similar	
  policies	
  are	
  to	
  be	
  considered	
  in	
  BC.	
  	
  	
  	
   	
  Another	
  barrier	
  to	
  residential	
  PV	
  is	
  a	
  lack	
  of	
  protection	
  for	
  solar	
  access.	
  Shading	
  of	
  even	
  a	
  small	
  portion	
  of	
  a	
  solar	
  panel	
  (10%)	
  can	
  severely	
  disrupt	
  panel	
  output	
  or	
  cease	
  it	
  from	
  functioning	
  altogether.	
  This	
  represents	
  risk	
  to	
  system	
  owners.	
  Over	
  the	
  long	
  term	
  solar,	
  access	
  needs	
  to	
  be	
  protected	
  and	
  encouraged	
  in	
  order	
  to	
  enable	
  PV	
  development.	
  	
  Local	
  government	
  planning	
  which	
  protects	
  access	
  to	
  sunlight	
  can	
  partially	
  address	
  this	
  issue.	
  	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   vii	
  Planning	
  tools	
  already	
  exist	
  for	
  maximizing	
  solar	
  access	
  at	
  the	
  local	
  government	
  level.	
  Zoning	
  and	
  Development	
  Permit	
  Area	
  powers	
  are	
  the	
  most	
  prominent	
  of	
  these	
  tools.	
  Both	
  appear	
  reasonably	
  well	
  suited	
  to	
  influence	
  building	
  form	
  and	
  siting	
  which	
  encourages	
  solar	
  access.	
  In	
  addition,	
  the	
  Province	
  is	
  in	
  the	
  process	
  of	
  granting	
  local	
  governments	
  the	
  power	
  to	
  require	
  Solar	
  Hot	
  Water	
  Ready	
  homes.	
  Although	
  not	
  explicitly	
  intended	
  for	
  PV,	
  this	
  requirement	
  will	
  reduce	
  the	
  future	
  installation	
  costs	
  of	
  PV	
  systems	
  and	
  help	
  to	
  enable	
  PV	
  uptake.	
  As	
  other	
  issues	
  related	
  to	
  local	
  government	
  planning	
  and	
  implementation	
  of	
  on-­‐site	
  renewable	
  energy	
  occur,	
  Provincial	
  support	
  through	
  further	
  enabling	
  legislation	
  could	
  be	
  beneficial	
  to	
  the	
  uptake	
  of	
  solar	
  PV.	
  Additional	
  legislative	
  measures	
  to	
  protect	
  solar	
  energy	
  systems	
  from	
  shade,	
  such	
  as	
  those	
  undertaken	
  in	
  California,	
  could	
  also	
  be	
  import	
  topics	
  for	
  future	
  research.	
   	
   Conclusions	
   	
  Solar	
  PV	
  has	
  the	
  potential	
  to	
  meet	
  a	
  significant	
  portion	
  of	
  electricity	
  demand,	
  thereby	
  making	
  BC	
  more	
  self-­‐sufficient	
  in	
  electricity	
  generation.	
  As	
  electricity	
  imports	
  are	
  reduced,	
  GHG	
  emissions	
  reductions	
  can	
  also	
  be	
  realized.	
  However,	
  residential	
  PV	
  systems	
  remain	
  an	
  expensive	
  means	
  of	
  achieving	
  these	
  objectives.	
  Even	
  assuming	
  continued	
  decline	
  in	
  the	
  price	
  of	
  PV	
  systems,	
  it	
  is	
  likely	
  that	
  only	
  ‘break	
  even’	
  costs	
  could	
  be	
  realized	
  by	
  homeowners	
  installing	
  solar	
  PV	
  systems	
  within	
  the	
  next	
  decade.	
  	
  	
  	
  	
  	
  Over	
  the	
  shorter	
  term	
  (5	
  years)	
  increased	
  research	
  and	
  support	
  through	
  the	
  removal	
  of	
  barriers	
  is	
  likely	
  warranted.	
  For	
  example,	
  research	
  and	
  development	
  of	
  guidelines	
  or	
  legislation	
  for	
  the	
  protection	
  of	
  solar	
  access	
  could	
  be	
  beneficial.	
  	
  Providing	
  a	
  continuance	
  of	
  the	
  PST	
  exemption	
  for	
  solar	
  PV	
  systems	
  under	
  the	
  HST	
  would	
  also	
  likely	
  be	
  justified.	
  Changes	
  to	
  utility	
  rate	
  structures,	
  such	
  as	
  through	
  Time	
  of	
  Use,	
  would	
  also	
  likely	
  be	
  low	
  in	
  cost	
  and	
  could	
  benefit	
  the	
  business	
  case	
  of	
  PV	
  systems.	
  	
  	
  Over	
  the	
  longer	
  term	
  (10	
  years)	
  as	
  system	
  prices	
  decrease	
  and	
  the	
  price	
  of	
  electricity	
  rises,	
  the	
  gap	
  between	
  electricity	
  delivered	
  from	
  PV	
  and	
  conventional	
  sources	
  such	
  as	
  hydroelectricity	
  will	
  likely	
  narrow.	
  At	
  that	
  point	
  the	
  implementation	
  of	
  more	
  substantial	
  financial	
  incentives,	
  such	
  as	
  subsidies,	
  low-­‐interest	
  loans,	
  and	
  a	
  moderate	
  FiT,	
  can	
  be	
  considered.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   viii	
   Definitions	
  	
   Active	
  Solar	
  –	
  Active	
  solar	
  systems	
  include	
  space	
  and	
  water	
  heating	
  systems.	
  They	
  are	
  considered	
  “active”	
  because	
  they	
  require	
  some	
  electrical	
  equipment	
  (such	
  as	
  pumps	
  or	
  fans)	
  to	
  operate.	
  	
   	
   Balance	
  of	
  System	
  (BOS)	
  Components	
  –	
  BOS	
  includes	
  all	
  components	
  of	
  a	
  solar	
  system	
  other	
  than	
  the	
  solar	
  panels	
  themselves.	
  For	
  example,	
  frames,	
  wiring,	
  and	
  inverters	
  are	
  included	
  within	
  this	
  category.	
   	
   Building	
  Integrated	
  Photovoltaics	
  (BIPV)	
  –	
  Photovoltaic	
  panels	
  can	
  be	
  integrated	
  directly	
  into	
  the	
  envelope	
  of	
  a	
  building,	
  replacing	
  conventional	
  building	
  materials.	
  Solar	
  roof	
  shingles,	
  solar	
  windows,	
  and	
  solar	
  façades	
  are	
  among	
  the	
  types	
  currently	
  available.	
  	
   	
   Feed-­in	
  Tariffs	
  (FiTs)	
  –	
  Feed-­‐in	
  Tariffs	
  allow	
  customers	
  to	
  sell	
  electricity	
  into	
  the	
  grid.	
  A	
  FiT	
  offers	
  above-­‐retail	
  rates	
  for	
  electricity,	
  providing	
  an	
  economic	
  incentive	
  for	
  customers	
  to	
  sell	
  electricity.	
  These	
  programs	
  generally	
  require	
  specialized	
  electricity	
  meters	
  which	
  separately	
  measure	
  consumed	
  energy	
  and	
  produced	
  energy.	
  	
  	
   	
   Inverter	
  -­	
  PV	
  panels	
  generate	
  Direct	
  Current	
  (DC)	
  electricity,	
  while	
  most	
  households	
  function	
  using	
  Alternating	
  Current	
  (AC).	
  An	
  inverter	
  converts	
  electricity	
  from	
  DC	
  to	
  AC,	
  making	
  the	
  energy	
  immediately	
  useable	
  within	
  the	
  household.	
   	
   Kilowatt-­Hours	
  (kWh)	
  –	
  A	
  standard	
  measure	
  of	
  electrical	
  energy.	
  One	
  kilowatt-­‐hour	
  equals	
  1,000	
  watts	
  of	
  energy	
  used	
  over	
  a	
  one-­‐hour	
  period.	
  	
   	
   Life	
  Cycle	
  Analysis	
  (LCA)	
  –	
  A	
  life	
  cycle	
  analysis	
  or	
  life	
  cycle	
  assessment	
  seeks	
  to	
  measure	
  all	
  of	
  the	
  direct	
  and	
  indirect	
  material	
  and	
  energy	
  inputs	
  used	
  over	
  the	
  entire	
  life	
  of	
  a	
  product,	
  from	
  the	
  extraction	
  and	
  processing	
  of	
  materials	
  to	
  end-­‐of-­‐life	
  management	
  (disposal).	
  An	
  LCA	
  is	
  much	
  broader	
  in	
  scope	
  than	
  conventional	
  measures	
  of	
  environmental	
  impact	
  and	
  often	
  uncovers	
  ‘hidden’	
  sources	
  of	
  pollution.	
   	
   Net	
  Metering	
  –	
  Net	
  metering	
  is	
  linked	
  to	
  policies	
  which	
  allow	
  customers	
  to	
  put	
  electricity	
  into	
  the	
  grid.	
  Under	
  net	
  metering,	
  a	
  system	
  owner	
  generally	
  receives	
  retail	
  credit	
  for	
  the	
  electricity	
  they	
  generate.	
  	
  	
  	
   	
   Solar	
  Ready	
  –	
  Solar	
  Ready	
  refers	
  to	
  the	
  pre-­‐installation	
  of	
  some	
  of	
  the	
  infrastructure	
  for	
  a	
  solar	
  system.	
  Solar	
  Ready	
  is	
  generally	
  designed	
  for	
  Solar	
  Hot	
  Water	
  systems,	
  and	
  usually	
  includes	
  a	
  pipe	
  (conduit)	
  from	
  the	
  utility	
  room	
  to	
  the	
  roof.	
  Solar	
  Ready	
  reduces	
  the	
  cost	
  of	
  systems	
  installations	
  in	
  the	
  future.	
  	
  	
  	
  	
   Time	
  of	
  Use	
  Pricing	
  (TOU)	
  –	
  The	
  cost	
  to	
  provide	
  electricity	
  changes	
  throughout	
  the	
  day	
  based	
  on	
  demand.	
  During	
  peak	
  demand	
  periods,	
  more	
  expensive	
  forms	
  of	
  electricity	
  are	
  often	
  used.	
  TOU	
  prices	
  internalize	
  the	
  costs	
  of	
  electricity	
  to	
  customers	
  based	
  on	
  when	
  the	
  electricity	
  is	
  used.	
  TOU	
  rate	
  structures	
  encourage	
  conservation	
  during	
  peak	
  periods	
  as	
  a	
  result	
  of	
  the	
  higher	
  peak	
  prices.	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   1	
   1. Introduction	
   	
  Concern	
  over	
  climate	
  change	
  and	
  rapidly	
  increasing	
  conventional	
  energy	
  prices	
  have	
  sparked	
  the	
  search	
  for	
  low-­‐emission	
  “alternative”	
  sources	
  of	
  energy.	
  This	
  search	
  is	
  leading	
  utilities	
  to	
  change	
  the	
  basic	
  paradigm	
  of	
  energy	
  production.	
  The	
  conventional	
  model	
  of	
  large,	
  centralized	
  energy	
  generation	
  is	
  shifting	
  to	
  promote	
  diverse	
  small-­‐scale	
  sources	
  of	
  energy.	
  Within	
  this	
  context,	
  solar	
  energy	
  is	
  seen	
  as	
  particularly	
  promising,	
  owing	
  to	
  the	
  sheer	
  abundance	
  of	
  free	
  energy	
  that	
  strikes	
  the	
  earth	
  every	
  day.2	
  	
  	
  In	
  several	
  jurisdictions	
  (most	
  notably	
  Germany	
  and	
  Japan,	
  and	
  more	
  recently	
  California	
  and	
  Ontario)	
  solar	
  PV	
  uptake	
  has	
  been	
  supported	
  through	
  Feed-­‐in	
  Tariffs	
  and	
  other	
  policy	
  interventions	
  that	
  improve	
  the	
  business	
  case	
  for	
  solar	
  PV.3	
  These	
  policies	
  are	
  increasingly	
  targeting	
  small-­‐scale	
  PV	
  installations,	
  including	
  those	
  within	
  the	
  residential	
  sector.	
  	
  	
  In	
  British	
  Columbia,	
  commitments	
  have	
  been	
  made	
  to	
  reduce	
  greenhouse	
  gas	
  emissions	
  33%	
  by	
  2020	
  and	
  to	
  become	
  self-­‐sufficient	
  in	
  energy	
  production	
  by	
  2016.4	
  The	
  two	
  objectives	
  are	
  complementary	
  as	
  BC	
  currently	
  imports	
  electricity	
  from	
  other	
  jurisdictions	
  that	
  is	
  generated	
  using	
  fossil	
  fuels.5	
  BC	
  Hydro	
  has	
  estimated	
  that	
  approximately	
  1/3	
  of	
  rooftops	
  in	
  British	
  Columbia	
  are	
  sufficiently	
  free	
  from	
  direct	
  shade	
  to	
  support	
  some	
  type	
  of	
  solar	
  system.6	
  This	
  has	
  led	
  to	
  support	
  for	
  solar	
  hot	
  water	
  from	
  the	
  Province,	
  but	
  comparatively	
  little	
  has	
  yet	
  been	
  done	
  to	
  promote	
  solar	
  PV.	
  This	
  begs	
  the	
  question	
  as	
  to	
  whether	
  solar	
  PV	
  might	
  be	
  suited	
  to	
  the	
  BC	
  context,	
  and	
  what	
  sorts	
  of	
  key	
  policy	
  interventions	
  might	
  be	
  required	
  to	
  encourage	
  PV	
  system	
  uptake.	
  	
  	
  The	
  field	
  of	
  solar	
  PV	
  is	
  changing	
  rapidly	
  as	
  new	
  technologies	
  emerge.	
  The	
  costs	
  for	
  PV	
  systems	
  in	
  Canada	
  have	
  decreased	
  by	
  nearly	
  10%	
  annually,7	
  and	
  are	
  increasingly	
  affordable	
  for	
  the	
  average	
  homeowner.	
  New	
  products	
  such	
  as	
  Building	
  Integrated	
  Photovoltaics	
  are	
  said	
  to	
  further	
  decrease	
  costs	
  by	
  literally	
  replacing	
  conventional	
  building	
  materials	
  while	
  at	
  the	
  same	
  time	
  generating	
  energy.8	
  These	
  changes	
  to	
  PV	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   2 O. Morton, ‘Solar energy: A new day dawning?,’ Nature 443, September 7th 2006, pp. 19-22, accessed February 23rd 2010 from <http://www.nature.com/nature/journal/v443/n7107/full/443019a.html>. 3 National Renewable Energy Laboratory, NREL energy analysts dig into Feed-in Tariffs, June 12th 2009, retrieved March 3rd 2010 from <http://www.nrel.gov/features/20090612_fits.html>. 4 Province of British Columbia, Climate action plan, June 2008, retrieved November 13th 2009 from <http://www.livesmartbc.ca/government/plan.html>. 5 J. Hanova, H. Dowlatabadi, and L. Mueller, ‘Ground Source Heat Pump Systems in Canada: Economics and Ghg Reduction Potential,’ 2007, in Discussion Papers, Resources For the Future: Washington, DC, retrieved January 13th 2010 from <www.rff.org/documents/RFF-DP-07-18.pdf>. 6 Community Energy Association, Powering our communities: Renewable energy guide for local governments in British Columbia, 2008, p.12, retrieved November 12th 2009 from <http://www.communityenergy.bc.ca/>. 7 J. Ayoub, and L. Dignard-Bailey, Photovoltaic technology status and prospects: Canadian annual report 2007, CanmetENERGY, Natural Resources Canada, retrieved November 20th 2009 from <http://www.canmetenergy.nrcan.gc.ca>. 8 L. Stamenic, ‘Developments with BIPV systems in Canada,’ Asian Journal on Energy and Environment, Vol. 5, Issue 4, pp. 349-365. 	
   2	
   system	
  prices	
  make	
  residential	
  grid-­‐connected	
  systems	
  an	
  important	
  area	
  for	
  exploration.	
  	
  	
  A	
  substantial	
  body	
  of	
  literature	
  examining	
  the	
  potential	
  of	
  solar	
  PV	
  already	
  exists.	
  However,	
  much	
  of	
  this	
  literature	
  is	
  focused	
  on	
  other	
  jurisdictions,	
  or	
  is	
  becoming	
  out-­‐of-­‐date	
  due	
  to	
  the	
  rapid	
  pace	
  of	
  technological	
  change.	
  This	
  document	
  explores	
  the	
  current	
  status	
  and	
  prospects	
  of	
  residential	
  grid-­‐connected	
  solar	
  photovoltaics	
  in	
  British	
  Columbia.	
  It	
  is	
  intended	
  to	
  provide	
  up-­‐to-­‐date	
  information	
  regarding	
  PV’s	
  suitability	
  to	
  BC	
  over	
  the	
  short	
  and	
  medium	
  term,	
  including	
  descriptions	
  of	
  the	
  technology,	
  explorations	
  of	
  system	
  costs	
  and	
  environmental	
  benefits,	
  and	
  potential	
  policy	
  interventions	
  which	
  might	
  promote	
  this	
  type	
  of	
  renewable	
  energy.	
   	
   Scope	
   	
  This	
  paper	
  was	
  prepared	
  for	
  the	
  Knowledge	
  and	
  Information	
  Services	
  Branch	
  of	
  the	
  Province	
  of	
  British	
  Columbia.	
  The	
  author	
  received	
  a	
  research	
  grant	
  from	
  the	
  Branch	
  via	
  the	
  UBC	
  School	
  of	
  Community	
  and	
  Regional	
  Planning	
  to	
  provide	
  a	
  scoping	
  review	
  of	
  key	
  issues	
  related	
  to	
  PV	
  deployment	
  in	
  the	
  residential	
  sector.	
  Commercial	
  buildings,	
  apartments,	
  and	
  off-­‐grid	
  residential	
  PV	
  systems	
  are	
  excluded	
  from	
  the	
  document	
  as	
  they	
  represent	
  a	
  substantially	
  different	
  business	
  case	
  in	
  both	
  environmental	
  and	
  economic	
  dimensions.	
  	
  	
  Based	
  on	
  discussions	
  with	
  the	
  selection	
  committee	
  which	
  authorized	
  the	
  grant,	
  it	
  was	
  decided	
  that	
  the	
  document	
  address	
  several	
  research	
  objectives:	
  	
   • To examine the implications of recent changes to the technology and economics of PV, such as progress in Building Integrated Photovoltaic technologies; • To examine potential environmental benefits of PV deployment; • To identify and explore the economic barriers to widespread PV deployment within the housing sector; and • To identify other key barriers.  	
   Outline	
   	
  In	
  order	
  to	
  address	
  these	
  objectives	
  the	
  document	
  has	
  been	
  organized	
  topically.	
  	
  Section	
  two	
  of	
  the	
  document	
  begins	
  by	
  describing	
  current	
  and	
  emerging	
  PV	
  technologies	
  and	
  examining	
  the	
  potential	
  benefits	
  of	
  these	
  systems.	
  This	
  is	
  followed	
  by	
  a	
  description	
  of	
  Provincial	
  objectives	
  relevant	
  to	
  solar	
  PV:	
  independence	
  from	
  imported	
  electrical	
  energy	
  and	
  a	
  reduction	
  of	
  greenhouse	
  gas	
  emissions.	
  The	
  section	
  goes	
  on	
  to	
  describe	
  the	
  current	
  support	
  mechanisms	
  that	
  promote	
  PV	
  uptake	
  within	
  the	
  province.	
  	
  	
  The	
  third	
  section	
  of	
  the	
  paper	
  describes	
  the	
  solar	
  resources	
  and	
  energy	
  potential	
  of	
  PV	
  systems	
  in	
  BC.	
  An	
  estimate	
  of	
  residential	
  solar	
  PV	
  potential	
  in	
  the	
  province	
  is	
  provided.	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   3	
  In	
  section	
  four	
  of	
  the	
  paper,	
  the	
  environmental	
  impact	
  of	
  solar	
  PV	
  deployment	
  in	
  BC	
  is	
  assessed.	
  A	
  high	
  level	
  estimate	
  of	
  the	
  potential	
  to	
  reduce	
  greenhouse	
  gas	
  emissions	
  within	
  the	
  province	
  is	
  provided.	
  The	
  toxins	
  used	
  in	
  PV	
  production	
  and	
  the	
  potential	
  for	
  recycling	
  of	
  PV	
  modules	
  are	
  also	
  discussed.	
  	
  	
  	
  	
  	
  Section	
  five	
  of	
  the	
  document	
  focuses	
  on	
  the	
  economics	
  of	
  residential	
  PV	
  systems.	
  The	
  section	
  explores	
  trends	
  in	
  the	
  cost	
  of	
  PV	
  systems,	
  provides	
  a	
  detailed	
  analysis	
  of	
  the	
  life-­‐cycle	
  costs	
  of	
  a	
  PV	
  system	
  installed	
  and	
  operated	
  in	
  BC,	
  and	
  explores	
  some	
  of	
  the	
  potential	
  policy	
  responses	
  that	
  have	
  been	
  used	
  to	
  encourage	
  PV	
  deployment	
  in	
  other	
  jurisdictions.	
  	
  	
  The	
  sixth	
  section	
  explores	
  the	
  ways	
  in	
  which	
  Local	
  Governments	
  may	
  enable	
  or	
  constrain	
  PV	
  deployment	
  through	
  the	
  regulation	
  of	
  solar	
  access.	
  The	
  section	
  describes	
  some	
  of	
  the	
  planning	
  tools	
  and	
  powers	
  available	
  to	
  local	
  governments	
  and	
  identifies	
  one	
  of	
  the	
  remaining	
  gaps	
  that	
  could	
  be	
  addressed	
  at	
  the	
  Provincial	
  level.	
  	
  	
  	
  	
  Finally,	
  the	
  paper	
  closes	
  with	
  a	
  discussion	
  and	
  conclusions	
  section.	
  	
  	
   Methods	
  	
  The	
  document	
  uses	
  a	
  combination	
  of	
  a	
  literature	
  review	
  and	
  key	
  informant	
  interviews	
  in	
  order	
  to	
  explore	
  the	
  topic.	
  Where	
  possible,	
  calculations	
  of	
  energy	
  payback,	
  greenhouse	
  gas	
  emissions,	
  and	
  market	
  pricing	
  drawn	
  from	
  literature	
  or	
  media	
  sources	
  were	
  adjusted	
  to	
  reflect	
  local	
  economic,	
  environmental,	
  and	
  climatic	
  	
  factors.	
  	
  	
  	
  	
  Interview	
  participants	
  were	
  selected	
  through	
  a	
  variety	
  of	
  means.	
  Five	
  installers	
  located	
  in	
  BC	
  were	
  interviewed.	
  These	
  installers	
  were	
  selected	
  based	
  on	
  advice	
  from	
  a	
  Solar	
  BC	
  representative	
  and	
  a	
  representative	
  of	
  the	
  Canadian	
  Solar	
  Industries	
  Association.	
  In	
  addition,	
  representatives	
  from	
  BC	
  Hydro,	
  Powerex,	
  the	
  Provincial	
  Government,	
  and	
  a	
  PV	
  manufacturing	
  firm	
  located	
  in	
  BC	
  were	
  also	
  contacted.	
  	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   4	
   2. Background	
  	
   	
   Technology	
  and	
  Characteristics	
  of	
   Solar	
  PV	
  	
  	
  Sunlight	
  is	
  made	
  up	
  of	
  particles	
  of	
  energy	
  known	
  as	
  photons.	
  Different	
  types	
  of	
  solar	
  energy	
  technology	
  are	
  able	
  to	
  concentrate,	
  store,	
  or	
  convert	
  these	
  particles	
  into	
  heat	
  or	
  electricity.	
  	
  	
  Solar	
  energy	
  technologies	
  are	
  often	
  divided	
  into	
  three	
  categories:	
  passive,	
  active/thermal,	
  or	
  photovoltaic.	
  	
  Although	
  the	
  emphasis	
  of	
  this	
  paper	
  is	
  solar	
  PV,	
  all	
  three	
  technologies	
  are	
  complementary	
  to	
  each	
  other.	
  Therefore	
  some	
  basic	
  information	
  regarding	
  passive	
  and	
  active/thermal	
  solar	
  technologies	
  is	
  also	
  included	
  in	
  this	
  section.	
  	
   	
   Solar	
  Photovoltaics	
  (PV)	
  directly	
  convert	
  sunlight	
  into	
  electricity.	
  	
  Individual	
  solar	
  cells	
  are	
  quite	
  small	
  and	
  can	
  convert	
  little	
  electricity.	
  They	
  are	
  therefore	
  combined	
  into	
  solar	
  modules.	
  Several	
  modules	
  together	
  make	
  up	
  a	
  solar	
  array.	
  In	
  common	
  parlance,	
  however,	
  arrays	
  are	
  simply	
  referred	
  to	
  as	
  solar	
  panels	
  or	
  solar	
  collectors.10	
  	
  	
  The	
  capacity	
  of	
  a	
  residential	
  PV	
  system	
  is	
  generally	
  measured	
  in	
  kilowatts	
  (kW).	
  The	
  amount	
  of	
  space	
  required	
  for	
  a	
  PV	
  system	
  varies	
  based	
  on	
  the	
  efficiency	
  of	
  cells	
  and	
  the	
  way	
  in	
  which	
  they	
  are	
  mounted.	
  If	
  panels	
  are	
  mounted	
  flush	
  with	
  the	
  roof	
  they	
  will	
  take	
  up	
  more	
  area	
  than	
  if	
  they	
  are	
  stacked	
  using	
  a	
  vertical	
  frame.	
  As	
  a	
  rule	
  of	
  thumb,	
  each	
  kW	
  of	
  capacity	
  requires	
  at	
  least	
  6	
  square	
  meters	
  of	
  panels.11	
  In	
  BC	
  the	
  average	
  home	
  consumes	
  10,000	
  kilowatt-­‐hours	
  (kWh)	
  of	
  electricity	
  annually.12	
  With	
  a	
  3.5kW	
  system	
  (around	
  20	
  square	
  meters)	
  a	
  roof-­‐mounted	
  PV	
  system	
  would	
  provide	
  around	
  1/3	
  of	
  the	
  annual	
  electricity	
  needs	
  for	
  an	
  average	
  BC	
  home.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   9 US Department of Energy Office of Building technology, Passive solar design technology fact sheet, December 2000, retrieved September 20th 2009 from <http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250>. 10 Because active and PV technologies are referred to as “solar panels” they can sometimes be confused with each other. For the remainder of this document, “solar panels” refers specifically to solar PV unless otherwise specified. 11 Calculated based on polycrystalline PV modules with approximate efficiency of 16%. 12 BC Ministry of Energy, Mines, and Petroleum Resources, Energy plan: A vision for clean energy leadership, 2007, retrieved February 20th 2010 from <http://www.energyplan.gov.bc.ca/efficiency/>.   Figure 1 – Solar Exposure & Sunpath Solar exposure is key to all solar technologies: passive, active, or photovoltaic. In general a south-facing section of the building oriented within +/- 30 degrees of the sunpath is necessary.9 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   5	
  Technological	
  developments	
  have	
  yielded	
  various	
  types	
  of	
  PV	
  cell.	
  Currently	
  the	
  most	
  common	
  are	
  variants	
  of	
  silicon,	
  especially	
  multi-­‐crystalline	
  or	
  poly-­‐crystalline	
  silicon	
  cells.	
  More	
  recently,	
  “thin-­‐film”	
  PV	
  has	
  garnered	
  substantial	
  attention	
  in	
  the	
  media.	
  Thin-­‐film	
  solar	
  uses	
  a	
  fraction	
  of	
  the	
  material	
  of	
  conventional	
  silicon	
  panels,	
  thereby	
  requiring	
  less	
  energy	
  and	
  having	
  a	
  lower	
  environmental	
  impact.13	
  Thin-­‐film	
  cells	
  are	
  also	
  flexible	
  and	
  can	
  allow	
  light	
  to	
  penetrate,	
  opening	
  up	
  a	
  range	
  of	
  new	
  applications	
  such	
  as	
  glass	
  atriums.	
  Amorphous	
  silicone,	
  Cadmium	
  Telluride	
  (CdTe)	
  and	
  Copper	
  Indium	
  Gallium	
  Selenide	
  (CIGS)	
  are	
  the	
  materials	
  which	
  dominate	
  the	
  thin-­‐film	
  market.14	
  	
  	
  Solar	
  PV	
  may	
  also	
  be	
  integrated	
  directly	
  into	
  walls,	
  facades,	
  or	
  even	
  solar	
  glass.	
  These	
  solar	
  applications	
  are	
  known	
  as	
  Building-­Integrated	
  Photovoltaics	
  (BIPV).	
  Because	
  BIPVs	
  directly	
  replace	
  building	
  materials,	
  they	
  can	
  decrease	
  the	
  price	
  of	
  PV	
  installations	
  over	
  other	
  types	
  of	
  solar	
  system	
  installation.16	
  A	
  common	
  example	
  of	
  BIPV	
  is	
  “solar	
  shingles”,	
  which	
  can	
  directly	
  replace	
  conventional	
  roofing	
  materials.	
  These	
  types	
  of	
  PV	
  system	
  are	
  likely	
  to	
  be	
  less	
  visually	
  obtrusive	
  than	
  mounted	
  solar	
  panels.	
  BIPV	
  can	
  be	
  built	
  using	
  conventional	
  silicone	
  cells,	
  but	
  the	
  flexibility	
  of	
  thin-­‐film	
  cells	
  make	
  the	
  latter	
  type	
  of	
  PV	
  better	
  suited	
  to	
  building	
  integration.	
  	
  	
  	
  Electricity	
  generated	
  by	
  PV	
  is	
  direct	
  current	
  (DC)	
  electricity,	
  which	
  cannot	
  be	
  used	
  directly	
  in	
  household	
  applications.	
  Therefore	
  residential	
  PV	
  systems	
  include	
  an	
   inverter,	
  which	
  converts	
  electricity	
  into	
  alternating	
  current	
  (AC)	
  for	
  use	
  with	
  standard	
  household	
  appliances.	
  The	
  inverter,	
  along	
  with	
  other	
  components	
  such	
  as	
  the	
  mounting	
  system	
  or	
  frame,	
  are	
  referred	
  to	
  as	
  the	
  Balance	
  of	
  System	
  (BOS)	
  components.	
  	
  At	
  present,	
  solar	
  photovoltaic	
  systems	
  are	
  relatively	
  expensive	
  for	
  residential	
  applications.	
  Many	
  installers	
  charge	
  $8,000	
  to	
  $10,000	
  per	
  kW	
  of	
  installed	
  capacity	
  for	
  a	
  grid-­‐tied	
  system.17	
  For	
  remote	
  applications	
  without	
  access	
  to	
  the	
  grid,	
  this	
  may	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   13 A, Curtright, M. G. Morgan, and D. Keith. ‘Assessments future pv,’ Environmental Science and Technology, 2008, Vol. 42, No. 24, pp. 9031-9038. 14 Solar Buzz, Solar Cell Technologies, Solar Buzz website, retrieved January 3rd 2010 from <http://www.solarbuzz.com/technologies.htm>. 15 US Department of Energy, Cell, Module, Array, image retrieved November 7th 2009 from<http://www1.eere.energy.gov/solar/pv_systems.html>. 16 Stamenic, Op. cit. 17 For more information on PV system economics, see Section 4 of this document. Figure 2 - Cell, Module, Array15 	
   	
   6	
   be	
  less	
  expensive	
  than	
  paying	
  for	
  utility	
  grid	
  extensions.	
  Therefore	
  most	
  residential	
  PV	
  systems	
  installed	
  in	
  Canada	
  are	
  for	
  off-­‐grid	
  or	
  remote	
  applications.18	
  	
  	
  The	
  economics	
  of	
  grid-­‐tied	
  residential	
  systems	
  improve	
  where	
  excess	
  electricity	
  can	
  be	
  sold	
  into	
  the	
  grid	
  through	
  Net	
  Metering	
  or	
  Feed-­‐in	
  Tariffs.	
  In	
  these	
  cases	
  batteries	
  are	
  not	
  required	
  to	
  store	
  electricity,	
  as	
  the	
  grid	
  is	
  capable	
  of	
  meeting	
  the	
  building’s	
  electrical	
  load.	
  These	
  systems	
  are	
  increasingly	
  popular	
  due	
  to	
  a	
  variety	
  of	
  benefits	
  they	
  can	
  provide.	
  Some	
  of	
  the	
  more	
  commonly	
  cited	
  benefits	
  include:	
  	
   	
   • PV reduces reliance on fossil fuels, which are often used to generate electricity. This reduces emissions associated with the production of electricity;19 • PV systems provide energy security and can provide a hedge against rising electricity costs;20 • PV provides benefits to the utility by meeting peak energy demand21 and reducing wear-and-tear on existing infrastructure; • PV systems are located at the point of use, which can reduce line losses associated with transmission.22  In	
  addition,	
  government	
  intervention	
  to	
  support	
  these	
  systems	
  is	
  often	
  justified	
  on	
  the	
  basis	
  of	
  economic	
  development,	
  including	
  the	
  creation	
  of	
  “green”	
  jobs.	
  A	
  basic	
  diagram	
  of	
  a	
  residential	
  grid-­‐connected	
  PV	
  system	
  is	
  shown	
  below	
  in	
  Figure	
  3	
  below,	
  and	
  an	
  example	
  of	
  BIPV	
  is	
  shown	
  in	
  Figure	
  4.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   18 J. Ayoub, and L. Dignard-Bailey, Photovoltaic technology status and prospects: Canadian annual report 2007, CanmetENERGY, Natural Resources Canada, retrieved November 20th 2009 from <http://www.canmetenergy.nrcan.gc.ca>. 19 US Department of Energy Efficiency and Renewable Energy, Get your power from the sun: A consumer’s guide, December 2003, p. 5, retrieved October 20th 2009 from <www.nrel.gov/docs/fy04osti/35297.pdf>. 20 Ibid. 21 R. Wiser, G. Barbose, and C. Peterman, Tracking the Sun: The installed cost of photovoltaics in the U.S. from 1998- 2007, Lawrence Berkeley National Laboratory, February 2009, retrieved Tuesday March 2nd 2010 from <http://eetd.lbl.gov/ea/emp/reports/lbnl-1516e.pdf>. 22 Ibid. 23 US Department of Energy, Solar history timeline, image retrieved March 1st 2010 from <http://www1.eere.energy.gov/solar/m/solar_time_1900.html>. 24 J. Ayoub, L. Dignard-Bailey, and A. Fillion, Photovoltaics for buildings: Opportunities for Canada, Natural Resources Canada, 2000, image retrieved August 1st 2009 from <http://canmetenergy-canmetenergie.nrcan- rncan.gc.ca/eng/buildings_communities/buildings/pv_buildings/publications.html?2001-123>. Figure 4 Solar Shingles are solar panels which can replace traditional asphalt shingles.23  	
   Figure 3 - Diagram of a Residential Grid- Connected PV System24 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   7	
   Synergies:	
  Passive,	
  Active,	
  and	
  PV	
   	
   Passive	
  Solar	
  generally	
  refers	
  to	
  the	
  use	
  of	
  solar	
  energy	
  without	
  the	
  aid	
  of	
  any	
  energy	
  inputs	
  or	
  mechanical	
  system.	
  This	
  is	
  the	
  simplest	
  and	
  most	
  direct	
  form	
  of	
  solar	
  energy	
  use.	
  In	
  the	
  residential	
  sector	
  passive	
  solar	
  is	
  often	
  characterized	
  by	
  careful	
  siting	
  and	
  orientation	
  of	
  a	
  building	
  along	
  with	
  the	
  selection	
  of	
  building	
  materials	
  that	
  absorb	
  and	
  store	
  solar	
  energy	
  as	
  heat.26	
  A	
  greenhouse	
  can	
  be	
  used	
  as	
  an	
  instructive	
  example:	
  solar	
  energy	
  penetrates	
  the	
  building	
  envelope	
  of	
  the	
  greenhouse.	
  As	
  it	
  strikes	
  solid	
  surfaces	
  inside	
  the	
  structure,	
  the	
  solar	
  energy	
  transforms	
  into	
  heat	
  energy	
  and	
  the	
  temperature	
  in	
  the	
  greenhouse	
  rises.	
  	
  	
  In	
  passive	
  design,	
  windows	
  are	
  often	
  placed	
  on	
  the	
  south	
  side	
  of	
  the	
  home	
  to	
  maximize	
  the	
  penetration	
  of	
  heat,	
  while	
  windows	
  facing	
  other	
  directions	
  will	
  be	
  smaller	
  or	
  better	
  designed	
  to	
  retain	
  heat.27	
  	
  	
  Another	
  common	
  example	
  of	
  passive	
  solar	
  design	
  is	
  the	
  Trombe	
  Wall,	
  as	
  shown	
  in	
  Figure	
  5.	
  The	
  wall	
  system	
  is	
  generally	
  made	
  of	
  a	
  dense	
  material	
  (such	
  as	
  stone)	
  which	
  will	
  gradually	
  absorb	
  and	
  retain	
  heat.	
  This	
  reduces	
  both	
  heating	
  and	
  cooling	
  needs	
  under	
  extreme	
  temperatures	
  as	
  it	
  ‘smooths	
  out’	
  the	
  highs	
  and	
  lows	
  in	
  temperature.	
  	
  Figure	
  5	
  also	
  demonstrates	
  another	
  important	
  principle	
  in	
  passive	
  solar	
  design:	
  cooling.	
  In	
  hotter	
  climates,	
  shading	
  during	
  peak	
  temperatures	
  (summer)	
  is	
  an	
  important	
  element	
  of	
  effective	
  solar	
  design.	
  Overhangs	
  and	
  vegetation	
  are	
  often	
  used	
  to	
  decrease	
  solar	
  gain	
  during	
  the	
  hottest	
  parts	
  of	
  the	
  year.	
  	
  	
  	
  In	
  general	
  passive	
  systems	
  require	
  an	
  additional	
  investment	
  of	
  time	
  during	
  the	
  design	
  phases	
  of	
  a	
  building,	
  but	
  cost	
  little	
  additional	
  capital	
  up-­‐front	
  and	
  generally	
  have	
  quick	
  return	
  on	
  investment.28	
  	
  	
  By	
  contrast	
  to	
  the	
  simplicity	
  of	
  passive	
  systems,	
  Active	
  Solar	
  Systems	
  require	
  some	
  sort	
  of	
  mechanical	
  component	
  or	
  electrical	
  input	
  to	
  function.	
  Active	
  solar	
  systems	
  use	
  solar	
  collectors	
  for	
  space	
  heating	
  or	
  water	
  heating.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   25 US Department of Energy, Passive solar design technology fact sheet, Department of Energy Office of Building Technology, State and Community Programs, December 2000, retrieved September 20th 2009 from <http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250>. 26 Ibid. 27 Ibid. 28 Ibid. Figure 5 – Passive Solar Example A Trombe Wall is designed to absorb solar heat and release it gradually into the home.25 	
   8	
   The	
  most	
  common	
  example	
  of	
  active	
  solar	
  systems	
  is	
  solar	
  hot	
  water.	
  These	
  systems	
  use	
  a	
  solar	
  panel	
  to	
  directly	
  heat	
  water.	
  The	
  water	
  is	
  then	
  pumped	
  into	
  the	
  building’s	
  hot	
  water	
  tank.29	
  A	
  simplified	
  solar	
  hot	
  water	
  system	
  diagram	
  is	
  shown	
  in	
  Figure	
  6	
  below.	
  	
  	
  A	
  solar	
  hot	
  water	
  collector	
  of	
  approximately	
  6	
  square	
  meters	
  can	
  meet	
  more	
  than	
  half	
  the	
  hot	
  water	
  needs	
  of	
  a	
  BC	
  family	
  during	
  the	
  course	
  of	
  a	
  year.31	
  The	
  typical	
  cost	
  for	
  such	
  a	
  system	
  is	
  approximately	
  $7,000.32	
  	
   	
  In	
  general	
  solar	
  hot	
  water	
  systems	
  appear	
  to	
  work	
  well	
  despite	
  cloud-­‐cover.	
  SolarBC	
  claims	
  that	
  60%	
  of	
  daily	
  hot	
  water	
  needs	
  can	
  be	
  met	
  on	
  cloudy	
  days	
  in	
  BC.33	
  	
  	
  Table	
  1	
  below	
  summarizes	
  some	
  of	
  the	
  similarities	
  and	
  differences	
  between	
  passive,	
  active,	
  and	
  PV	
  systems.	
  All	
  three	
  systems	
  can	
  be	
  complementary:	
  a	
  single	
  home	
  may	
  choose	
  to	
  heat	
  a	
  portion	
  of	
  its	
  heat	
  from	
  passive	
  and	
  active	
  solar	
  energy	
  while	
  also	
  mounting	
  a	
  PV	
  system	
  to	
  meet	
  a	
  portion	
  of	
  its	
  electrical	
  needs.	
  Because	
  all	
  three	
  systems	
  require	
  direct	
  sunlight	
  to	
  function	
  effectively,	
  there	
  is	
  a	
  shared	
  need	
  for	
  building	
  orientation,	
  siting,	
  and	
  planning	
  processes	
  that	
  promote	
  solar	
  access.	
  This	
  issue	
  will	
  be	
  returned	
  to	
  at	
  various	
  points	
  throughout	
  the	
  document.	
  	
  	
  	
   Table	
  1:	
  Comparing	
  Passive,	
  Active,	
  and	
  Photovoltaic	
  Solar	
  Systems	
    Characteristics of a Passive Solar building Characteristics of a Solar Hot Water System Characteristics of a Solar PV System Function Space heating Space or Water Heating Electricity Production Materials Building materials allow heat to enter (eg. windows) or store heat (eg. brick); Solar collector converts solar radiation into heat; heat is transferred to hot water tank or air entering building; Solar collector converts solar radiation in to electricity; Size and placement A large portion of the homes wall-area should face due south; At least six square meters of south-facing roof space;  At least six square meters of south-facing roof space;  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   29 Solar Direct, Solar Water Heater, retrieved March 4th 2010 from <http://www.solar-water-heater.com/~images/pt- house.gif>. 30 Ibid. 31 SolarBC, Solar hot water simplified, SolarBC website, accessed March 3rd 2010 from <http://www.solarbc.ca/learn/solar-hot-water-simplified>. 32 SolarBC, Incentives and costs, SolarBC website, accessed March 1st  2010 from <http://www.solarbc.ca/learn/incentives-costs>. 33 SolarBC, Solar in BC’s climate, SolarBC website, accessed March 1st 2010 from <http://www.solarbc.ca/learn/solar- in-bcs-climate>. Figure 6 - Solar Hot Water Diagram30 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   9	
   Policy	
  Context	
  in	
  British	
  Columbia	
   Goals	
  and	
  Objectives	
  	
  Resources	
  such	
  as	
  staff	
  time	
  and	
  funding	
  will	
  only	
  be	
  devoted	
  to	
  solar	
  PV	
  if	
  doing	
  so	
  meets	
  Provincial	
  objectives.	
  This	
  section	
  summarizes	
  the	
  key	
  Provincial	
  objectives,	
  plans,	
  and	
  strategies	
  which	
  might	
  be	
  served	
  by	
  the	
  uptake	
  of	
  grid-­‐connected	
  solar	
  PV	
  systems.	
  	
  	
  Climate	
  change	
  has	
  become	
  a	
  major	
  policy	
  issue.	
  In	
  2007	
  the	
  Province	
  committed	
  to	
  reducing	
  greenhouse	
  gas	
  emissions	
  (GHGs)	
  by	
  at	
  least	
  33%	
  below	
  2007	
  levels	
  by	
  2020	
  and	
  80%	
  below	
  2007	
  levels	
  by	
  2050.34	
  These	
  targets	
  form	
  the	
  basis	
  for	
  the	
  Climate	
  Action	
  Plan.35	
  The	
  degree	
  to	
  which	
  PV	
  can	
  reduce	
  the	
  emissions	
  of	
  greenhouse	
  gases	
  is	
  therefore	
  a	
  key	
  measure	
  of	
  their	
  utility.	
  	
  	
  Currently	
  BC	
  imports	
  some	
  electricity	
  from	
  “dirty”	
  out-­‐of-­‐province	
  sources.	
  Lower	
  water	
  availability	
  has	
  restricted	
  energy	
  available	
  from	
  hydroelectricity.	
  This	
  has	
  led	
  BC	
  to	
  become	
  a	
  net	
  importer	
  for	
  seven	
  of	
  the	
  last	
  ten	
  years.36	
  In	
  addition,	
  electricity	
  demand	
  growth	
  of	
  up	
  to	
  45%	
  is	
  expected	
  over	
  the	
  next	
  two	
  decades	
  implying	
  increasing	
  strain	
  on	
  existing	
  supplies.37	
  	
  	
  The	
  BC	
  Energy	
  Plan	
  lays	
  out	
  objectives	
  and	
  strategies	
  for	
  meeting	
  growing	
  energy	
  demand	
  while	
  reducing	
  greenhouse	
  gas	
  emissions.38	
  Relevant	
  targets	
  and	
  policies	
  laid	
  out	
  in	
  the	
  plan	
  include:	
   • Electricity	
  self-­‐sufficiency	
  “including	
  insurance”	
  by	
  2016;	
  	
   • All	
  new	
  and	
  existing	
  electricity	
  produced	
  in	
  B.C.	
  will	
  be	
  required	
  to	
  have	
  net	
  zero	
  greenhouse	
  gas	
  emissions	
  by	
  2016;	
   • Ensure	
  that	
  clean	
  or	
  renewable	
  electricity	
  continues	
  to	
  account	
  for	
  at	
  least	
  90%	
  of	
  electricity	
  generation;	
  and	
   • Continued	
  promotion	
  of	
  the	
  Standing	
  Offer	
  program	
  and	
  Net	
  Metering.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   34 BC Ministry of the Environment, Greenhouse gas reduction target act, January 2008, retrieved September 18th 2009 from <http://www.env.gov.bc.ca/epd/codes/ggrta/>. 35 Province of British Columbia, Climate action plan, June 2008, retrieved November 13th 2009 from <http://www.livesmartbc.ca/government/plan.html>. 36 BC Ministry of Energy, Mines, and Petroleum Resources, For the record: Facts on independent power production, March 25th 2009, accessed March 1st 2010 from <http://www.gov.bc.ca/fortherecord/independent/in_environment.html?src=/environment/in_environment.html>. 37 Ibid, p. 9. 38 Ibid. Net	
  Metering	
   One of the major barriers to solar PV uptake is grid interconnection. In the absence of grid-connection, electricity generated and not used immediately would either require storage in a battery or would be wasted. Net metering agreements give customers credit for electricity put back into the grid, increasing the overall efficiency and lowering the cost of PV systems. Both BC Hydro and Fortis BC now allow net metering contracts. At the end of the year, if the net balance on the meter is negative (the household has put more electricity into the grid than it has used) then the utility will pay the customer for excess electricity at market rate. At current	
  market	
  rates	
  excess	
  electricity	
  will	
  receive	
  $0.08/kWh.	
   	
   	
   10	
   The	
  Standing	
  Offer	
  and	
  Net	
  Metering	
  programs	
  represent	
  a	
  change	
  in	
  the	
  accepted	
  model	
  for	
  utility	
  provision	
  of	
  energy.	
  Where	
  previously	
  large	
  and	
  centralized	
  sources	
  of	
  energy	
  generation	
  dominated	
  utilities,	
  there	
  is	
  now	
  a	
  trend	
  towards	
  diversification	
  and	
  localization	
  of	
  energy	
  supplies.	
  In	
  many	
  jurisdictions	
  it	
  is	
  increasingly	
  common	
  to	
  see	
  Net	
  Metering	
  or	
  Feed-­‐in	
  Tariffs,	
  both	
  of	
  which	
  support	
  smaller-­‐scale	
  electricity	
  projects	
  and	
  encourage	
  them	
  to	
  sell	
  power	
  into	
  the	
  conventional	
  grid.	
  This	
  decentralized	
  model	
  is	
  often	
  referred	
  to	
  as	
  “distributed	
  generation”.39	
  	
  	
  	
  Much	
  of	
  the	
  electrical	
  energy	
  consumed	
  in	
  BC	
  is	
  used	
  in	
  buildings.40	
  The	
  desire	
  to	
  make	
  building	
  more	
  efficient	
  led	
  the	
  Province	
  to	
  develop	
  the	
  Energy	
  Efficient	
  Buildings	
  Strategy,	
  which	
  seeks	
  to	
  reduce	
  average	
  energy	
  demand	
  per	
  home	
  by	
  20%	
  by	
  2020.41	
  This	
  goal	
  at	
  least	
  partially	
  addressed	
  through	
  new	
  energy	
  efficiency	
  standards	
  under	
  the	
  rubric	
  of	
  Greening	
  the	
  Building	
  Code.42	
  Higher	
  standards	
  are	
  also	
  encouraged	
  through	
  Livesmart	
  BC,	
  an	
  incentive	
  program	
  that	
  provides	
  subsidies	
  for	
  energy	
  efficiency	
  upgrades	
  and	
  renewable	
  energy	
  technologies,	
  including	
  solar	
  PV.43	
  	
  	
  	
  	
  	
  These	
  commitments	
  for	
  electricity	
  self-­‐sufficiency	
  and	
  GHG	
  reduction	
  have	
  been	
  made	
  within	
  the	
  context	
  of	
  rapidly	
  aging	
  electrical	
  infrastructure.	
  Over	
  $3.4	
  billion	
  have	
  been	
  allocated	
  to	
  infrastructure	
  repairs	
  and	
  upgrades	
  over	
  the	
  next	
  two	
  years	
  alone.44	
  One	
  of	
  the	
  advantages	
  on-­‐site	
  generation	
  of	
  electricity	
  have	
  over	
  other	
  sources	
  is	
  that	
  they	
  do	
  not	
  require	
  distribution	
  infrastructure;	
  electricity	
  is	
  more	
  likely	
  to	
  be	
  used	
  on	
  or	
  near	
  the	
  site	
  of	
  generation.	
  This	
  creates	
  the	
  potential	
  to	
  reduce	
  expenditures	
  on	
  infrastructure	
  capacity.	
  	
  	
  Local	
  governments	
  are	
  increasingly	
  seen	
  as	
  the	
  level	
  of	
  government	
  that	
  can	
  best	
  influence	
  reductions	
  in	
  emissions.	
  The	
  Province	
  has	
  required	
  that	
  local	
  government	
  in	
  BC	
  create	
  targets,	
  actions,	
  and	
  policies	
  to	
  reduce	
  GHG	
  emissions45	
  and	
  has	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   39 N. Miller and Z. Ye, Report on Distributed Generation Penetration Study, August 2003, National Research Energy Laboratory, accesses September 13th 2010 from <www.nrel.gov/docs/fy03osti/34715.pdf>. 40 BC Ministry of Energy, Mines, and Petroleum Resources, Energy efficient buildings strategy: more action less energy, 2008, p. 9, retrieved February 20th 2010 from <http://www.energyplan.gov.bc.ca/efficiency/>. 41 Ibid. 42 BC Ministry of Housing and Social Development, Greening the BC building code: First steps, accessed August 29th 2009 from   <http://www.housing.gov.bc.ca/building/green/ >. 43 Province if British Columbia, Livesmart BC, accessed November 20th 2009 from <http://www.livesmartbc.ca/>. 44 BC Hydro, Reinvesting for generations, retrieved February 12th from <http://www.bchydro.com/news/press_centre/hot_topics/hot_topics_features/hot_topic__renewing.html>. 45 BC Ministry of Community and Rural Development, Greenhouse gas (GHG) emission reduction targets, policies and actions, accessed January 13th 2010. From http://www.cd.gov.bc.ca/lgd/greencommunities/targets.htm>. Table 2: Provincial Goals Relevant to PV Plan or Strategy Target  Climate Action Plan Reduce GHG emissions at least 33% below 2007 levels by 2020 and 80% by 2050.  BC Energy Plan Electricity self-sufficiency by 2016; At least 90% of electricity from clean/renewable sources. Energy Efficient Buildings Strategy Reduce average energy demand per home by 20 per cent by 2020.  100,000 Solar Roofs Install some type of solar energy system on 100,000 rooftops in BC by 2020. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   11	
  amended	
  	
  the	
  Local	
  Government	
  Act	
  to	
  provide	
  new	
  powers	
  for	
  the	
  regulation	
  of	
  energy	
  use.	
  These	
  powers	
  include	
  the	
  Solar	
  Hot	
  Water	
  Ready	
  standard	
  described	
  below	
  and	
  the	
  new	
  Development	
  Permit	
  Area	
  powers	
  described	
  in	
  Section	
  6	
  of	
  this	
  document.	
  	
  	
  	
  	
  The	
  Province	
  has	
  also	
  provided	
  funding	
  and	
  support	
  to	
  the	
  100,000	
  Solar	
  Roofs	
  initiative46	
  administered	
  through	
  SolarBC.	
  This	
  initiative	
  seeks	
  to	
  facilitate	
  the	
  installation	
  of	
  100,000	
  roofs	
  with	
  some	
  form	
  of	
  solar	
  energy	
  system	
  by	
  2020.	
  However,	
  the	
  program	
  is	
  focused	
  almost	
  exclusively	
  on	
  solar	
  hot	
  water	
  systems.	
  	
   Current	
  Support	
  for	
  Solar	
  Energy	
  in	
  BC	
  	
  More	
  has	
  been	
  done	
  to	
  support	
  solar	
  hot	
  water	
  systems	
  than	
  solar	
  PV	
  systems.	
  Due	
  to	
  the	
  similarities	
  between	
  these	
  forms	
  of	
  energy	
  generation,	
  some	
  of	
  the	
  policies	
  oriented	
  to	
  promoting	
  solar	
  hot	
  water	
  have	
  positive	
  knock-­‐on	
  effects	
  for	
  PV	
  systems.	
  	
  	
   Incentives	
  	
  Under	
  Livesmart	
  BC,	
  a	
  subsidy	
  of	
  $260	
  is	
  available	
  for	
  each	
  kilowatt	
  of	
  installed	
  PV	
  capacity.	
  This	
  reduces	
  system	
  costs	
  by	
  approximately	
  3%.	
  In	
  addition,	
  an	
  exemption	
  for	
  Provincial	
  Sales	
  Tax	
  is	
  provided,	
  which	
  reduces	
  system	
  costs	
  by	
  approximately	
  7%.	
  The	
  Provincial	
  Sales	
  Tax	
  exemption	
  is	
  likely	
  to	
  be	
  eliminated	
  in	
  the	
  near	
  future	
  as	
  BC	
  moves	
  to	
  the	
  Harmonized	
  Sales	
  Tax	
  (HST).47	
  	
  	
   Solar	
  Ready	
  Standards	
  	
  Under	
  the	
  Greening	
  the	
  Building	
  Code	
  initiative,	
  BC	
  Housing	
  and	
  Construction	
  Standards	
  is	
  currently	
  developing	
  a	
  “Solar	
  How	
  Water	
  Ready”	
  standard.48	
  The	
  standard	
  is	
  likely	
  to	
  include	
  the	
  following	
  requirements:	
   • Required	
  roof	
  space	
  for	
  solar	
  collector,	
  an	
  area	
  of	
  at	
  least	
  2.7	
  square	
  meters;	
   • Mandatory	
  roof	
  loading	
  requirement	
  suitable	
  to	
  solar	
  panels;	
   • Provisions	
  for	
  a	
  conduit	
  running	
  between	
  the	
  roof	
  and	
  the	
  utility	
  room.	
  The	
  conduit	
  would	
  facilitate	
  the	
  installation	
  of	
  electrical	
  cables	
  and	
  plumbing	
  equipment,	
  reducing	
  the	
  cost	
  of	
  retrofits.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   46 Ministry of Energy, Mines, and Petroleum Resources, Energy in action, retrieved September 30th 2009 from <http://www.energyplan.gov.bc.ca/bcep/default.aspx?hash=12>. 47 G. Duancey, ‘HST should have been an ecologically harmonized sales tax,’ BC Sustainable Energy Association, August 24th 2009, retrieved February 1st 2010 from <http://www.bcsea.org/blog/guy-dauncey/2009/08/24/hst-should- have-been-ecologically-harmonized-sales-tax>. 48 BC Ministry of Housing and Social Development, Op. cit. 100,000 Solar Roofs for B.C. The goal of the project is to see the installation of solar roofs and walls for hot water heating and photovoltaic electricity generation on 100,000 buildings around B.C. by 2020. More	
  information	
  	
  can	
  be	
  found	
  at	
  	
  www.solarbc.ca.	
  	
   	
   12	
   	
  While	
  the	
  standard	
  is	
  focused	
  on	
  hot	
  water	
  it	
  may	
  also	
  aid	
  in	
  the	
  installation	
  of	
  solar	
  PV	
  systems.	
  Owing	
  to	
  its	
  unique	
  regulatory	
  powers,	
  the	
  City	
  of	
  Vancouver	
  has	
  already	
  implemented	
  a	
  Solar	
  Ready	
  standard	
  similar	
  to	
  the	
  Provincial	
  standard.	
  The	
  City	
  explicitly	
  states	
  that	
  the	
  Solar	
  Ready	
  standard	
  will	
  lower	
  the	
  cost	
  of	
  retrofitting	
  both	
  solar	
  hot	
  water	
  and	
  solar	
  PV	
  systems.49	
  	
   Net	
  Metering	
   	
  	
  Net	
  Metering	
  increases	
  the	
  efficiency	
  of	
  PV	
  systems	
  by	
  eliminating	
  the	
  need	
  for	
  a	
  battery	
  to	
  store	
  electricity.	
  The	
  process	
  of	
  grid	
  interconnection	
  in	
  BC	
  is	
  relatively	
  straight	
  forward	
  and	
  takes	
  approximately	
  two	
  months.	
  An	
  important	
  part	
  of	
  the	
  process	
  is	
  the	
  electrical	
  permit,	
  which	
  must	
  be	
  received	
  from	
  the	
  duly	
  authorized	
  Electrical	
  Inspection	
  Authority	
  for	
  the	
  area.	
  None	
  of	
  the	
  key	
  informants	
  interviewed	
  identified	
  the	
  permitting	
  or	
  grid	
  interconnection	
  processes	
  as	
  significant	
  barriers	
  to	
  PV	
  uptake.	
  Details	
  regarding	
  the	
  process	
  of	
  Grid	
  Interconnection	
  are	
  included	
  in	
  Appendix	
  A	
  of	
  this	
  document.	
  	
  	
   Table	
  3:	
  	
  Provincial	
  Incentives	
  Promoting	
  Solar	
  Energy	
  Systems	
  in	
  BC	
   Support	
   Solar	
  hot	
  water	
   Solar	
  PV	
   Comments	
  PST	
  Exemptions	
   7%	
  price	
  reduction	
   7%	
  price	
  reduction	
   At	
  risk,	
  as	
  there	
  are	
  currently	
  no	
  provisions	
  for	
  continuing	
  the	
  exemption	
  under	
  the	
  HST	
  	
  Subsidies	
   $1,250	
  regardless	
  of	
  system	
  size	
  	
  (Of	
  these	
  funds,	
  $125	
  is	
   provided	
  through	
   Livesmart	
  BC	
  and	
  	
  $1,000	
   through	
  SolarBC.)	
   $260	
  per	
  kW,	
  up	
  to	
  	
  a	
  maximum	
  of	
   $1300	
  	
   Combined	
  subsidies	
  for	
  Solar	
  Hot	
  Water	
  amount	
  to	
  half	
  of	
  total	
  system	
  costs,	
  while	
  the	
  subsidy	
  for	
  Solar	
  PV	
  covers	
  approximately	
  3%	
  of	
  installed	
  PV	
  system	
  costs.	
   New	
  powers	
  for	
  local	
  government	
   Provision	
  for	
  Solar	
  Hot	
  Water	
  Ready	
  	
   No	
  provision	
  for	
  Solar	
  Ready	
   It	
  appears	
  that	
  “solar	
  ready”	
  will	
  assist	
  with	
  the	
  installation	
  of	
  either	
  type	
  of	
  system.	
  However,	
  the	
  amount	
  of	
  roof	
  space	
  assigned	
  for	
  the	
  installation	
  of	
  solar	
  panels	
  is	
  relatively	
  small	
  compared	
  to	
  likely	
  PV	
  system	
  sizes.	
  	
  	
  	
   Federal	
  Initiatives	
  	
  Federal	
  support	
  is	
  allocated	
  for	
  standardized	
  training	
  for	
  solar	
  installers	
  across	
  Canada,	
  including	
  solar	
  PV	
  installers.	
  Providing	
  consistent	
  quality	
  among	
  installers	
  can	
  benefit	
  the	
  solar	
  PV	
  market	
  by	
  decreasing	
  the	
  chances	
  of	
  shoddy	
  installations.50	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   49 City of Vancouver, Pre-piping for roof-mounted Solar Energy generation, retrieved February 13th 2010 from <http://vancouver.ca/commsvcs/cbofficial/greenbuildings/greenhomes/solarenergy.htm>. 50 Association of Canadian Community Colleges,Government of Canada supports training for solar energy workers, December 8th 2008, retreived January 10th 2010 from <http://www.accc.ca/english/publications/media/0812_solar_energy_workers.htm>. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   13	
  	
   3. Solar	
  Resources	
  in	
  British	
  Columbia	
   	
  BC	
  has	
  defined	
  a	
  clear	
  mandate	
  to	
  reduce	
  GHG	
  emissions	
  by	
  meeting	
  growing	
  demand	
  with	
  clean	
  and	
  renewable	
  energy	
  generating	
  technologies.	
  The	
  potential	
  for	
  small-­‐scale	
  PV	
  systems	
  to	
  meet	
  these	
  objectives	
  will	
  likely	
  determine	
  the	
  willingness	
  to	
  devote	
  resources	
  in	
  promoting	
  PV.	
  One	
  of	
  the	
  potential	
  constraints	
  on	
  the	
  viability	
  of	
  residential	
  PV	
  systems	
  to	
  address	
  these	
  goals	
  is	
  the	
  potential	
  quantity	
  of	
  electricity	
  that	
  can	
  be	
  produced	
  through	
  this	
  type	
  of	
  system.	
  	
  	
  Solar	
  PV	
  potential	
  differs	
  by	
  region,	
  locality,	
  and	
  by	
  site-­‐specific	
  conditions.	
  Even	
  the	
  most	
  efficient	
  solar	
  PV	
  technology	
  will	
  not	
  be	
  able	
  to	
  compensate	
  for	
  a	
  lack	
  of	
  sunlight.	
  This	
  section	
  of	
  the	
  document	
  explores	
  solar	
  PV	
  potential	
  in	
  BC	
  at	
  the	
  regional	
  scale	
  and	
  describes	
  some	
  of	
  the	
  site-­‐specific	
  issues	
  related	
  to	
  shading	
  and	
  solar	
  access.	
  	
  	
  	
   Available	
  Solar	
  Energy:	
  Regional	
  Scale	
  	
  While	
  much	
  of	
  BC	
  has	
  a	
  reputation	
  for	
  rain,	
  it	
  is	
  commonly	
  stated	
  that	
  BC	
  has	
  as	
  much	
  or	
  more	
  sunlight	
  than	
  the	
  world’s	
  leaders	
  (Japan	
  and	
  Germany).515253	
  As	
  BC	
  is	
  approximately	
  2.5	
  times	
  larger	
  than	
  either	
  country,	
  a	
  more	
  refined	
  understanding	
  of	
  the	
  climactic	
  factors	
  affecting	
  Solar	
  PV	
  in	
  British	
  Columbia	
  is	
  helpful.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   51 BC Ministry of Energy, Mines, and Petroleum Resources, What is solar energy?, retrieved November 20th 2009 from < http://www.empr.gov.bc.ca/RET/RenewableEnergyTechnologies/Solar/Pages/default.aspx>. 52  SolarBC, Solar BC incentives double up: $2000 now available for new buildings and existing homes, accessed February 3rd 2010 from < http://www.solarbc.ca/blog/liz-kelly/2010/02/01/solarbc-incentives-double >. 53Society Promoting Environmental Conservation, Solar technology tours at SPEC, accessed February 1st 2010 from <http://www.spec.bc.ca/article/article.php?articleID=488>. Figure 7 - Solar Resources in British Columbia The map shows photovoltaic potential in kWh per kW of installed capacity. The Provincial average hides substantial variation in solar availability. 	
   14	
   Natural	
  Resources	
  Canada	
  hosts	
  a	
  Photovoltaic	
  Potential	
  and	
  Solar	
  Resource	
  Map	
  of	
  Canada.54	
  The	
  interactive	
  map	
  provides	
  high-­‐level	
  regional	
  data	
  for	
  solar	
  PV	
  potential,	
  measured	
  in	
  kilowatt-­‐hours	
  (kWh)	
  of	
  energy	
  per	
  kilowatt	
  (kW)	
  of	
  installed	
  capacity.55	
  Information	
  can	
  be	
  derived	
  based	
  on	
  different	
  solar	
  panel	
  orientations	
  (tilt),	
  and	
  users	
  may	
  also	
  search	
  the	
  data	
  by	
  individual	
  municipality	
  to	
  information	
  on	
  local	
  PV	
  potential.	
  	
  A	
  map	
  of	
  BC	
  is	
  shown	
  in	
  Figure	
  7	
  above.	
  	
  	
  On	
  average,	
  the	
  west	
  and	
  northwest	
  of	
  the	
  province	
  have	
  substantially	
  less	
  solar	
  resources	
  available	
  than	
  the	
  east	
  and	
  southeast.	
  Other	
  areas	
  of	
  the	
  province	
  fall	
  in	
  between.	
  The	
  more	
  populous	
  south	
  of	
  BC	
  has	
  solar	
  exposure	
  comparable	
  to	
  some	
  jurisdictions	
  that	
  are	
  aggressively	
  promoting	
  solar	
  energy,	
  such	
  as	
  Germany56	
  or	
  southern	
  Ontario.5758	
  However,	
  this	
  generalization	
  hides	
  substantial	
  regional	
  variation	
  within	
  BC.	
  	
  	
  	
  	
  	
  	
  	
   	
  Table	
  4	
  shows	
  the	
  PV	
  potential	
  for	
  selected	
  BC	
  municipalities.	
  The	
  figures	
  demonstrate	
  the	
  range	
  of	
  variation	
  in	
  PV	
  potential	
  between	
  different	
  municipalities	
  within	
  the	
  province.	
  For	
  example,	
  Prince	
  Rupert	
  has	
  some	
  of	
  the	
  lowest	
  PV	
  potential	
  in	
  BC	
  while	
  Sparwood	
  has	
  some	
  of	
  the	
  highest.	
  There	
  is	
  a	
  difference	
  of	
  approximately	
  40%	
  in	
  solar	
  PV	
  potential	
  between	
  these	
  two	
  municipalities.	
  This	
  gap	
  is	
  wide	
  enough	
  that	
  it	
  could	
  affect	
  the	
  business	
  case	
  of	
  solar	
  PV:	
  revenue59	
  will	
  accrue	
  40%	
  more	
  quickly	
  for	
  system	
  owners	
  in	
  some	
  municipalities	
  than	
  others.	
  	
  	
  	
  	
  For	
  the	
  remainder	
  of	
  the	
  paper,	
  calculations	
  will	
  be	
  made	
  assuming	
  solar	
  potential	
  of	
  1,000	
  kWh	
  for	
  each	
  kW	
  of	
  installed	
  solar	
  PV	
  capacity	
  in	
  BC	
  (1000	
  kWh/kW).	
  This	
  figure	
  broadly	
  reflects	
  the	
  provincial	
  average,	
  although	
  PV	
  potential	
  ranges	
  20%	
  higher	
  or	
  lower	
  than	
  this	
  figure	
  depending	
  where	
  in	
  BC	
  the	
  panel	
  is	
  being	
  installed.	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   54 Natural Resources Canada, Photovltaic Potential and Solar Resource Map of Canada, accessed November 29th 2009 from  <https://glfc.cfsnet.nfis.org/mapserver/pv/index_e.php>. 55 For example, with annual solar potential of 700kWh/kW, a two kW PV system will likely yield 1400 kWh of electricity each year. 56 European Commission, Global irradiation and solar electricity potential: Germany, retrieved January 3rd 2010 from <http://re.jrc.ec.europa.eu/pvgis/cmaps/eu_opt/pvgis_solar_optimum_DE.png>. 57 Natural Resources Canada, Op. cit. 58 Compared to other jurisdictions with more sun, such as California, solar PV potential in BC is relatively low. 59 Under Net Metering revenue is realized through the avoided cost of grid-based electricity. Table 4 – Solar PV Potential for Selected BC Municipalities (south-facing panel tilted at latitude -15°) Municipality Region PV Potential (kWh/kW) Kelowna Okanagan 1133 Vancouver Victoria South-Western BC 1026 1110 Sparwood South-Eastern BC 1240 Fort Nelson North-Eastern BC 1077  Prince Rupert North and Central- Western BC 787 Provincial Average All ~1,000 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   15	
   Winter	
  and	
  Solar	
  Availability	
  	
  Winter	
  weather	
  can	
  affect	
  PV	
  panel	
  performance.	
  One	
  case	
  study	
  showed	
  that	
  between	
  .3%	
  and	
  2.7%	
  of	
  total	
  annual	
  solar	
  output	
  capacity	
  could	
  be	
  lost	
  to	
  snow	
  cover,	
  depending	
  on	
  yearly	
  snowfall	
  patterns.60	
  Rapid	
  snowfall	
  is	
  the	
  mostly	
  likely	
  to	
  affect	
  performance	
  and	
  can	
  entirely	
  cover	
  panels,	
  stopping	
  panels	
  from	
  functioning.	
  However,	
  snow	
  buildup	
  tends	
  to	
  shed	
  after	
  approximately	
  24	
  hours	
  as	
  a	
  water	
  slick	
  builds	
  up.61	
  Careful	
  panel	
  orientation	
  can	
  also	
  reduce	
  buildup,	
  and	
  panel	
  owners	
  may	
  also	
  clear	
  snow	
  with	
  a	
  broom	
  or	
  other	
  reaching	
  object.62	
  	
  	
  Complicating	
  matters	
  further	
  is	
  the	
  fact	
  that	
  winter	
  conditions	
  can	
  also	
  increase	
  PV	
  system	
  performance.63	
  Snow	
  covering	
  the	
  ground	
  creates	
  glare,	
  which	
  can	
  increase	
  the	
  amount	
  of	
  solar	
  energy	
  striking	
  solar	
  panels.	
  At	
  the	
  same	
  time,	
  the	
  photovoltaic	
  reaction	
  occurs	
  more	
  easily	
  in	
  lower	
  temperatures	
  than	
  higher	
  temperatures.	
  While	
  these	
  factors	
  will	
  not	
  compensate	
  for	
  the	
  lower	
  solar	
  availability	
  during	
  the	
  winter,	
  they	
  do	
  imply	
  that	
  residential	
  solar	
  PV	
  systems	
  are	
  suitable	
  to	
  colder	
  regions	
  of	
  BC.	
  	
  	
  	
  	
  	
  	
  	
  	
   Shading	
  and	
  Solar	
  Access	
  	
  Regional	
  PV	
  potential	
  does	
  not	
  capture	
  site-­‐specific	
  solar	
  availability,	
  which	
  is	
  dictated	
  largely	
  by	
  shading.	
  PV	
  systems	
  can	
  only	
  function	
  with	
  direct	
  access	
  to	
  sunlight	
  and	
  will	
  be	
  adversely	
  affected	
  by	
  obstructions.	
  Much	
  like	
  a	
  string	
  of	
  Christmas	
  lights,	
  problems	
  in	
  one	
  part	
  of	
  a	
  solar	
  array	
  can	
  ‘turn	
  off’	
  large	
  portions	
  of	
  the	
  system.64	
  The	
  disruption	
  is	
  not	
  proportionate	
  to	
  the	
  amount	
  of	
  shading:	
  shading	
  of	
  10%	
  of	
  a	
  module	
  can	
  reduce	
  system	
  output	
  by	
  100%.65	
  	
  	
  	
  At	
  the	
  site-­‐specific	
  level,	
  tools	
  have	
  been	
  developed	
  for	
  calculating	
  how	
  existing	
  obstructions	
  will	
  affect	
  solar	
  performance.	
  SolarBC	
  provides	
  a	
  free	
  tool	
  at	
  http://www.solarrating.ca/	
  that	
  calculates	
  the	
  effect	
  of	
  building	
  location,	
  orientation,	
  roof	
  slope,	
  and	
  shading	
  factors.	
  	
  	
  Specialized	
  hand-­‐tools	
  for	
  calculating	
  solar	
  path	
  and	
  assessing	
  shading	
  variables	
  are	
  also	
  available	
  and	
  virtually	
  any	
  qualified	
  installer	
  will	
  provide	
  a	
  free	
  site-­‐assessment.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   60 G. Becker et al., An approach to the impact of snow on the yield of grid-connected PV systems, n.d., retrieved January 30th 2010 from <www.sev-bayern.de/content/snow.pdf>. 61 Canadian Solar Industries Assocation, Frequently asked questions, CANSIA website, accessed March 1st 2010 from <http://www.canadian-solar.ca/faq/ >. 62 Ibid. 63 Ibid. 64 R. Muenster, ‘Shade happens,’ Renewable Energy World, February 2nd 2009, accessed March 2nd 2010 from <http://www.renewableenergyworld.com/rea/news/article/2009/02/shade-happens-54551>. 65 Canada Mortgage and Housing Corporation, Photovoltaics (PVs), n.d., accessed February 19th, 2010, from <http://www.cmhc-schl.gc.ca/en/co/maho/enefcosa/enefcosa_003.cfm> 	
   16	
   Shading	
  obstructions	
  may	
  be	
  located	
  on-­‐site,	
  such	
  as	
  from	
  a	
  chimney	
  or	
  a	
  tree,	
  which	
  casts	
  a	
  shadow	
  onto	
  the	
  south-­‐facing	
  portion	
  of	
  a	
  roof.	
  More	
  often	
  shading	
  is	
  from	
  neighboring	
  properties	
  and	
  buildings.	
  During	
  the	
  lengthy	
  life	
  of	
  a	
  solar	
  system	
  (20-­‐40	
  years)	
  changes	
  to	
  neighboring	
  property	
  may	
  block	
  direct	
  solar	
  access.	
  In	
  BC	
  there	
  is	
  no	
  legal	
  guarantee	
  that	
  solar	
  access	
  will	
  be	
  protected	
  over	
  time,	
  leaving	
  conflicts	
  open	
  to	
  court	
  cases.	
  This	
  lack	
  of	
  protection	
  for	
  solar	
  access	
  creates	
  a	
  serious	
  risk	
  for	
  potential	
  system	
  owners	
  and	
  may	
  present	
  a	
  barrier	
  to	
  solar	
  PV	
  uptake.6667	
  	
  	
  	
  A	
  variety	
  of	
  planning	
  tools	
  are	
  currently	
  available	
  for	
  Local	
  Governments	
  in	
  BC	
  to	
  encourage	
  solar	
  access,	
  including	
  zoning	
  and	
  development	
  permit	
  areas.	
  These	
  tools	
  are	
  explored	
  in	
  Section	
  6	
  of	
  this	
  document.	
  	
   Estimating	
  Residential	
  PV	
  Potential	
  in	
  British	
  Columbia	
  	
  	
  BC	
  Hydro	
  has	
  estimated	
  that	
  one	
  third	
  of	
  rooftops	
  in	
  BC	
  can	
  support	
  some	
  type	
  of	
  solar	
  system.69	
  At	
  last	
  census	
  there	
  were	
  approximately	
  850,000	
  detached	
  or	
  semi-­‐detached	
  homes	
  in	
  the	
  Province.70	
  	
  Assuming	
  that	
  one	
  third	
  of	
  these	
  homes	
  could	
  support	
  systems	
  between	
  1kW	
  and	
  3kW,	
  this	
  suggests	
  a	
  range	
  between	
  	
  283,000	
  megawatt-­‐hours	
  and	
  850,000	
  megawatt-­‐hours	
  of	
  energy	
  could	
  be	
  produced	
  every	
  year.71	
  	
  	
  Residential	
  grid-­‐connected	
  PV	
  systems	
  could	
  aid	
  with	
  the	
  goal	
  of	
  becoming	
  self-­‐sufficient	
  in	
  electricity	
  within	
  the	
  Province,	
  although	
  as	
  indicated	
  above	
  the	
  solar	
  potential	
  for	
  some	
  regions	
  is	
  much	
  higher	
  than	
  others.	
  This	
  suggests	
  a	
  need	
  to	
  look	
  at	
  comparative	
  regional	
  advantages	
  for	
  energy	
  production,	
  and	
  not	
  a	
  blanket-­‐approach	
  to	
  PV	
  uptake.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   66  C. Higgins, Personal communication with the author, February 11th, 2010. 67 R. Kruhlak, A legal review of access to sunlight in sunny Alberta, Edmonton, 1981, retrieved March 1st 2010 from <http://www.cansia.ca/government-regulatory-issues/archives>. 68 Sustainable Energy Authority Victoria, Info fact sheet: Siting and solar access, n.d., retrieved March 3rd from <www.sustainability.vic.gov.au/resources/.../Siting_and_solar_access.pdf>. 69 Community Energy Association Powering our communities: Renewable energy guide for local governments in British Columbia, 2008, p.12, retrieved November 12th 2009 from <http://www.communityenergy.bc.ca/>. 70 Canada Mortgage and Housing Corporation, Occupied Housing Type by Structure Type and Tenure, 1991-2006: British Columbia, retrieved March 1st 2010 from <http://www.cmhc.ca/en/corp/about/cahoob/data/data_007.cfm>. 71 These statistics should be treated with caution due to the assumptions regarding the suitability of rooftops to PV systems. The data is intended only to illustrate that a significant quantity of energy could be generated by residential PV systems within the province. This estimate should be supplemented by higher-quality data when available.  Figure 8 - Shadows can extend 2-3 times the height of the object during winter sun.68 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   17	
   4. Environmental	
  Impacts	
  of	
  Residential	
  Solar	
   Photovoltaics	
  in	
  British	
  Columbia	
  	
  As	
  indicated	
  in	
  Section	
  3,	
  there	
  is	
  a	
  substantial	
  quantity	
  of	
  residential	
  solar	
  PV	
  potential	
  within	
  BC.	
  Where	
  Solar	
  PV	
  offsets	
  energy	
  produced	
  from	
  fossil-­‐fuels,	
  such	
  as	
  coal	
  and	
  natural	
  gas,	
  it	
  is	
  likely	
  to	
  provide	
  substantial	
  environmental	
  benefits.	
  But	
  how	
  meaningful	
  is	
  this	
  claim	
  in	
  British	
  Columbia,	
  which	
  receives	
  it	
  energy	
  primarily	
  through	
  hydroelectricity?	
  	
  	
  This	
  section	
  of	
  the	
  document	
  provides	
  a	
  literature	
  review	
  and	
  brief	
  analysis	
  of	
  the	
  environmental	
  issues	
  related	
  to	
  residential	
  PV	
  installations	
  and	
  how	
  these	
  might	
  be	
  manifested	
  in	
  the	
  BC	
  context.	
  Specifically,	
  the	
  effect	
  of	
  PV	
  production	
  and	
  use	
  on	
  GHG	
  emissions	
  and	
  the	
  release	
  of	
  toxins	
  are	
  explored.	
  A	
  brief	
  discussion	
  of	
  end-­‐of-­‐life	
  management	
  (recycling)	
  is	
  also	
  included	
  as	
  this	
  process	
  can	
  further	
  reduce	
  emissions.	
  	
  	
  	
   Greenhouse	
  Gas	
  Emissions	
  Profile	
  for	
  Residential	
  Solar	
  PV	
  	
   Life	
  Cycle	
  Analysis:	
  	
  The	
  BC	
  energy	
  plan	
  assumes	
  zero	
  emissions	
  from	
  energy	
  provided	
  by	
  solar.72	
  While	
  it	
  is	
  true	
  that	
  the	
  operation	
  of	
  solar	
  PV	
  does	
  not	
  produce	
  greenhouse	
  gas	
  emissions	
  during	
  operation,	
  there	
  are	
  indirect	
  emissions	
  associated	
  with	
  other	
  stages	
  in	
  the	
  system’s	
  life-­‐cycle.	
  	
  	
  The	
  most	
  appropriate	
  method	
  for	
  exploring	
  environmental	
  impact	
  is	
  often	
  through	
  a	
  life-­‐cycle	
  analysis	
  (LCA).	
  LCAs	
  attempt	
  to	
  quantify	
  the	
  environmental	
  impacts	
  of	
  a	
  product	
  or	
  service.	
  When	
  an	
  LCA	
  is	
  performed,	
  results	
  can	
  vary	
  widely	
  based	
  on	
  the	
  scope	
  (“system	
  boundaries”)	
  of	
  the	
  analysis.	
  For	
  instance,	
  emissions	
  related	
  to	
  transport	
  might	
  be	
  included	
  in	
  an	
  LCA	
  while	
  emissions	
  related	
  to	
  disposal	
  might	
  not.	
  In	
  addition,	
  certain	
  assumptions	
  made	
  about	
  the	
  product	
  (eg.	
  product	
  lifespan)	
  may	
  substantially	
  affect	
  the	
  outcomes	
  of	
  the	
  LCA.	
  In	
  general	
  a	
  more	
  thorough	
  and	
  more	
  robust	
  measure	
  will	
  paint	
  a	
  more	
  accurate	
  picture	
  of	
  emissions	
  and	
  will	
  better	
  allow	
  comparison	
  between	
  different	
  technologies.73	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   72 BC Ministry of Energy, Mines, and Petroleum Resources, Energy plan: A vision for clean energy leadership, 2007, p. 25, retrieved February 20th 2010 from <http://www.energyplan.gov.bc.ca/>. 73 For example, the emissions associated with a solar panel’s life-cycle change substantially based on manufacturing efficiency or the type of solar panel used. Factors such as the energy used by construction workers driving to a worksite every morning can even be included in the analysis, although such an inclusion would represent a fairly wide system boundary. 	
   18	
   Carbon	
  dioxide	
  equivalent	
  (Co2e)	
  has	
  become	
  the	
  standard	
  metric	
  for	
  measuring	
  greenhouse	
  gas	
  emissions,	
  and	
  can	
  be	
  calculated	
  per	
  unit	
  of	
  energy.	
  For	
  PV	
  the	
  most	
  appropriate	
  unit	
  to	
  use	
  for	
  small	
  scale	
  systems	
  is	
  Co2e/kWh.	
  This	
  metric	
  represents	
  the	
  total	
  emissions	
  used	
  to	
  produce	
  and	
  assemble	
  a	
  solar	
  panel	
  and	
  its	
  associated	
  components,	
  and	
  then	
  amortizes	
  these	
  emissions	
  over	
  the	
  panel’s	
  useful	
  life.	
  This	
  type	
  of	
  emissions/energy	
  ratio	
  is	
  often	
  referred	
  to	
  as	
  an	
  “emissions	
  factor”,	
  and	
  it	
  provides	
  a	
  standard	
  by	
  which	
  different	
  energy	
  sources	
  can	
  be	
  measured.	
  	
  	
  	
  	
  	
  	
  The	
  author	
  reviewed	
  several	
  LCAs	
  for	
  residential	
  solar	
  PV	
  systems.	
  The	
  results	
  are	
  compared	
  in	
  Table	
  5	
  below.	
  These	
  studies	
  were	
  selected	
  because	
  they	
  included	
  similar	
  or	
  identical	
  assumptions	
  regarding	
  scope	
  (system	
  boundary)	
  and	
  panel	
  life.	
  Key	
  assumptions74	
  included	
  the	
  following:	
  	
  	
   • Emissions from materials	
  extraction,	
  manufacturing, and production of system were included;	
   • Balance of System (BOS) components such as aluminum frames and inverters were included; and • Panel life was assumed at or around 30 years.  	
  The	
  use	
  of	
  similar	
  assumptions	
  allows	
  longitudinal	
  comparison	
  between	
  studies.	
  Results	
  indicate	
  a	
  decline	
  in	
  life-­‐cycle	
  emissions	
  over	
  time	
  which	
  correlated	
  with	
  when	
  the	
  systems	
  were	
  produced.	
  This	
  is	
  likely	
  due	
  to	
  increases	
  in	
  manufacturing	
  efficiency	
  (less	
  energy	
  required)	
  and	
  increasing	
  solar	
  cell	
  efficiency	
  (longer	
  life;	
  higher	
  energy	
  production).	
  For	
  example,	
  a	
  Japanese	
  study	
  published	
  in	
  199775	
  showed	
  91	
  grams	
  of	
  Co2e/kWh,	
  while	
  most	
  of	
  the	
  more	
  recent	
  studies	
  predict	
  approximately	
  half	
  these	
  emissions.	
  	
  	
  By	
  far	
  the	
  largest	
  source	
  of	
  emissions	
  during	
  a	
  PV	
  system’s	
  life-­‐cycle	
  is	
  the	
  energy-­‐intensive	
  production	
  of	
  silicon.	
  In	
  accordance	
  with	
  industry	
  claims,	
  thin-­‐film	
  technologies	
  appear	
  to	
  have	
  substantially	
  lower	
  life-­‐cycle	
  emissions.	
  Emissions	
  could	
  be	
  even	
  lower	
  with	
  BIPV,	
  which	
  eliminates	
  the	
  need	
  for	
  a	
  frame	
  and	
  avoids	
  the	
  use	
  of	
  other	
  products.	
  The	
  amount	
  of	
  avoided	
  emissions	
  from	
  BIPV	
  will	
  be	
  quite	
  different	
  on	
  a	
  case-­‐by-­‐case	
  basis	
  as	
  they	
  depend	
  highly	
  on	
  the	
  material	
  being	
  replaced.	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   74 A limitation of most of these studies is that they did not include emissions associated with end of life management (decommissioning, recycling, and disposal) of the system. This issue will be explored in the next section of the document. 75 K. Kato, A. Murata, and K. Sakuta.,‘An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon.’ Solar Energy Materials and Solar Cells, 1997, Vol. 47, pp. 95–100. Life-cycle emissions from recently produced conventional silicon panels will be approximately 40-50 grams of Co2e/kWh while thin-film would be closer to 25 grams Co2e/kWh. These emissions would likely be lower if the systems were produced using a higher percentage of renewable energy.	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   19	
   Table	
  5	
  -­	
  Summary	
  of	
  Life	
  Cycle	
  Analyses	
  for	
  GHG	
  Emissions	
  from	
  Residential	
  Roof-­‐Mounted	
  Photovoltaic	
  Systems.	
   Year	
  of	
   Study	
   Author/s	
   Location	
   Module	
   Type	
   Co2e/ kWh	
   Study	
  Assumptions	
   1997	
   Kato,	
  Murata,	
  and	
  Sakuta76	
   Japan	
   C-­‐Si	
  	
   91	
   Assumes	
  1427	
  kWh	
  per	
  square	
  meter	
  of	
  annual	
  solar	
  insolation.	
   2006	
  (panel	
  installed	
  in	
  2002)	
   	
  Kannan	
  et.	
  al.77	
   Singapore	
   Mono-­‐Si	
  	
   68-­‐217	
   Higher	
  emissions	
  explained	
  by	
  different	
  assumptions	
  about	
  emissions	
  from	
  electricity	
  (global	
  average),	
  emissions	
  from	
  recycling,	
  date	
  of	
  panel	
  construction	
  (2002),	
  and	
  lower	
  assumed	
  manufacturing	
  efficiency	
  than	
  other	
  studies.	
  	
   2006	
   Hondo78	
   Japan	
   P-­‐Sci	
   A-­Sci*	
   44-­‐53	
  26	
   Some	
  details	
  of	
  LCA	
  system	
  boundaries	
  not	
  specified.	
  	
  	
   2006	
   	
  	
  Fthenakis	
  &	
  Alsema79	
   Europe	
  &	
  US	
   Multi-­‐si	
  	
  Ribbon	
  Mono-­‐Si	
   CdTe*	
  	
  	
   37	
  30	
  45	
  21	
  	
  	
   Assumes	
  1300	
  kWh	
  per	
  meter	
  square	
  of	
  annual	
  solar	
  insolation.	
  	
  Study	
  looked	
  at	
  11	
  European	
  and	
  US	
  PV	
  manufacturers;	
  Estimate	
  vary	
  substantially	
  depending	
  where	
  panels	
  are	
  produced	
  (US-­‐made	
  panels	
  have	
  almost	
  twice	
  the	
  embodied	
  GHG	
  emissions	
  due	
  to	
  different	
  electricity	
  mix)	
  	
  	
  	
   2008	
   Fthenakis,	
  Kim,	
  &	
  Alsema80	
   USA	
   Multi-­‐Si	
  Ribbon	
  Mono-­‐Si	
   CdTe*	
   52	
  42	
  54	
  25	
   	
  Assumes	
  1700kWh	
  per	
  square	
  meter	
  of	
  annual	
  solar	
  insolation.	
   2008	
   Suna	
  et.	
  al.81	
   Canada	
   Sc-­‐Si	
  Mc-­‐Si	
   52	
  41	
   Assumes	
  panels	
  produced	
  in	
  Canada	
  based	
  on	
  average	
  electricity	
  mix.	
  	
   Average	
  for	
  conventional	
  silicon	
  panels	
  produced	
  since	
  2005:	
  44	
  grams	
  Co2e/kWh	
  Average	
  for	
  thin-­‐film	
  panels:	
  23	
  grams	
  Co2e/kWh	
   *	
  indicates	
  thin-­‐film	
  technologies.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   76 K. Kato, A. Murata, and K. Sakuta, Op. cit. 77 R. Kannan, et al. ‘Life cycle assessment study of solar PV systems: An example of a 2.7kW distributed solar PV system in Singapore,’ Solar Energy 80, 2006, pp. 555–563. 78 H. Hondo, ‘Life cycle GHG emission analysis of power generation systems: Japanese case’, Energy, Vol. 30, 2005, pp. 2042-2056. 79 V. Fthenakis and E. Alsema, ‘Photovoltaics energy payback times, greenhouse gas emissions, and external costs: 2004–early 2005 status’, Progress in Photovoltaics: Research and Applications 14, 2006. 80 V. Fthenakis, H. Kim, and E. Alsema, ‘Emissions from photovoltaic life cycles,’ Environmental Science & Technology 42, 2008, pp. 2168–2174. 81 D. Suna, R. Haas and A. Lopez Polo, ‘Analysis of pv system’s values beyond energy: by country and stakeholder’, Photovoltaic Power Systems Program, International Energy Association, p.  24. Retrieved January 3rd, 2010, from <www.iea-pvps.org/products/download/rep10_02.pdf>. 	
   20	
   For	
  operating	
  conditions	
  and	
  available	
  solar	
  energy	
  in	
  BC,	
  it	
  appears	
  reasonable	
  to	
  assume	
  that	
  emissions	
  from	
  energy	
  produced	
  by	
  conventional	
  silicone	
  panels	
  will	
  be	
  approximately	
  40-­‐50	
  grams	
  of	
  Co2e/kWh	
  while	
  thin-­‐film	
  CdTe	
  would	
  be	
  closer	
  to	
  25	
  Co2e/kWh.82	
  It	
  is	
  important	
  to	
  note	
  that	
  these	
  life-­‐cycle	
  emissions	
  can	
  differ	
  substantially	
  between	
  manufacturers.	
  The	
  life-­‐cycle	
  emissions	
  primarily	
  reflect	
  the	
  energy	
  used	
  to	
  produce	
  the	
  panels	
  and	
  other	
  system	
  components,	
  therefore	
  these	
  emissions	
  can	
  differ	
  substantially	
  based	
  on	
  where	
  the	
  components	
  are	
  produced.	
  	
  For	
  example,	
  panels	
  produced	
  in	
  the	
  US	
  are	
  associated	
  with	
  more	
  emissions	
  than	
  panels	
  produced	
  in	
  Europe.83	
  If	
  a	
  PV	
  system	
  were	
  produced	
  in	
  BC,	
  or	
  in	
  another	
  jurisdiction	
  that	
  primarily	
  draws	
  on	
  clean	
  energy,	
  life-­‐cycle	
  emissions	
  would	
  be	
  lowered	
  significantly.	
  	
  	
  In	
  virtually	
  all	
  of	
  the	
  above-­‐cited	
  studies	
  PV	
  produced	
  far	
  less	
  emissions	
  than	
  fossil-­‐fuel	
  derived	
  electricity.	
  However,	
  PV	
  systems	
  may	
  not	
  have	
  the	
  same	
  net	
  GHG	
  benefits	
  for	
  British	
  Columbia,	
  where	
  the	
  electricity	
  mix	
  draws	
  predominately	
  from	
  hydropower.	
  The	
  following	
  section	
  provides	
  a	
  comparison	
  to	
  BC	
  Hydro’s	
  existing	
  electricity	
  mix	
  in	
  order	
  to	
  estimate	
  potential	
  GHG	
  savings.	
  	
  	
  	
  	
   Emissions	
  from	
  status	
  quo	
  grid	
  electricity:	
  BC’s	
  “Clean”	
  Hydropower	
  	
  Hydropower	
  is	
  broadly	
  considered	
  to	
  be	
  “clean”	
  energy	
  as	
  its	
  operation	
  emits	
  virtually	
  no	
  air	
  pollutants.	
  As	
  with	
  solar	
  PV,	
  the	
  Energy	
  Plan	
  assesses	
  emissions	
  from	
  a	
  hydroelectric	
  facility	
  as	
  zero.84	
  While	
  this	
  is	
  true	
  from	
  the	
  perspective	
  of	
  direct	
  emissions	
  (those	
  emitted	
  during	
  operation)	
  it	
  does	
  not	
  account	
  for	
  life-­‐cycle	
  emissions.	
  	
  	
  Currently	
  BC	
  Hydro	
  itself	
  assesses	
  its	
  indirect	
  emissions	
  for	
  hydroelectricity	
  at	
  22	
  tonnes	
  Co2e	
  per	
  gigawatt-­‐hour	
  produced.85	
  This	
  equates	
  to	
  22	
  grams	
  of	
  Co2e/kWh.86	
  However,	
  this	
  statistic	
  is	
  extremely	
  limited	
  in	
  scope:	
  it	
  focuses	
  on	
  emissions	
  from	
  land	
  conversion,	
  namely	
  the	
  area	
  of	
  land	
  flooded	
  by	
  a	
  dam	
  and	
  the	
  additional	
  methane	
  emissions	
  which	
  result.	
  Other	
  factors	
  omitted	
  from	
  this	
  statistic	
  are	
  addressed	
  below:	
  	
  	
   BC	
  imports	
  power	
  from	
  coal	
  and	
  gas-­fired	
  energy	
  facilities	
  	
  	
  Most	
  of	
  BC	
  shares	
  an	
  electricity	
  grid	
  with	
  Alberta	
  and	
  numerous	
  US	
  states.	
  Energy	
  is	
  exported	
  from	
  and	
  imported	
  to	
  BC	
  through	
  this	
  grid.	
  Since	
  2001,	
  BC	
  has	
  largely	
  been	
  a	
  ‘net	
  importer’	
  of	
  electricity.8788	
  This	
  statement	
  is	
  somewhat	
  controversial	
  as	
  BC	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   82 This assumes that the panels were produced recently in Europe or the US, and have a life-cycle of 30 years. 83 V. Fthenakis and E. Alsema, Op. cit. 84 BC Ministry of Energy, Mines, and Petroleum Resources, Energy plan: A vision for clean energy leadership, 2007, p. 25, retrieved February 20th 2010 from <http://www.energyplan.gov.bc.ca/>. 85 BC Housing, Technical bulletin no. 14-08, issued January 18th 2008, retrieved August 20th 2009 from <http://www.bchousing.org/resources/Programs/ILBC/technical bulletins/TB_14_Energy_Performance.pdf>. 86 1 gWh = 1,000,000 kWhs; 22 tonnes = 22,000,000 grams; 22,000,000/1,000,000 = 22 grams/kWh. 87 BC Ministry of Energy, Mines, and Petroleum Resources, Energy plan: A vision for clean energy leadership, Op. cit. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   21	
  also	
  sells	
  a	
  portion	
  of	
  its	
  ‘clean’	
  energy.	
  However,	
  the	
  electricity	
  that	
  is	
  imported	
  reflects	
  the	
  emissions	
  factor	
  of	
  its	
  sources,	
  which	
  are	
  much	
  higher	
  than	
  those	
  in	
  BC.89	
  	
  The	
  official	
  emissions	
  factor	
  does	
  not	
  account	
  for	
  the	
  emissions	
  from	
  imported	
  electricity.	
  	
  	
  Quantifying	
  the	
  emissions	
  from	
  imported	
  electricity	
  is	
  difficult	
  as	
  it	
  varies	
  from	
  year	
  to	
  year	
  based	
  on	
  the	
  availability	
  of	
  water	
  in	
  reservoirs,	
  and	
  because	
  there	
  is	
  a	
  difference	
  between	
  electricity	
  imported	
  by	
  BC	
  Hydro	
  and	
  the	
  total	
  province-­‐wide	
  net	
  imports	
  and	
  exports.90	
  For	
  example,	
  in	
  2009	
  BC	
  Hydro’s	
  net	
  imports	
  were	
  over	
  4,600	
  gWh.91	
  One	
  comparative	
  analysis	
  indicates	
  that	
  accounting	
  for	
  the	
  emissions	
  from	
  net	
  imports	
  raises	
  the	
  average	
  emissions	
  factor	
  in	
  BC	
  to	
  80	
  tonnes	
  Co2e	
  per	
  gWh,92	
  approximately	
  four	
  times	
  higher	
  than	
  the	
  emissions	
  factor	
  used	
  by	
  BC	
  Hydro.	
  	
  When	
  converted	
  to	
  grams	
  per	
  kWh,	
  a	
  unit	
  more	
  appropriate	
  to	
  comparison	
  with	
  PV,	
  the	
  ratio	
  becomes	
  72	
  grams/kWh.	
  This	
  is	
  substantially	
  higher	
  than	
  emissions	
  associated	
  with	
  residential	
  solar	
  PV	
  systems.	
  Based	
  on	
  these	
  numbers	
  alone,	
  one	
  can	
  expect	
  that	
  each	
  kWh	
  of	
  electricity	
  produced	
  by	
  residential	
  PV	
  systems	
  will	
  avoid	
  between	
  27and	
  47	
  grams	
  of	
  Co2e.	
  	
   The	
  BC	
  Hydro	
  Emissions	
  Factor	
  is	
  not	
  sensitive	
  to	
  Life	
  Cycle	
  Emissions	
   	
  Emissions	
  associated	
  with	
  the	
  hydropower	
  infrastructure	
  itself	
  are	
  also	
  seemingly	
  not	
  included	
  in	
  BC	
  Hydro’s	
  emissions	
  factor.	
  Both	
  the	
  hydro	
  facilities	
  themselves	
  and	
  the	
  supporting	
  infrastructure	
  (transmission	
  lines)	
  would	
  need	
  to	
  be	
  assessed	
  for	
  an	
  accurate	
  view	
  of	
  embodied	
  energy.	
  	
  	
  As	
  described	
  above,	
  land-­‐use	
  change	
  resulting	
  from	
  new	
  hydroelectric	
  capacity	
  in	
  BC	
  is	
  associated	
  with	
  emissions	
  of	
  approximately	
  22	
  grams	
  Co2e/kWh	
  as	
  a	
  result	
  of	
  land-­‐use	
  change.	
  Emissions	
  from	
  the	
  generating	
  facilities	
  themselves	
  likely	
  fall	
  between	
  2	
  and	
  9	
  grams	
  Co2e/kWh.93	
  This	
  suggests	
  a	
  range	
  of	
  24-­‐31	
  grams	
  Co2e/kWh	
  when	
  accounting	
  for	
  BC	
  Hydro’s	
  current	
  emissions	
  factor,	
  which	
  accounts	
  only	
  for	
  land-­‐use	
  change.	
  This	
  statistic	
  does	
  not	
  account	
  for	
  emissions	
  associated	
  with	
  the	
  construction	
  and	
  maintenance	
  of	
  the	
  transmission	
  infrastructure	
  required	
  to	
  move	
  electricity	
  from	
  the	
  point	
  of	
  generation	
  to	
  the	
  point	
  of	
  consumption.	
  Unfortunately	
  no	
  documents	
  could	
  be	
  found	
  which	
  provided	
  a	
  useful	
  estimate	
  of	
  the	
  emissions	
  associated	
  with	
  transmission	
  infrastructure.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   88 BC Ministry of Energy, Mines, and Petroleum Resources, For the record: Facts on independent power production, Op. cit. 89 J. Hanova, H. Dowlatabadi, and L. Mueller, ‘Ground source heat pump systems in Canada: Economics and GHG reduction potential,’ 2007, in Discussion Papers, Resources For the Future, Washington, DC. retrieved January 13th 2010 from <www.rff.org/documents/RFF-DP-07-18.pdf>. 90 G. Hoberg and C. Mallon, Electricity trade in British Columbia: Are we a net importer or a net exporter?, March 17th 2009, retrieved January 13th 2010 from <http://greenpolicyprof.org/wordpress>. 91 BC Hydro, BC Hydro Annual Report 2009, retrieved March 2nd 2010 from <www.bchydro.com>. 92 J. Hanova, H. Dowlatabadi, and L. Mueller, Op. cit., p. 27. 93 D. Weisser, A Guide to Life-Cycle Greenhouse Gas (GHG) Emissions from Electric Supply Technologies, n.d., International Atomic Energy Association, p. 17., retrieved February 20th 2010 from <http://www.iaea.org/OurWork/ST/NE/Pess/assets/GHG_manuscript_pre-print_versionDanielWeisser.pdf>. 	
   22	
   Comparing	
  Residential	
  PV	
  Systems	
  to	
  the	
  Status	
  Quo	
  Electricity	
  Mix	
  	
  A	
  few	
  tentative	
  conclusions	
  can	
  be	
  reached.	
  Firstly,	
  residential	
  solar	
  PV	
  systems	
  do	
  have	
  the	
  potential	
  to	
  reduce	
  electricity	
  imports,	
  thereby	
  reducing	
  emissions	
  associated	
  with	
  electricity	
  consumption	
  in	
  the	
  province.	
  Secondly,	
  even	
  when	
  comparing	
  to	
  a	
  Business	
  as	
  Usual	
  scenario,	
  such	
  as	
  the	
  expansion	
  of	
  hydroelectric	
  capacity,	
  residential	
  solar	
  PV	
  systems	
  are	
  associated	
  with	
  comparable	
  life-­‐cycle	
  emissions.	
  	
  	
  Table	
  6	
  below	
  compares	
  and	
  summarizes	
  emissions	
  from	
  residential	
  PV	
  systems	
  and	
  compares	
  these	
  to	
  both	
  the	
  current	
  emissions	
  factor	
  for	
  hydroelectricity	
  (including	
  imports)	
  and	
  to	
  the	
  likely	
  emissions	
  that	
  would	
  result	
  from	
  additional	
  hydroelectric	
  capacity.	
  Quantifying	
  these	
  potential	
  GHG	
  emissions	
  is	
  extremely	
  challenging;	
  results	
  will	
  differ	
  based	
  on	
  where	
  solar	
  panels	
  were	
  produced,	
  and	
  based	
  on	
  what	
  type	
  of	
  solar	
  panels	
  are	
  considered.	
  In	
  addition,	
  no	
  estimates	
  of	
  emissions	
  embodied	
  in	
  transmission	
  infrastructure	
  could	
  be	
  found	
  which	
  would	
  directly	
  apply	
  to	
  this	
  analysis.	
  Some	
  simple	
  calculations	
  imply	
  the	
  following:	
  	
  	
  Based	
  on	
  electricity	
  imports,	
  at	
  least	
  27-­‐47	
  grams	
  of	
  Co2e	
  will	
  be	
  avoided	
  for	
  each	
  kWh	
  of	
  electricity	
  generated	
  from	
  residential	
  PV	
  systems.	
  This	
  picture	
  could	
  change	
  substantially	
  if	
  the	
  PV	
  systems	
  were	
  produced	
  in	
  a	
  region	
  with	
  a	
  relatively	
  clean	
  electricity	
  mix,	
  such	
  as	
  BC,	
  which	
  would	
  substantially	
  increase	
  life-­‐cycle	
  GHG	
  benefits.	
  	
  	
  When	
  compared	
  to	
  status	
  quo	
  electricity	
  and	
  ignoring	
  the	
  emissions	
  associated	
  with	
  electrical	
  transmission	
  infrastructure,	
  life-­‐cycle	
  emissions	
  from	
  thin-­‐film	
  PV	
  systems	
  appear	
  to	
  be	
  equivalent	
  to	
  or	
  lower	
  than	
  large-­‐scale	
  hydro	
  projects.	
  Life-­‐cycle	
  emissions	
  based	
  on	
  conventional	
  silicon	
  panels	
  will	
  be	
  associated	
  with	
  higher	
  emissions	
  than	
  hydroelectric	
  or	
  thin-­‐film.	
  	
  More	
  exact	
  quantification	
  could	
  only	
  be	
  derived	
  from	
  a	
  more	
  complete	
  picture	
  of	
  emissions	
  associated	
  with	
  the	
  Business	
  as	
  Usual	
  scenario.	
  	
  	
   	
  	
  	
  	
  	
  	
  	
   Table 6: Summary of Emissions From PV Compared to Business As Usual Life-Cycle Emissions of Residential PV Systems Average emissions from grid- electricity in BC (including imports) Approximate Emissions from Large Hydro (no imports, not counting transmission infrastructure) Multicrystalline Silicon: 40-50 grams/kWh Thin-film: 25 grams/kWh  ~72 grams/kWh  >24-31 grams/kWh [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   23	
   Other	
  Environment	
  Considerations:	
  Toxins	
  and	
  Recycling	
  	
  	
  While	
  there	
  are	
  clear	
  GHG	
  benefits	
  to	
  using	
  PV	
  systems	
  to	
  offset	
  fossil	
  fuel	
  generation,	
  these	
  benefits	
  could	
  be	
  reduced	
  if	
  other	
  forms	
  of	
  pollution	
  (toxins)	
  create	
  other	
  adverse	
  effects,	
  either	
  at	
  time	
  of	
  production	
  or	
  at	
  end-­‐of-­‐life	
  of	
  a	
  product.	
  Concerns	
  have	
  been	
  raised	
  over	
  the	
  toxins	
  present	
  in	
  some	
  PV	
  modules	
  through	
  some	
  non-­‐governmental	
  organizations,	
  such	
  as	
  Greenpeace94	
  and	
  the	
  Silicon	
  Valley	
  Toxics	
  Coalition.95	
  	
  	
  	
  End-­‐of-­‐life	
  management	
  is	
  increasingly	
  a	
  target	
  of	
  government	
  policy.	
  Provincial	
  and	
  local	
  government	
  policies	
  now	
  frequently	
  encourage	
  or	
  require	
  recycling	
  as	
  a	
  means	
  to	
  lower	
  environmental	
  impact:	
  construction	
  and	
  demolition	
  policies	
  at	
  the	
  local	
  government	
  level	
  include	
  provisions	
  for	
  materials	
  reuse	
  and	
  recycling,	
  and	
  the	
  recovery	
  of	
  energy	
  from	
  “waste”	
  streams	
  appears	
  increasingly	
  popular.96	
  	
  This	
  raises	
  questions	
  regarding	
  the	
  potential	
  of	
  PV	
  systems	
  to	
  be	
  recycled,	
  and	
  whether	
  PV	
  recycling	
  might	
  be	
  an	
  appropriate	
  area	
  for	
  policy	
  intervention.	
  	
  	
  With	
  a	
  better	
  understanding	
  of	
  non-­‐GHG	
  pollutants	
  associated	
  with	
  PV	
  and	
  prospects	
  for	
  recycling	
  PV	
  modules,	
  it	
  becomes	
  easier	
  to	
  effectively	
  compare	
  photovoltaics	
  with	
  other	
  renewable	
  energy	
  generating	
  technologies.	
  Therefore	
  this	
  section	
  explores	
  the	
  closely	
  related	
  issues	
  of	
  toxins	
  and	
  recycling	
  as	
  related	
  to	
  residential	
  PV	
  system	
  manufacture	
  and	
  use.	
  	
  	
   Toxins	
  	
  Each	
  type	
  of	
  PV	
  panel	
  contains	
  different	
  materials,	
  and	
  these	
  materials	
  are	
  associated	
  with	
  different	
  levels	
  of	
  environmental	
  risk.	
  Three	
  of	
  the	
  main	
  PV	
  panel	
  materials	
  are	
  explored	
  below:	
  silicon,	
  cadmium	
  telluride	
  (CdTe)	
  and	
  Copper	
  Indium	
  Gallium	
  Selenide	
  (CIGS).	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   94 V. Fthenakis, Could CdTe PV modules pollute the environment?, National Photovoltaic Environmental Health and Safety Assistance Center, Brookhaven National Laboratory, 2002, retrieved January 3rd 2010 from <www.abound.com>. 95 Silicon Valley Toxics Coalition, Towards a just and sustainable solar industry, January 14th 2009, retrieved March 9th 2010 from <www.svtc.org/>. 96 For example, Metro Vancouver is considering the addition of new Waste to Energy facilities, and a new facility of this type is likely to be constructed at Gold River on Vancouver Island. 	
   24	
   Silicon	
  	
  Silicone	
  production	
  creates	
  various	
  bi-­‐products,	
  including	
  silicon	
  tetrachloride.	
  For	
  each	
  ton	
  of	
  polysilicon	
  produced,	
  the	
  process	
  generates	
  at	
  least	
  four	
  tons	
  of	
  silicon	
  tetrachloride	
  liquid	
  waste.97	
  This	
  waste	
  is	
  commonly	
  recycled	
  at	
  point	
  of	
  manufacture	
  into	
  silicon,	
  but	
  the	
  infrastructure	
  and	
  process	
  for	
  recycling	
  and	
  pollution	
  control	
  nearly	
  doubles	
  the	
  production	
  costs	
  of	
  polysilicon.98	
  In	
  China,	
  currently	
  the	
  largest	
  producer	
  of	
  solar	
  PV	
  panels	
  in	
  the	
  world,	
  at	
  least	
  one	
  incident	
  occurred	
  in	
  which	
  silicon	
  tetrachloride	
  was	
  dumped	
  illegally	
  near	
  the	
  factory.	
  The	
  dumping	
  has	
  been	
  linked	
  to	
  health	
  complications	
  and	
  damaged	
  crops.99	
  This	
  practice	
  was	
  directly	
  contrary	
  to	
  local	
  regulations,	
  and	
  regulations	
  to	
  control	
  the	
  dumping	
  of	
  hazardous	
  substances	
  exist	
  in	
  most	
  countries.	
  As	
  in	
  any	
  industry,	
  illegal	
  dumping	
  of	
  toxins	
  can	
  be	
  carried	
  out	
  by	
  manufacturers	
  and	
  will	
  result	
  in	
  environmental	
  harm.	
  	
  	
  Once	
  produced,	
  silicon	
  itself	
  is	
  benign.	
  No	
  linkages	
  were	
  found	
  in	
  the	
  literature	
  that	
  suggested	
  serious	
  health	
  risks	
  from	
  polysilicon	
  modules	
  at	
  end-­‐of-­‐life.	
  These	
  panels	
  can	
  seemingly	
  be	
  safely	
  recycled	
  or	
  disposed	
  of	
  in	
  landfill.	
  	
  	
  	
   Cadmium	
  Telluride	
    Many	
  thin-­‐film	
  modules	
  are	
  made	
  from	
  cadmium	
  telluride	
  (CdTe),	
  which	
  contains	
  cadmium.	
  One	
  study	
  showed	
  that	
  0.02	
  g	
  of	
  cadmium	
  per	
  gWh	
  of	
  electricity	
  would	
  be	
  produced	
  over	
  a	
  panel’s	
  lifecycle.	
  This	
  is	
  extremely	
  low	
  when	
  compared	
  to	
  life-­‐cycle	
  cadmium	
  releases	
  from	
  rechargeable	
  batteries.100	
  One	
  author	
  argues:	
  “even	
  if	
  pieces	
  of	
  modules	
  inadvertently	
  make	
  it	
  to	
  a	
  municipal	
  waste	
  incinerator,	
  cadmium	
  will	
  dissolve	
  in	
  the	
  molten	
  glass	
  and	
  would	
  become	
  part	
  of	
  the	
  solid	
  waste.”101	
  	
  CdTe	
  may	
  also	
  be	
  recycled	
  effectively.102	
  Further,	
  because	
  cadmium	
  used	
  in	
  PV	
  manufacturing	
  is	
  sometimes	
  reclaimed	
  from	
  industrial	
  waste,	
  CdTe	
  modules	
  may	
  actually	
  be	
  diverting/delaying	
  this	
  material	
  from	
  entering	
  the	
  landfill	
  or	
  being	
  otherwise	
  disposed	
  of.103	
  	
  	
  	
  	
   Copper	
  Indium	
  Gallium	
  Selenide	
  (CIGS)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  CIGS	
  modules	
  use	
  a	
  fairly	
  small	
  amount	
  of	
  toxic	
  materials,	
  even	
  less	
  than	
  CdTe.104	
  No	
  significant	
  concerns	
  were	
  raised	
  within	
  the	
  literature	
  reviewed	
  by	
  the	
  author.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   97 Cha, A. ‘Solar energy firms leave waste behind,’ Washington Post, Sunday March 9, 2008, retrieved September 30th 2008 from <http://www.washingtonpost.com/wp-dyn/content/article/2008/03/08/AR2008030802595.html>. 98 Ibid. 99 Ibid. 100 V. Fthenakis, ‘Life cycle impact analysis of cadmium in CdTe PV production,’ Renewable and Sustainable Energy Reviews 8, 2004, pp. 303–334. 101 Ibid. 102 Ibid. 103 Ibid. 104 V. Fthenakis et al. ‘Toxicity of Cadmium Telluride, Copper Indium Diselenide, and Copper Gallium Diselenide,’ Progress in Photovoltaics, 1999, V. 7, pp. 489-497. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   25	
   Organic	
  Solar	
  and	
  Solar	
  Paint	
  	
  As	
  organic	
  and	
  polymer-­‐based	
  solar	
  technologies	
  are	
  emerging	
  technologies,	
  it	
  is	
  not	
  clear	
  which	
  types	
  will	
  become	
  commercialized.	
  At	
  this	
  early	
  stage	
  little	
  information	
  is	
  available	
  about	
  the	
  potential	
  for	
  toxicity.	
  A	
  literature	
  review	
  of	
  several	
  academic	
  journal	
  search	
  engines	
  did	
  not	
  find	
  any	
  specific	
  concerns	
  raised	
  regarding	
  organic	
  solar	
  technologies	
  or	
  solar	
  paints.	
  A	
  review	
  of	
  literature	
  related	
  to	
  this	
  subject	
  could	
  be	
  conducted	
  in	
  the	
  future	
  when	
  more	
  data	
  becomes	
  available.	
  	
  	
   Recycling	
  of	
  Residential	
  Solar	
  Systems:	
   	
  Recycling	
  can	
  further	
  lower	
  the	
  environmental	
  impact	
  of	
  PV	
  systems	
  by	
  keeping	
  materials	
  out	
  of	
  the	
  waste	
  stream	
  and	
  capturing	
  some	
  of	
  the	
  energy	
  embodied	
  in	
  system	
  components.106	
  	
  	
  Recycling	
  is	
  shown	
  to	
  have	
  higher	
  net	
  environmental	
  benefits	
  than	
  Waste	
  to	
  Energy	
  (incineration).	
  For	
  example,	
  a	
  pilot	
  recycling	
  plant	
  in	
  Europe	
  reports	
  substantial	
  benefits	
  for	
  silicon	
  wafer	
  recycling	
  and	
  reuse,	
  including	
  a	
  substantial	
  decrease	
  in	
  energy	
  for	
  wafer	
  production.107	
  	
  	
  There	
  is	
  a	
  clear	
  trend	
  towards	
  PV	
  module	
  recycling	
  already	
  underway.	
  One	
  US-­‐based	
  firm,	
  First	
  Solar,	
  has	
  already	
  begun	
  its	
  own	
  voluntary	
  product	
  take-­‐back	
  scheme.108	
  On	
  a	
  larger	
  scale,	
  PV	
  Cycle	
  is	
  a	
  voluntary	
  organization	
  based	
  in	
  Europe	
  whose	
  members	
  have	
  committed	
  to	
  responsible	
  end-­‐of-­‐life	
  management.	
  PV	
  cycle	
  is	
  expected	
  to	
  begin	
  a	
  manufacturer	
  take-­‐back	
  system	
  this	
  year,109	
  and	
  one	
  Canadian	
  PV	
  manufacturer	
  has	
  already	
  joined	
  PV	
  Cycle.110	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   105 First Solar, Refunded collection and recycling program, accessed January 13th 2010 from <http://www.firstsolar.com/en/recycle_program.php >. 106 Metal frames (generally made from aluminum) along with metal wires and other small electrical components are already recyclable and are unlikely to require special policy or infrastructure adaptations. As such they are not considered in this document. 107 A. Müller, K. Wambach, E. Alsema, ‘Life cycle analysis of a solar module recycling process,’ Materials Research Society, Warrendale, PA, USA, 2007, retrieved February 26 2010 from <http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=6228&DID=170203&action=detail>. 108 First Solar, ‘Refunded collection and recycling program,’ retrieved January 13th 2010 from <http://www.firstsolar.com/en/recycle_program.php >. 109‘PV CYCLE to initiate solar PV module take-back and recycling programme in 2010,’ Renewable Energy Focus, 12 October 2009, retrieved February 3rd 2010 from <www.renewableenergyfocus.com>. 110 ‘Canadian Solar joins ranks of PV Cycle,’ Renewable Energy Focus, July 27th 2009, retrieved February 3rd 2010 from <http://www.renewableenergyfocus.com/view/2720/canadian-solar-joins-ranks-of-pv-cycle/>. First Solar, a US-based manufacturer of thin-film solar technologies, is the first company in North America to implement a manufacturer take-back and recycling scheme for its PV modules.105 Funds for the recycling program are set aside at time-of- sale. Products are clearly labeled with appropriate information for contacting the manufacturer and pickup of the products is free. The company claims a 90% materials recovery rate.  	
   26	
   One	
  prediction	
  for	
  the	
  US	
  solar	
  PV	
  market	
  suggested	
  costs	
  of	
  between	
  $0.08	
  and	
  $0.11	
  per	
  watt	
  of	
  PV	
  capacity	
  ($80-­‐$100	
  per	
  kW)	
  in	
  order	
  to	
  make	
  recycling	
  economically	
  attractive	
  to	
  companies	
  where	
  no	
  other	
  incentives	
  are	
  in	
  place.111	
  This	
  would	
  equate	
  to	
  approximately	
  $270	
  for	
  a	
  3Kw	
  system.	
  In	
  the	
  absence	
  of	
  direct	
  economic	
  incentives	
  or	
  incentives	
  to	
  begin	
  recycling,	
  few	
  industries	
  take	
  voluntary	
  action.	
  Therefore	
  some	
  form	
  of	
  policy	
  to	
  encourage	
  recycling	
  may	
  be	
  required	
  in	
  BC	
  as	
  solar	
  PV	
  systems	
  become	
  more	
  prevalent.	
  	
  	
  Various	
  models	
  to	
  encourage	
  electronic	
  and	
  electrical	
  recycling	
  exist,	
  and	
  it	
  is	
  beyond	
  the	
  scope	
  of	
  this	
  paper	
  to	
  go	
  into	
  detail	
  on	
  these.	
  However,	
  one	
  example	
  of	
  an	
  existing	
  model	
  already	
  implemented	
  within	
  the	
  province	
  is	
  the	
  Environmental	
  Handling	
  Fee,	
  which	
  is	
  applied	
  to	
  electronics.112	
  	
  Unfortunately,	
  flat-­‐fee	
  systems	
  of	
  this	
  type	
  do	
  not	
  provide	
  incentives	
  to	
  individual	
  companies	
  to	
  redesign	
  products	
  differently	
  (eg.	
  making	
  panels	
  easier	
  to	
  recycle).	
  Changes	
  in	
  panel	
  design	
  could	
  substantially	
  improve	
  prospects	
  for	
  recycling.113	
  Consideration	
  should	
  also	
  be	
  given	
  to	
  “true”	
  extended	
  producer	
  responsibility	
  models	
  that	
  make	
  individual	
  companies	
  responsible	
  for	
  managing	
  their	
  own	
  waste	
  products.	
  	
  	
  	
  	
  PV	
  recycling	
  is	
  an	
  emerging	
  industry	
  that	
  has	
  the	
  potential	
  to	
  lower	
  life-­‐cycle	
  GHG	
  emissions	
  and	
  to	
  avoid	
  unnecessary	
  waste	
  (both	
  economic	
  and	
  environmental).	
  If	
  more	
  substantial	
  subsidies	
  are	
  to	
  be	
  provided	
  to	
  solar	
  PV	
  manufacturers,	
  as	
  they	
  are	
  in	
  some	
  jurisdictions,	
  due	
  consideration	
  should	
  be	
  given	
  to	
  encouraging	
  or	
  regulating	
  recycling,	
  as	
  it	
  would	
  better	
  fulfill	
  environmental	
  objectives.	
  	
  	
   Conclusions:	
  	
  Several	
  aspects	
  of	
  the	
  environmental	
  impact	
  of	
  PV	
  uptake	
  were	
  assessed	
  in	
  this	
  section.	
  Claims	
  that	
  solar	
  PV	
  is	
  “clean”	
  energy	
  are	
  well	
  founded:	
  life-­‐cycle	
  emissions	
  from	
  PV	
  are	
  quite	
  low,	
  even	
  when	
  compared	
  to	
  hydroelectricity,	
  and	
  there	
  is	
  little	
  risk	
  associated	
  with	
  toxins	
  from	
  PV	
  panels.	
  Environmental	
  benefits	
  can	
  be	
  further	
  increased	
  through	
  recycling.	
  	
  Based	
  on	
  current	
  electricity	
  imports,	
  one	
  can	
  tentatively	
  conclude	
  that	
  at	
  least	
  27-­‐47	
  grams	
  of	
  Co2e	
  will	
  be	
  avoided	
  for	
  each	
  kWh	
  of	
  electricity	
  generated	
  from	
  residential	
  PV	
  systems.	
  This	
  implies	
  that	
  for	
  each	
  3kW	
  system,	
  greenhouse	
  gas	
  benefits	
  could	
  be	
  somewhere	
  between	
  81	
  and	
  141	
  kg	
  per	
  year.114	
  Depending	
  which	
  region	
  of	
  BC	
  these	
  panels	
  were	
  located	
  in	
  and	
  whether	
  or	
  not	
  the	
  PV	
  systems	
  were	
  manufactured	
  using	
  electricity	
  with	
  a	
  low	
  emissions	
  factor,	
  these	
  benefits	
  could	
  improve	
  substantially.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   111 V. Fthenakis, ‘End-of-life management and recycling of PV modules,’ Energy Policy 28, 2000, pp. 1051-1058. 112 Encorp Pacific, ‘Electronics Recycling Fees,’ retrieved September 13th 2009 from <http://www.encorp.ca>. 113 V. Fthenakis, ‘End-of-life management and recycling of PV modules,’ Energy Policy 28, 2000, pp. 1051-1058. 114 Assuming annual solar PV potential of 1,000 kWh/kW. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   27	
  Thin-­‐film	
  residential	
  PV	
  systems	
  appear	
  to	
  produce	
  life-­‐cycle	
  emissions	
  comparable	
  to	
  large-­‐scale	
  hydroelectric	
  facilities,	
  while	
  existing	
  conventional	
  silicon	
  panels	
  will	
  likely	
  produce	
  higher	
  life-­‐cycle	
  emissions.	
  	
  When	
  compared	
  to	
  other	
  scenarios,	
  such	
  as	
  an	
  expansion	
  of	
  hydroelectric	
  capacity	
  or	
  the	
  use	
  of	
  other	
  renewable	
  energy	
  resources,	
  the	
  relative	
  greenhouse	
  gas	
  benefits	
  which	
  can	
  be	
  provided	
  by	
  PV	
  systems	
  will	
  likely	
  shrink.	
  	
  	
  A	
  more	
  exact	
  quantification	
  of	
  the	
  potential	
  benefits	
  of	
  on-­‐site	
  renewable	
  electricity	
  generation	
  would	
  require	
  additional	
  information	
  regarding	
  the	
  emissions	
  associated	
  with	
  the	
  construction	
  and	
  maintenance	
  of	
  BC’s	
  electrical	
  transmission	
  infrastructure.	
  This	
  could	
  add	
  significantly	
  to	
  the	
  emissions	
  associated	
  with	
  the	
  construction	
  and	
  maintenance	
  of	
  other	
  renewable	
  energy	
  options,	
  and	
  may	
  show	
  an	
  increase	
  in	
  the	
  relative	
  GHG	
  reductions	
  which	
  can	
  be	
  realized	
  through	
  grid-­‐connected	
  PV	
  systems.	
  It	
  should	
  also	
  be	
  noted	
  that	
  life-­‐cycle	
  emissions	
  do	
  not	
  account	
  for	
  other	
  potential	
  environmental	
  impacts	
  of	
  hydroelectricity,	
  such	
  as	
  habitat	
  destruction	
  related	
  to	
  new	
  transmission	
  capacity,	
  dams,	
  or	
  any	
  other	
  large-­‐scale	
  energy	
  generation	
  projects.	
  Research	
  into	
  such	
  areas	
  would	
  help	
  in	
  comparing	
  PV	
  to	
  other	
  means	
  of	
  delivering	
  clean	
  energy	
  to	
  BC.	
  	
  	
  	
  The	
  relative	
  benefits	
  of	
  residential	
  PV	
  uptake	
  in	
  other	
  jurisdictions,	
  many	
  of	
  which	
  depend	
  more	
  highly	
  on	
  non-­‐renewable	
  resources	
  for	
  electricity,	
  are	
  much	
  higher	
  than	
  those	
  in	
  BC.	
  	
  This	
  likely	
  at	
  least	
  partly	
  explains	
  the	
  higher	
  willingness	
  to	
  provide	
  funding	
  to	
  PV	
  systems	
  in	
  other	
  jurisdictions.	
  	
  	
  The	
  following	
  section	
  of	
  the	
  document	
  provides	
  an	
  economic	
  analysis	
  of	
  residential	
  PV	
  systems,	
  showing	
  the	
  likely	
  economic	
  costs	
  of	
  achieving	
  these	
  environmental	
  benefits	
  through	
  the	
  uptake	
  of	
  residential	
  solar	
  PV	
  systems	
  in	
  BC.	
  	
                      	
   28	
   5. The	
  Economics	
  of	
  Residential	
  Solar	
  PV	
  Systems	
  in	
   British	
  Columbia	
  	
  Solar	
  PV	
  has	
  generally	
  been	
  considered	
  an	
  expensive	
  source	
  of	
  electricity,	
  but	
  prices	
  have	
  been	
  rapidly	
  decreasing.	
  This	
  section	
  of	
  the	
  paper	
  examines	
  trends	
  in	
  the	
  market	
  price	
  of	
  PV,	
  provides	
  sample	
  prices	
  for	
  a	
  system	
  purchased	
  in	
  BC,	
  and	
  calculates	
  the	
  cost	
  and	
  revenue	
  changes	
  which	
  would	
  be	
  required	
  to	
  achieve	
  ‘break-­‐even’	
  costs	
  over	
  the	
  life-­‐cycle	
  of	
  the	
  PV	
  system.	
  Results	
  indicate	
  that	
  a	
  substantial	
  policy	
  intervention	
  would	
  be	
  required	
  to	
  make	
  PV	
  viable	
  on	
  purely	
  economic	
  grounds	
  within	
  the	
  next	
  decade.	
  	
   	
   Trends	
  in	
  PV	
  Module	
  Pricing	
  in	
  Canada	
   	
  There	
  is	
  a	
  clear	
  trend	
  towards	
  decreasing	
  costs	
  of	
  PV	
  technologies	
  due	
  to	
  a	
  variety	
  of	
  factors	
  including	
  economies	
  of	
  scale,	
  improvements	
  to	
  existing	
  technology	
  (higher	
  solar	
  conversion	
  efficiencies)	
  and	
  the	
  deployment	
  of	
  new	
  technologies	
  (thin-­‐film).	
  Natural	
  Resources	
  Canada	
  produces	
  an	
  annual	
  report	
  that	
  includes	
  average	
  PV	
  system	
  costs	
  for	
  Canada.	
  Using	
  data	
  from	
  the	
  2007115	
  and	
  2008	
  reports,116	
  the	
  downward	
  pricing	
  trend	
  is	
  graphed	
  below.	
  	
  	
  	
   	
   Figure 9 - Weighted Average Prices for Photovoltaic Modules (1999-2008) - The prices are shown in dollars per watt of installed capacity and indicate a decline in pricing of nearly 10% annually. The increase in price in 2006 is due largely to a global silicon shortage brought about by high demand and limited production capacity.117  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   115 J. Ayoub and L. Dignard-Bailey, Photovoltaic Technology Status and Prospects: Canadian Annual Report 2007, CanmetENERGY, Natural Resources Canada, retrieved November 20th 2009 from <http://www.canmetenergy.nrcan.gc.ca>. 116 J. Ayoub and L. Dignard-Bailey, Photovoltaic Technology Status and Prospects: Canadian Annual Report 2008, CanmetENERGY, Natural Resources Canada, retrieved November 20th 2009 from <http://www.canmetenergy.nrcan.gc.ca>. 117 Ibid. 0	
  2	
   4	
  6	
   8	
  10	
   12	
   1999	
   2000	
   2001	
   2002	
   2003	
   2004	
   2005	
   2006	
   2007	
   2008	
   Price	
  of	
  PV	
  in	
  Canada	
  	
   PV	
  Prices	
  (CAD)	
  Avg.	
  price	
  trend	
   $	
  per	
  Watt	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   29	
  The	
  average	
  price	
  of	
  PV	
  modules	
  in	
  Canada	
  shows	
  a	
  decline	
  of	
  nearly	
  10%	
  annually.	
  The	
  2008	
  average	
  was	
  near	
  $4,000/kW.	
  As	
  an	
  average,	
  this	
  price	
  includes	
  commercial/bulk	
  sales.	
  It	
  does	
  not	
  include	
  Balance	
  of	
  System	
  components	
  or	
  installation	
  costs,	
  which	
  make	
  up	
  approximately	
  half	
  of	
  total	
  system	
  costs.	
  Therefore	
  the	
  average	
  listed	
  above	
  is	
  significantly	
  lower	
  than	
  the	
  actual	
  prices	
  for	
  small-­‐scale	
  PV	
  systems.	
  	
  	
  	
  	
  	
   Current	
  Market	
  Pricing	
  for	
  Solar	
  PV	
  Systems	
  in	
  BC	
  	
  Sample	
  costs	
  for	
  several	
  solar	
  panel	
  and	
  system	
  types,	
  including	
  conventional	
  silicon,	
  thin-­‐film,	
  and	
  BIPV,	
  are	
  outlined	
  below.	
  	
  Price	
  estimates	
  were	
  obtained	
  through	
  a	
  combination	
  of	
  web-­‐searching	
  and	
  key	
  informant	
  interviews	
  with	
  several	
  companies	
  and	
  installers	
  in	
  BC.	
  Appendix	
  B	
  contains	
  a	
  list	
  of	
  selected	
  component	
  and	
  system	
  prices,	
  and	
  most	
  of	
  the	
  prices	
  and	
  statistics	
  used	
  below	
  draw	
  on	
  the	
  data	
  contained	
  there.	
   	
   Factors	
  determining	
  cost	
  of	
  residential	
  PV	
  systems	
  to	
  consumers	
  	
  The	
  up-­‐front	
  costs	
  of	
  solar	
  PV	
  include	
  the	
  cost	
  of	
  the	
  solar	
  panels	
  (modules),	
  Balance	
  of	
  System	
  components	
  (inverters,	
  wiring,	
  etc.);	
  installation	
  costs	
  (labor);	
  and	
  associated	
  administrative	
  fees	
  (permitting).	
  Any	
  maintenance	
  costs	
  must	
  also	
  be	
  factored	
  in,	
  and	
  potentially	
  disposal	
  costs	
  as	
  well.	
  	
  In	
  the	
  case	
  of	
  residential	
  grid-­‐connected	
  PV	
  systems	
  in	
  BC,	
  revenue	
  will	
  be	
  realized	
  as	
  avoided	
  costs	
  of	
  electricity	
  that	
  would	
  otherwise	
  be	
  purchased	
  from	
  the	
  grid.	
  Through	
  BC	
  Hydro’s	
  Net	
  Metering	
  program,	
  PV	
  system	
  owners	
  are	
  charged	
  for	
  the	
  net	
  balance	
  of	
  electricity	
  used	
  over	
  the	
  billing	
  cycle.	
  In	
  BC	
  most	
  grid-­‐connected	
  residential	
  customers	
  pay	
  around	
  7-­‐8	
  cents/kWh.118	
  	
  	
   Incentives	
  and	
  Subsidies	
  in	
  BC	
  	
  Livesmart	
  BC’s	
  Efficiency	
  Incentive	
  Program119	
  is	
  offering	
  two	
  types	
  of	
  incentive	
  to	
  potential	
  PV	
  system	
  buyers.	
  The	
  more	
  basic	
  type	
  of	
  incentive	
  is	
  an	
  exemption	
  on	
  Provincial	
  Sales	
  Tax.	
  This	
  tax	
  exemption	
  is	
  slated	
  to	
  end	
  when	
  the	
  Harmonized	
  Sales	
  Tax	
  is	
  introduced	
  on	
  July	
  1st,	
  2010.	
  	
  In	
  addition	
  to	
  the	
  tax	
  exemption,	
  BC	
  residents	
  are	
  eligible	
  for	
  a	
  subsidy	
  of	
  $260	
  per	
  kW	
  of	
  installed	
  capacity	
  through	
  Livesmart	
  BC.	
  This	
  amounts	
  to	
  a	
  small	
  fraction	
  of	
  total	
  system	
  costs,	
  approximately	
  3%,	
  and	
  is	
  therefore	
  unlikely	
  to	
  influence	
  the	
  economic	
  basis	
  for	
  PV	
  system	
  ownership.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   118 This figure is approximate because BC Hydro charges a “stepped rate” and therefore the prices per kWh depend on consumption patterns. 119 BC Ministry of Energy, Mines, and Petroleum Resources, Livesmart BC efficiency incentive program: Home improvement incentive brochure, accessed February 14th 2010 from <http://www.energyplan.gov.bc.ca/efficiency/>.	
  	
  	
   	
   30	
   	
  Permits	
  and	
  Fees	
  	
  All	
  major	
  electrical	
  work	
  requires	
  a	
  permit	
  from	
  the	
  designated	
  Electrical	
  Inspection	
  Authority.	
  As	
  described	
  in	
  Appendix	
  A,	
  BC	
  customers	
  face	
  Electrical	
  Permit	
  fees	
  of	
  approximately	
  $540	
  for	
  a	
  1kW	
  system	
  and	
  $1000	
  for	
  a	
  3kW	
  system.	
  Relative	
  to	
  the	
  total	
  cost	
  of	
  PV	
  systems,	
  these	
  fees	
  amount	
  to	
  approximately	
  3%-­‐5%	
  of	
  installed	
  costs.	
  	
  	
   Balance	
  of	
  System	
  Costs	
  	
  Nearly	
  half	
  of	
  PV	
  system	
  costs	
  come	
  from	
  BOS	
  components.	
  The	
  most	
  expensive	
  of	
  these	
  components	
  are	
  the	
  inverter	
  and	
  the	
  mounting	
  hardware	
  (frame).	
  	
  	
  Inverters	
  come	
  in	
  a	
  variety	
  of	
  sizes.	
  However,	
  the	
  price	
  elasticity	
  of	
  inverters	
  is	
  quite	
  low;	
  most	
  inverters	
  listed	
  in	
  the	
  market	
  survey	
  were	
  only	
  available	
  in	
  2kW	
  size	
  and	
  above.	
  An	
  inverter	
  or	
  set	
  of	
  inverters	
  for	
  a	
  1kW	
  system	
  would	
  cost	
  approximately	
  $1,200-­‐$2,300,	
  while	
  an	
  inverter	
  matched	
  to	
  a	
  3kw	
  system	
  costs	
  approximately	
  $2,000-­‐$3,000.	
  	
  The	
  lifespan	
  of	
  the	
  inverter	
  does	
  not	
  match	
  the	
  lifespan	
  of	
  solar	
  panels.	
  Warranties	
  for	
  grid-­‐tie	
  inverters	
  ranged	
  from	
  3-­‐10	
  years,	
  with	
  some	
  companies	
  offering	
  extended	
  warranties	
  for	
  additional	
  cost.	
  In	
  general	
  the	
  price	
  correlated	
  with	
  warranty	
  length:	
  cheaper	
  inverters	
  had	
  shorter	
  warranties.	
  In	
  determining	
  the	
  life-­‐cycle	
  costs	
  of	
  a	
  PV	
  system	
  it	
  is	
  therefore	
  important	
  to	
  assume	
  at	
  least	
  one,	
  if	
  not	
  two,	
  inverter	
  replacements	
  over	
  the	
  life	
  of	
  the	
  system.120	
  Assuming	
  that	
  two	
  inverters	
  are	
  used	
  over	
  the	
  life	
  of	
  the	
  system	
  brings	
  inverter	
  costs	
  up	
  to	
  nearly	
  25%	
  of	
  lifecycle	
  system	
  costs.	
  	
  	
  	
  The	
  prices	
  for	
  a	
  mount	
  or	
  frame	
  varied	
  little	
  between	
  retailers,	
  and	
  generally	
  totaled	
  $900-­‐$1,000/kW	
  of	
  installed	
  capacity.	
  The	
  cost	
  of	
  a	
  frame	
  can	
  be	
  eliminated	
  through	
  BIPV.	
  	
  	
  	
  BOS	
  components	
  also	
  include	
  at	
  least	
  several	
  hundred	
  dollars	
  for	
  wiring,	
  disconnects,	
  and	
  smaller	
  electrical	
  components	
  and	
  mounts.	
  	
  	
  	
  Proportionately,	
  around	
  50%	
  of	
  the	
  life-­‐cycle	
  cost	
  for	
  a	
  solar	
  PV	
  system	
  is	
  from	
  the	
  module	
  (panel)	
  costs,	
  while	
  approximately	
  25%	
  is	
  allocated	
  to	
  the	
  two	
  inverters.	
  The	
  remainder	
  is	
  attributed	
  to	
  labor,	
  permits,	
  and	
  smaller	
  BOS	
  components.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   120 S. Bornstein, ‘The market value and cost of solar photovoltaic electricity production,’ Center for the Study of Energy Markets Working Paper, Berkley, January 2008, retrieved January 30th 2010 from <www.ucei.berkeley.edu/PDF/csemwp176.pdf>.  [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   31	
   Module	
  Costs	
   	
   Multicrystalline-­Silicon	
  	
  	
  Conventional	
  multicyrstalline-­‐silicon	
  modules	
  generally	
  cost	
  $3,500	
  to	
  $7,400/kW	
  in	
  BC,	
  with	
  both	
  an	
  average	
  and	
  median	
  price	
  of	
  $5,200.	
  This	
  is	
  significantly	
  higher	
  than	
  the	
  Canadian	
  average	
  for	
  module	
  prices	
  of	
  $4,000/kW	
  in	
  2008.	
  For	
  comparison,	
  the	
  US	
  average	
  was	
  US$4,200	
  per	
  kW	
  for	
  the	
  first	
  quarter	
  of	
  2010.121	
  	
  	
  	
  	
  	
   Thin-­Film	
   	
  Thin-­‐film	
  solar	
  cells	
  are	
  significantly	
  cheaper	
  to	
  produce	
  than	
  conventional	
  panels.	
  By	
  the	
  end	
  of	
  2008	
  the	
  least	
  expensive	
  thin-­‐film	
  PV	
  (CdTe)	
  was	
  produced	
  for	
  approximately	
  $1/W.122	
  This	
  equates	
  to	
  a	
  hypothetical	
  installed	
  system	
  prices	
  of	
  approximately	
  $3/W,	
  or	
  around	
  $3,000/kW.	
  However,	
  the	
  market	
  is	
  still	
  heavily	
  dominated	
  by	
  traditional	
  multicrystalline	
  panels.123	
  As	
  one	
  expert	
  argues,	
  “Many	
  thin	
  film	
  manufacturers	
  are	
  producing	
  cells	
  for	
  under	
  $1/W,	
  and	
  of	
  course	
  selling	
  them	
  for	
  much	
  more	
  because	
  the	
  market	
  price	
  is	
  set	
  by	
  the	
  more	
  expensive	
  crystalline	
  silicon	
  based	
  technology.”124	
  One	
  study	
  done	
  in	
  the	
  US	
  found	
  thin-­‐film	
  modules	
  were	
  actually	
  slight	
  more	
  expensive	
  on	
  average	
  than	
  silicon-­‐crystalline	
  modules.125	
  In	
  addition,	
  some	
  major	
  producers	
  of	
  thin-­‐film	
  products,	
  such	
  as	
  First	
  Solar,	
  do	
  not	
  sell	
  products	
  to	
  the	
  domestic	
  market.126	
  Although	
  thin-­‐film	
  is	
  an	
  extremely	
  promising	
  technological	
  development,	
  its	
  uptake	
  appears	
  unlikely	
  to	
  drastically	
  decrease	
  the	
  overall	
  costs	
  of	
  PV	
  over	
  the	
  next	
  several	
  years.	
  	
  	
   Building	
  Integrated	
  Photovoltaics	
  (BIPV)	
  	
  BIPV	
  is	
  often	
  perceived	
  as	
  being	
  lower	
  cost	
  than	
  frame-­‐mounted	
  PV	
  systems.	
  This	
  is	
  true	
  in	
  application	
  to	
  the	
  commercial	
  sector:	
  when	
  compared	
  to	
  high-­‐end	
  façade	
  materials,	
  especially	
  those	
  used	
  for	
  commercial	
  buildings,	
  BIPV	
  panels	
  are	
  often	
  substantially	
  cheaper	
  than	
  luxury	
  cladding	
  materials.127	
  However,	
  façade	
  materials	
  are	
  less	
  well	
  suited	
  to	
  the	
  residential	
  sector,	
  especially	
  in	
  cities,	
  where	
  narrow	
  streets	
  and	
  higher	
  densities	
  limit	
  solar	
  access	
  for	
  façades.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   121 Solar Buzz, Module index retail price per watt peak, March 2010, retrieved March 14th 2010 from <http://www.solarbuzz.com/Moduleprices.htm>. 122 V. Fthenakis, ‘Sustainability of photovoltaics; The case for thin-film solar cells,’ Renewable and Sustainable Energy Reviews 13, 2009, p. 2748. 123 J. Pearce, cited in ‘The future of the thin-film solar panel,’ Solar Power Beginner retrieved February 28th 2010 from <http://www.solarpowerbeginner.com/thin-film-solar-panel.html >. 124 Ibid. 125 R. Wiser, G. Barbose, and C. Peterman, Tracking the Sun: The installed cost of photovoltaics in the U.S. from 1998- 2007, Lawrence Berkeley National Laboratory, February 2009, retrieved Tuesday March 2nd 2010 from <http://eetd.lbl.gov/ea/emp/reports/lbnl-1516e.pdf>. 126 First Solar, Frequently asked questions, accessed January 29th 2010 from <http://www.firstsolar.com/en/faq.php#cost>. 127 D.	
  Suna,	
  R.	
  Haas	
  and	
  A.	
  Lopez	
  Polo,	
  ‘Analysis	
  of	
  pv	
  system’s	
  values	
  beyond	
  energy:	
  by	
  country	
  and	
  stakeholder’,	
  Photovoltaic	
  Power	
  Systems	
  Program,	
  International	
  Energy	
  Association,	
  p.	
  24,	
  retrieved	
  January	
  3rd	
  2010	
  from	
  <www.iea-­‐pvps.org/products/download/rep10_02.pdf>.	
  	
   	
   32	
   In	
  the	
  residential	
  sector	
  BIPV	
  roofing	
  shows	
  more	
  promise	
  than	
  façades.	
  Rooftops	
  are	
  more	
  likely	
  to	
  have	
  unobstructed	
  solar	
  access,	
  and	
  several	
  companies	
  already	
  manufacture	
  BIPV	
  roofs	
  for	
  residential	
  applications.	
  	
  	
  Cost	
  savings	
  from	
  existing,	
  market-­‐ready	
  BIPV	
  systems	
  in	
  the	
  residential	
  sector	
  appear	
  to	
  be	
  relatively	
  small.	
  For	
  example,	
  if	
  roof	
  shingles	
  cost	
  $1.00	
  per	
  square	
  foot,	
  there	
  is	
  likely	
  an	
  avoided	
  cost	
  of	
  around	
  $0.10	
  per	
  watt	
  installed.129	
  This	
  equates	
  to	
  an	
  avoided	
  cost	
  of	
  100$/kW,	
  around	
  1%	
  of	
  system	
  costs.	
  At	
  present	
  system	
  prices	
  this	
  is	
  a	
  relatively	
  small	
  savings,	
  but	
  may	
  become	
  more	
  significant	
  as	
  the	
  overall	
  cost	
  of	
  PV	
  systems	
  decrease.	
  	
  Interlock	
  Roofing130	
  was	
  the	
  only	
  supplier	
  found	
  in	
  BC	
  who	
  directly	
  imports	
  and	
  	
  installs	
  BIPV	
  roofing	
  products	
  for	
  the	
  residential	
  sector.	
  The	
  system	
  is	
  meant	
  to	
  be	
  integrated	
  into	
  a	
  metal	
  roof,	
  which	
  is	
  also	
  manufactured	
  by	
  the	
  company.	
  The	
  approximate	
  price	
  of	
  a	
  1.8kW	
  system	
  is	
  $20,000.	
  Standard	
  pricing	
  for	
  metal	
  roofing	
  is	
  $9.00	
  to	
  $14.00	
  per	
  square	
  foot,	
  and	
  part	
  of	
  this	
  cost	
  will	
  be	
  offset	
  by	
  the	
  system,131	
  implying	
  a	
  cost	
  reduction	
  of	
  approximately	
  $1,300	
  from	
  offset	
  roofing	
  costs.	
  Additionally,	
  BIPV	
  avoids	
  the	
  cost	
  of	
  a	
  frame,	
  which	
  would	
  be	
  approximately	
  $1800	
  for	
  a	
  conventional	
  1.8kW	
  system.	
  This	
  brings	
  the	
  total	
  offset	
  cost	
  of	
  the	
  system	
  to	
  approximately	
  15%.132	
  This	
  is	
  consistent	
  with	
  other	
  estimates	
  of	
  the	
  general	
  potential	
  of	
  BIPV	
  to	
  reduce	
  system	
  costs.133	
  However,	
  even	
  with	
  these	
  cost	
  offsets	
  from	
  the	
  replacement	
  of	
  building	
  materials,	
  the	
  total	
  installed	
  system	
  costs	
  remain	
  close	
  to	
  $9,500/kW,	
  which	
  is	
  within	
  the	
  current	
  price	
  range	
  of	
  conventional	
  roof-­‐mounted	
  PV	
  systems.	
  	
  Cost	
  reductions	
  can	
  be	
  realized	
  through	
  BIPV,	
  but	
  the	
  savings	
  depend	
  highly	
  on	
  the	
  type	
  of	
  building	
  material	
  being	
  replaced.	
  These	
  cost	
  reductions	
  may	
  become	
  more	
  significant	
  as	
  overall	
  system	
  prices	
  decrease	
  over	
  time,	
  but	
  currently	
  they	
  are	
  too	
  small	
  to	
  influence	
  prospective	
  system	
  owners	
  on	
  economic	
  grounds	
  alone.	
  Over	
  the	
  short	
  term,	
  residential	
  BIPV	
  is	
  therefore	
  most	
  likely	
  to	
  be	
  selected	
  for	
  its	
  aesthetic	
  benefits.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   128 Interlock Roofing, Solar Roof, retrieved March 13th 2010 from <http://www.bcsbestroof.com/>. 129  J. Pearce, Economics of photovoltaic systems, 2006, retrieved March 1st 2010 from <http://www.appropedia.org/Solar_Photovoltaic_Open_Lectures>. 130 Interlock Roofing, Op. cit. 131 Interlock Roofing Representative, Personal Communication with the Author, March 12th, 2010. 132 Please note that these estimates reflect only the author’s calculations and may differ on a case-by-case basis. The company should be contacted directly for current installation costs. 133 E. Smiley, Green energy study for British Columbia phase 2: Mainland - building integrated photovoltaic solar and small-scale wind, BC Hydro, October 2002, retrieved October 2009 from <http://www.bchydro.com/etc/medialib/internet/documents/environment/pdf/green_energy_study.Par.0001.File.greene nergystudy-summary.pdf >. Figure 12 A BIPV product integrated into a metal roof128 [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   33	
   Emerging	
  Technologies:	
  Organic	
  Solar	
  and	
  Solar	
  Paint	
   	
  Much	
  has	
  been	
  said	
  in	
  the	
  media	
  about	
  the	
  long-­‐term	
  potential	
  of	
  organic	
  solar,	
  polymer-­‐based	
  solar,	
  and	
  solar	
  paint	
  to	
  reduce	
  the	
  cost	
  of	
  solar	
  modules.134	
  There	
  are	
  several	
  promising	
  types	
  under	
  development.	
  However,	
  these	
  all	
  appear	
  to	
  be	
  at	
  least	
  several	
  years	
  from	
  commercialization.	
  For	
  example,	
  organic	
  solar	
  is	
  currently	
  associated	
  with	
  low	
  efficiencies	
  (5%)	
  and	
  a	
  short	
  lifespan	
  (estimated	
  at	
  5	
  years)	
  keeping	
  the	
  life-­‐cycle	
  prices	
  relatively	
  high.135	
  It	
  is	
  challenging	
  to	
  predict	
  technological	
  breakthrough	
  accurately,	
  but	
  one	
  can	
  assume	
  that	
  it	
  takes	
  a	
  substantial	
  amount	
  of	
  time	
  for	
  an	
  emerging	
  technology	
  to	
  become	
  mass-­‐produced.	
  	
  If	
  thin-­‐film	
  PV	
  is	
  taken	
  as	
  an	
  indicator	
  it	
  appears	
  likely	
  that	
  these	
  emerging	
  technologies	
  are	
  several	
  years	
  from	
  being	
  market-­‐ready	
  and	
  cost-­‐competitive	
  with	
  current	
  solar	
  technologies.	
   	
   Sample	
  System	
  Prices	
  	
   	
  Table	
  7	
  below	
  provides	
  a	
  realistic	
  market	
  price	
  for	
  a	
  PV	
  system	
  installed	
  in	
  BC.	
  Prices	
  were	
  drawn	
  from	
  the	
  market	
  survey	
  listed	
  in	
  Appendix	
  B.	
  The	
  system	
  selected	
  is	
  a	
  multicrystalline	
  silicon	
  solar	
  PV	
  system,	
  which	
  is	
  assumed	
  to	
  be	
  purchased	
  and	
  used	
  in	
  the	
  southwest	
  of	
  BC.	
  This	
  implies	
  solar	
  PV	
  potential	
  of	
  1,000	
  kWh	
  per	
  kW	
  of	
  installed	
  capacity.	
  	
  	
  The	
  installed	
  cost	
  of	
  the	
  2.9kW	
  roof-­‐mounted	
  system	
  was	
  calculated	
  at	
  $24,047,	
  or	
  $8,300	
  per	
  kW.	
  This	
  system	
  price	
  is	
  at	
  the	
  lower	
  end	
  of	
  estimates	
  provided	
  by	
  system	
  installers,	
  who	
  estimated	
  installed	
  costs	
  in	
  BC	
  between	
  $8,000	
  and	
  $10,000/kW.136	
  However,	
  the	
  sample	
  system	
  price	
  is	
  close	
  to	
  other	
  jurisdictions	
  in	
  North	
  America	
  where	
  Solar	
  PV	
  is	
  more	
  prevalent,	
  such	
  as	
  California,	
  where	
  system	
  costs	
  tend	
  to	
  be	
  closer	
  to	
  $7,000	
  to	
  $8,000/kW.137	
  	
  	
  The	
  life-­‐cycle	
  costs	
  of	
  the	
  PV	
  system	
  are	
  increased	
  once	
  inverter	
  replacement	
  is	
  included.	
  Assuming	
  a	
  panel	
  life	
  of	
  30	
  years,	
  this	
  model	
  implies	
  electricity	
  would	
  be	
  produced	
  at	
  a	
  life-­‐cycle	
  cost	
  of	
  $0.31/kWh.	
  Taking	
  the	
  higher	
  installed	
  cost	
  estimates	
  of	
  $10,000/kW	
  would	
  produce	
  electricity	
  at	
  costs	
  closer	
  to	
  $0.36	
  cents/kWh.	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   134 S. Lovgren, ‘Spray-on solar-power cells are true breakthrough,’ National Geographic News, January 14th 2005, retrieved January 18th 2010 from <http://news.nationalgeographic.com/news/2005/01/0114_050114_solarplastic.html>. 135 J. Kalowekamo and E. Baker, ‘Estimating the manufacturing cost of purely organic solar cells,’ Solar Energy, Vol. 83, 2009, pp. 1224-1231. 136 For example, Suddwick Homes is a BC-based installer who offers a 4.1kW system for $41,000, including permitting fees and all installation costs. When compared in $/kW, this is almost 20% more thanthe sample costs shown here. Further information is included in Appendix B.	
   137 P. Torcellini, et. al, ‘Solar technologies and the building envelope,’ ASHRAE Journal, April 2007, p. 14-22, retrieved February 13th 2010 from <www.ashrae.org>. 	
   34	
   Table 7 - Cost and Revenue for a Residential Grid-Tied Solar PV System in British Columbia*  Cost: Proportion of Total Cost: Sample Prices: Modules (13x230W modules) 48% $13,000 Inverter (1x4kW) 11% $2,995 Frame 10% $2,700 Balance of System (BOS) Remaining BOS 6% $1,500 Electrical Permit 4% $1,000 Labour/Installation costs 9% $2,500 7% PST Exemption 7% $0  Provincial Incentives $260/kW   3% (decrease) $780 General Sales Tax (GST) 5% 4% $1,132 Installed Costs (including incentives and tax) 89% $24,047 Maintenance Cost (1 inverter replacement at 15 years, including GST)  12% $3,144 Total Life-cycle Costs (including taxes) 100% $27,191 Revenue/Avoided Costs: Proportion of Revenue: Revenue: 3,000 kWh of electricity produced annually for 30 years (Constant electricity price of $0.08/kWh) 100% $7,128  Net life-cycle costs after 30 years (including revenue and incentives)  $20,063 Price per kWh after 30 years (including revenue and incentives)   $0.31 *Model based on a 2.9kW system, a 30-year time frame, and no costs for capital financing. 	
   Assumptions,	
  Limitations,	
  and	
  Sensitivities	
  of	
  the	
  Model	
  	
   Assumptions	
  	
  The	
  model	
  assumes	
  solar	
  PV	
  potential	
  of	
  1,000	
  kWh/kW,	
  as	
  this	
  is	
  close	
  to	
  the	
  BC	
  average	
  and	
  provided	
  simplified	
  calculation.	
  Variation	
  could	
  be	
  expected	
  within	
  around	
  20%	
  depending	
  on	
  the	
  region	
  in	
  which	
  the	
  panel	
  is	
  installed.	
  	
  The	
  model	
  assumes	
  electricity	
  prices	
  continue	
  at	
  $0.08/kWh	
  over	
  the	
  entire	
  30	
  year	
  lifecycle.	
  This	
  is	
  highly	
  unlikely;	
  electricity	
  costs	
  are	
  likely	
  to	
  increase	
  over	
  the	
  near	
  term	
  as	
  Fortis	
  BC	
  and	
  BC	
  Hydro	
  have	
  recently	
  applied	
  for	
  rate	
  increases.138	
  	
  A	
  module	
  life	
  of	
  30	
  years	
  at	
  100%	
  panel	
  performance	
  is	
  assumed.	
  If	
  panel	
  warranties	
  are	
  an	
  indicator,	
  it	
  is	
  likely	
  that	
  panel	
  performance	
  will	
  have	
  begun	
  to	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   138 ‘BC Hydro seeks 33% rate hike over next four years,’ CBC News, Wednesday March 3rd 2010, retrieved Thursday March 4th 2010 from <http://www.cbc.ca/canada/british-columbia/story/2010/03/03/bc-hydro-rate-increases.html?ref=rss>. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   35	
  decrease	
  by	
  at	
  least	
  10%	
  by	
  year	
  25,	
  but	
  it	
  is	
  also	
  likely	
  that	
  panels	
  will	
  continue	
  to	
  operate	
  for	
  longer	
  than	
  30	
  years.	
  These	
  two	
  assumptions	
  may	
  cancel	
  each	
  other	
  out.	
  	
  	
  	
  An	
  inverter	
  life	
  of	
  15	
  years	
  is	
  assumed;	
  this	
  is	
  beyond	
  the	
  warranty	
  offered	
  by	
  many	
  companies	
  without	
  added	
  expenditure	
  and	
  may	
  be	
  optimistic.	
  In	
  addition,	
  inverter	
  prices	
  are	
  assumed	
  to	
  remain	
  static	
  over	
  15	
  years,	
  although	
  these	
  costs	
  are	
  likely	
  to	
  decline	
  over	
  time.139	
  Therefore	
  no	
  labour	
  cost	
  was	
  modeled	
  for	
  inverter	
  replacement,	
  in	
  order	
  to	
  balance	
  the	
  latter	
  assumption.	
  	
  	
  	
  	
  The	
  model	
  assumes	
  no	
  system	
  financing	
  costs.	
  Given	
  the	
  high	
  up-­‐front	
  costs	
  of	
  a	
  system,	
  financing	
  could	
  add	
  substantially	
  to	
  PV	
  system	
  prices.	
  The	
  exclusion	
  of	
  financing	
  costs	
  (loans)	
  for	
  the	
  panel	
  was	
  left	
  out	
  of	
  the	
  model	
  on	
  the	
  basis	
  that	
  any	
  consumer	
  willing	
  to	
  experience	
  a	
  net	
  loss	
  of	
  over	
  $20,000	
  is	
  likely	
  making	
  their	
  decision	
  for	
  reasons	
  other	
  than	
  financial	
  costs.	
  This	
  issue	
  is	
  further	
  addressed	
  under	
  the	
  subsection	
  “Changing	
  the	
  Economics	
  of	
  Solar”.	
  	
  	
   Limitations	
  	
  This	
  data	
  strictly	
  addresses	
  current	
  market	
  prices	
  for	
  PV	
  panels	
  in	
  residential,	
  grid-­‐tied	
  applications.	
  The	
  business	
  case	
  for	
  systems	
  will	
  be	
  quite	
  different	
  for	
  off-­‐grid	
  and	
  remote	
  applications,	
  where	
  the	
  cost	
  of	
  connection	
  to	
  the	
  electricity	
  grid	
  will	
  be	
  much	
  higher.140	
  	
  	
  The	
  business	
  case	
  and	
  sample	
  prices	
  above	
  also	
  do	
  not	
  capture	
  potential	
  savings	
  from	
  more	
  integrated	
  design	
  and	
  installation	
  processes.	
  In	
  California	
  residential	
  PV	
  systems	
  installed	
  during	
  the	
  construction	
  of	
  new	
  buildings	
  were	
  approximately	
  7%	
  cheaper	
  than	
  systems	
  that	
  were	
  installed	
  as	
  retrofits.141	
  It	
  is	
  possible	
  that	
  similar	
  savings	
  would	
  apply	
  in	
  BC	
  if	
  residential	
  PV	
  uptake	
  was	
  widespread.	
  	
  	
  Finally,	
  this	
  model	
  only	
  measures	
  direct	
  economic	
  costs	
  and	
  benefits.	
  Other	
  benefits,	
  such	
  as	
  energy	
  security,	
  are	
  relatively	
  difficult	
  to	
  quantify	
  and	
  as	
  such	
  have	
  been	
  left	
  out	
  of	
  the	
  model.	
  	
  	
   Sensitivities	
  	
  The	
  largest	
  determinants	
  of	
  system	
  costs	
  are	
  PV	
  modules,	
  which	
  make	
  up	
  around	
  50%	
  of	
  system	
  costs,	
  and	
  inverters,	
  which	
  account	
  for	
  25%	
  of	
  life-­‐cycle	
  costs.	
  The	
  cost-­‐side	
  of	
  the	
  model	
  is	
  therefore	
  highly	
  sensitive	
  to	
  changes	
  in	
  module	
  prices	
  or	
  inverter	
  costs.	
  For	
  example,	
  an	
  additional	
  inverter	
  replacement	
  in	
  the	
  model	
  above	
  (for	
  a	
  total	
  of	
  three	
  inverters)	
  would	
  raise	
  total	
  life-­‐cycle	
  costs	
  of	
  the	
  project	
  by	
  an	
  additional	
  10%.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   139 Bornstein, Op. cit. 140 Solar Buzz, Solar energy costs, accessed February 23rd 2010 from <http://www.solarbuzz.com/StatsCosts.htm>. 141 R. Wiser, G. Barbose, and C. Peterman, Tracking the Sun: The installed cost of photovoltaics in the U.S. from 1998- 2007, Lawrence Berkeley National Laboratory, February 2009, retrieved Tuesday March 2nd 2010 from <http://eetd.lbl.gov/ea/emp/reports/lbnl-1516e.pdf>. 	
   36	
   Electricity	
  prices	
  are	
  the	
  sole	
  determinant	
  of	
  revenue	
  in	
  this	
  model.	
  The	
  model	
  is	
  	
  therefore	
  sensitive	
  to	
  changes	
  in	
  electricity	
  prices.	
  However,	
  these	
  changes	
  would	
  have	
  to	
  be	
  substantial	
  to	
  affect	
  the	
  business	
  case.	
  An	
  immediate	
  doubling	
  of	
  electricity	
  prices	
  to	
  $0.16/kWh	
  would	
  still	
  leave	
  an	
  economic	
  shortfall	
  of	
  nearly	
  $13,000	
  after	
  30	
  years	
  for	
  PV	
  system	
  owners.	
  Under	
  a	
  Net	
  Metering	
  scenario	
  	
  	
  electricity	
  prices	
  of	
  at	
  least	
  $0.31/kWh	
  would	
  be	
  required	
  for	
  system	
  owners	
  to	
  break	
  even	
  on	
  their	
  investment	
  after	
  30	
  years.	
  This	
  electricity	
  price	
  is	
  nearly	
  four	
  times	
  higher	
  than	
  the	
  current	
  price	
  of	
  grid	
  electricity,	
  and	
  seems	
  implausible	
  over	
  the	
  short	
  term.	
  	
  	
  	
  Revenue	
  is	
  also	
  sensitive	
  to	
  the	
  amount	
  of	
  solar	
  energy	
  available.	
  In	
  BC	
  this	
  ranges	
  from	
  around	
  800	
  to	
  1200kWh	
  for	
  every	
  kW	
  of	
  installed	
  capacity.	
  Therefore	
  revenue	
  may	
  range	
  by	
  approximately	
  20%	
  based	
  on	
  the	
  region	
  in	
  which	
  the	
  panel	
  is	
  located.	
  	
  The	
  model	
  is	
  slightly	
  sensitive	
  to	
  economies	
  of	
  scale	
  based	
  on	
  changes	
  in	
  system	
  size.	
  Both	
  inverters	
  and	
  electrical	
  permit	
  fees	
  have	
  low	
  price	
  elasticity.	
  This	
  provides	
  slight	
  economy	
  of	
  scale	
  as	
  system	
  size	
  increases;	
  it	
  is	
  approximately	
  10%	
  cheaper	
  per	
  kW	
  to	
  have	
  a	
  larger	
  system	
  (3kW)	
  than	
  a	
  smaller	
  system	
  (1kW).	
  Beyond	
  the	
  size	
  of	
  3kW	
  this	
  effect	
  diminishes.	
  	
    Volume-­Based	
  Cost	
  Reductions	
  	
  Bulk	
  purchasing	
  can	
  lower	
  costs.	
  At	
  the	
  residential	
  scale	
  bulk	
  purchases	
  can	
  be	
  made	
  through	
  Community	
  Energy	
  Cooperatives,	
  which	
  purchase	
  several	
  systems	
  from	
  the	
  same	
  installer.	
  Solar	
  PV	
  co-­‐ops	
  documented	
  in	
  Ontario	
  have	
  lowered	
  costs	
  by	
  as	
  much	
  as	
  10%.142	
  These	
  co-­‐ops	
  have	
  also	
  been	
  documented	
  in	
  BC	
  within	
  the	
  solar	
  hot	
  water	
  market,	
  such	
  as	
  the	
  Peace	
  Energy	
  Cooperative	
  in	
  Dawson	
  Creek.143	
  	
  However,	
  solar	
  PV	
  co-­‐ops	
  in	
  BC	
  will	
  likely	
  be	
  harder	
  to	
  organize	
  until	
  PV	
  becomes	
  a	
  more	
  popular	
  technology.	
  This	
  is	
  likely	
  to	
  occur	
  only	
  after	
  these	
  systems	
  become	
  more	
  economical	
  for	
  homeowners.	
  	
  	
  On	
  a	
  wider	
  scale,	
  costs	
  can	
  be	
  reduced	
  through	
  increasing	
  the	
  volume	
  of	
  PV	
  system	
  sales.	
  This	
  can	
  decrease	
  overhead	
  costs	
  for	
  installers	
  and	
  manufacturers144	
  and	
  enables	
  more	
  efficient	
  design	
  and	
  installation	
  of	
  PV	
  systems.145	
  This	
  potential	
  is	
  indicated	
  by	
  the	
  decline	
  in	
  system	
  prices	
  in	
  jurisdictions	
  that	
  strongly	
  support	
  solar	
  PV.	
  For	
  example,	
  average	
  installed	
  residential	
  PV	
  prices	
  in	
  2007	
  were	
  near	
  US$6,000/kW	
  in	
  Japan	
  and	
  $6,600/kW	
  in	
  Germany.146 The	
  degree	
  to	
  which	
  volume-­‐based	
  cost	
  decreases	
  can	
  be	
  realized	
  in	
  BC	
  are	
  hard	
  to	
  predict,	
  as	
  the	
  economies	
  of	
  scale	
  would	
  likely	
  be	
  linked	
  to	
  demand	
  (population)	
  and	
  possibly	
  whether	
  PV	
  systems	
  were	
  manufactured	
  locally	
  or	
  imported.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   142 S. Eng and S. Gill, Solar PV Community Action Manual, Ontario Sustainable Energy Association, retrieved September 30th 2009 from <www.ontario-sea.org/Storage.asp?StorageID=445>. 143 Community Energy Association Powering our communities: Renewable energy guide for local governments in British Columbia, 2008, retrieved November 12th 2009 from <http://www.communityenergy.bc.ca/>. 144 J. Pearce, Personal communication with the author, March 2nd 2010. 145 J. Stonier, Personal communication with the author, March 19th, 2010. 146 Wiser, Barbose, and Peterman, Op. cit. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   37	
   PV	
  Cost	
  Forecast	
  	
  Forecasting	
  future	
  prices	
  of	
  PV	
  is	
  challenging.	
  However,	
  there	
  appears	
  to	
  be	
  substantial	
  agreement	
  that	
  costs	
  will	
  continue	
  to	
  decrease,	
  likely	
  by	
  about	
  half	
  over	
  the	
  next	
  10-­‐20	
  years.	
  One	
  survey	
  of	
  industry	
  professionals	
  and	
  academics	
  found	
  substantial	
  agreement	
  that	
  average	
  solar	
  module	
  prices	
  would	
  likely	
  reach	
  US	
  $1.20/W	
  by	
  2030.147	
  Another	
  author	
  cites	
  forecasts	
  predicting	
  the	
  cost	
  of	
  producing	
  modules	
  for	
  thin-­‐film	
  PV	
  will	
  fall	
  to	
  US	
  $0.50–0.70/W	
  with	
  system	
  prices	
  of	
  US	
  $1.50–	
  $2.50/W	
  by	
  2020.148	
  However,	
  even	
  one	
  of	
  the	
  more	
  optimistic	
  of	
  these	
  scenarios	
  (around	
  $2,500	
  per	
  kW)	
  would	
  still	
  leave	
  net	
  loss	
  of	
  $500	
  to	
  a	
  PV	
  system	
  owner	
  in	
  BC	
  once	
  an	
  inverter	
  replacement	
  is	
  factored	
  in.149	
  Only	
  by	
  assuming	
  the	
  panel	
  is	
  installed	
  in	
  a	
  region	
  with	
  higher	
  solar	
  PV	
  potential	
  would	
  a	
  PV	
  system	
  provide	
  net	
  revenue	
  within	
  30	
  years.	
  	
  	
   Conclusions	
  	
  Installed	
  prices	
  for	
  a	
  residential,	
  grid-­‐connected	
  PV	
  system	
  in	
  BC	
  range	
  between	
  $8,000	
  and	
  $10,000/kW,	
  installed.	
  Life-­‐cycle	
  costs	
  should	
  account	
  for	
  at	
  least	
  one	
  inverter	
  replacement,	
  adding	
  approximately	
  $1,000/kW	
  to	
  these	
  costs.	
  At	
  current	
  electricity	
  prices,	
  revenue	
  is	
  likely	
  to	
  be	
  near	
  $2,400/kW	
  over	
  a	
  30	
  year	
  period.	
  This	
  leaves	
  a	
  shortfall	
  of	
  $6,600-­‐$8,600	
  per	
  kW.	
  This	
  is	
  a	
  substantial	
  economic	
  burden	
  for	
  customers.	
  The	
  model	
  also	
  does	
  not	
  account	
  for	
  potential	
  system	
  financing	
  costs,	
  which	
  could	
  provide	
  additional	
  cost	
  to	
  prospective	
  system	
  owners.	
  	
  	
  	
  Simply	
  to	
  break	
  even	
  financially	
  would	
  require	
  one	
  of	
  the	
  following:	
   • Revenue to increase by approximately 4 times, such as through increasing the price of electricity from $0.08 to $0.32 per kWh; • A 70% decrease in installed system costs; • A subsidy of approximately $7,600/kW, instead of the current $280/kw; or • Some combination of above. 	
  Barring	
  a	
  major	
  technological	
  breakthrough,	
  therefore,	
  some	
  sort	
  of	
  policy	
  intervention	
  which	
  substantially	
  changes	
  the	
  business	
  case	
  for	
  residential	
  PV	
  systems	
  would	
  need	
  to	
  be	
  made	
  in	
  order	
  to	
  encourage	
  widespread	
  uptake	
  of	
  these	
  systems.	
  Some	
  of	
  these	
  interventions	
  are	
  briefly	
  discussed	
  in	
  the	
  following	
  section.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   147 A. Curtright, M. G. Morgan, and D. Keith, ‘Assessments future pv.’ Environmental Science and Technology, Vol. 42, No. 24, 2008, P. 9033. 148 V. Fthenakis, ‘Sustainability of photovoltaics; The case for thin-film solar cells.’ Renewable and Sustainable Energy Reviews 13, 2009, p. 2747. 149 $US 2.50/W installed equates to $2,500 per kW. Assuming one inverter replacement at the somewhat optimistic price of $1,000/kW this implies a life-cycle cost of $3,500/kW. Substituting this data into the system costs shown in Table 7 and assuming electricity prices of $0.10/kWh, a shortfall of $500 remains at the thirty-year mark. This model still assumes no financing costs would be incurred over the life of the system. 	
   38	
   Changing	
  the	
  Economics	
  of	
  Solar:	
  Rate	
  Structures,	
  Feed-­‐in	
  Tariffs,	
  and	
  Financing	
  	
  	
  The	
  life-­‐cycle	
  cost	
  of	
  electricity	
  provided	
  by	
  a	
  grid-­‐connected	
  residential	
  PV	
  system	
  in	
  British	
  Columbia	
  is	
  approximately	
  $0.30/kWh.	
  BC	
  Hydro	
  is	
  likely	
  to	
  raise	
  the	
  price	
  of	
  electricity	
  by	
  33%	
  over	
  the	
  next	
  several	
  years,	
  implying	
  a	
  price	
  of	
  nearly	
  $0.10/kWh.150	
  	
  This	
  still	
  leaves	
  a	
  substantial	
  shortfall	
  between	
  the	
  cost	
  of	
  grid	
  electricity	
  and	
  the	
  cost	
  of	
  electricity	
  produced	
  from	
  residential	
  PV	
  systems.	
  	
  	
  The	
  economics	
  of	
  grid-­‐connected	
  PV	
  systems	
  are	
  most	
  sensitive	
  to	
  changes	
  in	
  the	
  price	
  of	
  electricity,	
  the	
  availability	
  of	
  incentives	
  or	
  subsidies,	
  and	
  the	
  cost	
  of	
  financing.151	
  This	
  section	
  describes	
  some	
  of	
  the	
  potential	
  policy	
  options	
  for	
  closing	
  the	
  gap	
  between	
  conventional	
  grid-­‐based	
  electricity	
  and	
  electricity	
  from	
  PV,	
  including	
  internalizing	
  the	
  benefits	
  of	
  PV	
  systems	
  to	
  utilities	
  through	
  ‘peak	
  shaving’,	
  Time	
  of	
  Use	
  rate	
  structures,	
  and	
  Feed-­‐in	
  Tariffs.	
  A	
  brief	
  discussion	
  of	
  issues	
  related	
  to	
  PV	
  financing	
  is	
  also	
  included.	
   Peak	
  Demand,	
  Deferred	
  Infrastructure	
  Costs,	
  and	
  Time	
  of	
  Use	
  Rate	
  Structures	
  	
  Some	
  authors	
  argue	
  that	
  PV	
  can	
  help	
  to	
  reduce,	
  delay,	
  or	
  avoid	
  utility	
  investments	
  in	
  additional	
  generation	
  capacity	
  and	
  transmission	
  infrastructure.152	
  Under	
  Net	
  Metering,	
  customers	
  are	
  not	
  likely	
  to	
  receive	
  the	
  cost	
  reductions	
  that	
  may	
  be	
  realized	
  by	
  utilities.	
  If	
  these	
  “hidden”	
  benefits	
  are	
  sufficiently	
  large,	
  they	
  could	
  provide	
  a	
  rationale	
  for	
  providing	
  financial	
  support	
  to	
  PV	
  system	
  owners.	
  	
  	
  The	
  “hidden”	
  benefits	
  of	
  residential	
  PV	
  systems,	
  which	
  can	
  deliver	
  electricity	
  on-­‐site,	
  are	
  thought	
  to	
  depend	
  large	
  on	
  the	
  degree	
  to	
  which	
  peak	
  demand	
  for	
  electricity	
  coincides	
  with	
  electrical	
  output	
  from	
  PV	
  systems.	
  Within	
  a	
  conventional	
  electricity	
  delivery	
  system,	
  the	
  capacity	
  to	
  generate	
  and	
  transmit	
  electricity	
  must	
  be	
  sized	
  based	
  on	
  peak	
  electricity	
  demand.	
  This	
  additional	
  transmission	
  and	
  generation	
  capacity	
  is	
  generally	
  idle	
  during	
  large	
  portions	
  of	
  the	
  year.	
  As	
  a	
  result,	
  the	
  actual	
  cost	
  to	
  the	
  utility	
  to	
  deliver	
  electricity	
  can	
  vary	
  based	
  on	
  season,	
  day,	
  and	
  even	
  smaller	
  increments.	
  These	
  cost	
  variations	
  are	
  not	
  internalized	
  by	
  most	
  residential	
  customers,	
  who	
  pay	
  what	
  is	
  essentially	
  an	
  average	
  price	
  for	
  electricity.153	
  Variations	
  in	
  the	
  cost	
  of	
  electricity	
  are	
  hidden	
  within	
  this	
  average	
  price.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   150 ‘BC Hydro seeks 33% rate hike over next four years,’ CBC News, Wednesday March 3rd 2010, retrieved March 4th 2010 from <http://www.cbc.ca/canada/british-columbia/story/2010/03/03/bc-hydro-rate-increases.html?ref=rss>. 151 P. Denholm et. al., Break-even cost for residential photovoltaics in the United States: Key drivers and sensitivities, National Research Energy Laboratory, December 2009, retrieved February 12th 2010 from <www.nrel.gov/docs/fy10osti/46909.pdf>. 152 S. Bornstein, ‘The market value and cost of solar photovoltaic electricity production,’ Center for the Study of Energy Markets Working Paper, Berkley, January 2008, retrieved January 30th 2010 from <www.ucei.berkeley.edu/PDF/csemwp176.pdf>. 153 Although BC Hydro now charges a “Conservation Rate” for residential electricity consumption, this rate is tied to the quantity of electricity used and not the time of use. The rate still represents an average price and does not appear to reflect the cost of delivery at different times of day or during different seasons. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   39	
  	
  Where	
  peak	
  electricity	
  demand	
  and	
  peak	
  solar	
  supply	
  are	
  well	
  matched,	
  solar	
  PV	
  can	
  help	
  to	
  “shave”	
  the	
  peak	
  prices	
  of	
  electricity	
  and	
  potentially	
  to	
  reduce	
  the	
  costs	
  of	
  infrastructure.	
  The	
  concept	
  is	
  illustrated	
  below	
  in	
  Figure	
  13.	
  For	
  example,	
  it	
  may	
  be	
  possible	
  to	
  avoid	
  upgrading	
  the	
  capacity	
  of	
  an	
  existing	
  transmission	
  line	
  that	
  is	
  overtaxed	
  during	
  peak	
  hours	
  if	
  that	
  demand	
  can	
  be	
  met	
  on-­‐site.	
  	
   	
  The	
  potential	
  for	
  utilities	
  to	
  capture	
  such	
  benefits	
  from	
  PV	
  installations	
  depends	
  highly	
  on	
  the	
  state	
  of	
  the	
  infrastructure	
  of	
  the	
  areas	
  in	
  which	
  PV	
  systems	
  are	
  installed,	
  and	
  the	
  timing	
  of	
  peak	
  demand	
  and	
  peak	
  solar	
  output.	
  For	
  example,	
  one	
  US	
  study	
  found	
  that	
  these	
  benefits	
  ranged	
  from	
  $US	
  0.00	
  to	
  $0.10/kWh,	
  depending	
  on	
  the	
  area	
  being	
  studied.155	
  In	
  California	
  and	
  Japan,	
  peak	
  demand	
  is	
  well	
  matched	
  to	
  peak	
  PV	
  output.156	
  In	
  other	
  countries,	
  by	
  contrast,	
  the	
  correlation	
  between	
  peak	
  demand	
  and	
  solar	
  PV	
  potential	
  is	
  highly	
  variable.157	
  In	
  British	
  Columbia,	
  peak	
  demand	
  occurs	
  largely	
  during	
  winter	
  evenings.158	
  This	
  implies	
  that	
  solar	
  PV	
  may	
  have	
  limited	
  potential	
  for	
  peak	
  shaving	
  or	
  for	
  reducing	
  infrastructure	
  costs.	
  	
  This	
  criticism	
  is	
  supported	
  by	
  Bornstein,	
  who	
  argues	
  that	
  the	
  ability	
  to	
  reduce	
  transmission	
  and	
  distribution	
  costs	
  through	
  PV	
  has	
  been	
  marginal	
  in	
  California	
  and	
  is	
  unlikely	
  to	
  occur	
  in	
  other	
  jurisdictions.159	
  Similarly,	
  in	
  2001	
  a	
  BC	
  Hydro	
  report	
  found	
  that	
  necessary	
  upgrades	
  on	
  Vancouver	
  Island	
  could	
  not	
  be	
  avoided	
  through	
  alternative	
  green	
  energy	
  due	
  to	
  the	
  intermittent	
  nature	
  of	
  most	
  renewables;	
  either	
  storage	
  capacity	
  or	
  a	
  guaranteed	
  source	
  of	
  power	
  (i.e.	
  grid	
  connection)	
  would	
  be	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   154 S. Brown and I. Rowlands, ‘Nodal pricing in Ontario, Canada: Implications for solar PV electricity,’ Renewable Energy 34, 2009, pp. 170-178. 155 J. Contreras et al., Photovoltaics Value Analysis, National Renewable Energy Laboratory, February 2008, retrieved September 30th 2009, from <www.nrel.com>. 156 Suna, Haas, and Lopez Polo, Op. cit. 157 Ibid. 158 BC Hydro Customer Service Representative, Personal communication with the author, March 26th, 2010. 159 Bornstein, Op. cit.  Figure 13 – This diagram demonstrates the potential of peak- shaving through the use of solar PV systems.154 The diagram is based on a case study from Ontario, and the data used does not necessarily reflect the situation in BC. 	
   	
   40	
   required,	
  therefore	
  removing	
  potential	
  avoided	
  costs.160	
  Therefore	
  careful	
  analysis	
  is	
  required	
  to	
  determine	
  whether	
  these	
  benefits	
  exist	
  in	
  a	
  given	
  area	
  of	
  BC.	
  	
   Time	
  of	
  Use	
  Rate	
  Structures:	
  	
  One	
  means	
  of	
  internalizing	
  more	
  of	
  the	
  costs	
  and	
  benefits	
  of	
  electricity	
  delivery	
  is	
  through	
  Time	
  of	
  Use	
  (TOU)	
  rate	
  structures.	
  TOU	
  rates	
  charge	
  customers	
  based	
  on	
  the	
  time	
  the	
  electricity	
  is	
  used,	
  charging	
  higher	
  prices	
  during	
  periods	
  of	
  peak	
  demand.	
  This	
  sends	
  effective	
  price	
  signals	
  that	
  encourage	
  demand	
  reduction	
  and	
  demand	
  shifting	
  to	
  off-­‐peak	
  periods.	
  BC	
  Hydro	
  has	
  experimented	
  with	
  TOU	
  and	
  found	
  the	
  rate	
  structure	
  was	
  effective	
  in	
  changing	
  consumer	
  behavior.161	
  	
  	
  A	
  PV	
  system	
  owner	
  who	
  could	
  sell	
  electricity	
  during	
  on-­‐peak	
  time	
  (or	
  reduce	
  their	
  on-­‐peak	
  costs)	
  could	
  potentially	
  improve	
  the	
  economics	
  of	
  their	
  PV	
  system.	
  One	
  study	
  quantified	
  the	
  potential	
  benefits	
  to	
  PV	
  system	
  owners	
  through	
  a	
  combination	
  of	
  TOU	
  and	
  Net	
  Metering.	
  The	
  study	
  demonstrated	
  that	
  the	
  value	
  of	
  electricity	
  from	
  PV	
  could	
  be	
  increased	
  by	
  between	
  10%	
  and	
  40%	
  in	
  many	
  US	
  jurisdictions.162	
  It	
  is	
  possible	
  that	
  similar	
  advantages	
  would	
  apply	
  in	
  some	
  regions	
  of	
  BC.	
  	
  	
  Fortis	
  BC	
  already	
  offers	
  the	
  option	
  of	
  Time	
  of	
  Use	
  pricing.	
  The	
  hours	
  during	
  which	
  on-­‐peak	
  and	
  off-­‐peak	
  rates	
  apply	
  vary	
  based	
  on	
  the	
  day	
  of	
  the	
  week	
  and	
  the	
  season.	
  Rates	
  are	
  shown	
  in	
  Figure	
  14	
  below.	
  During	
  summer	
  months,	
  especially,	
  much	
  of	
  the	
  output	
  from	
  a	
  solar	
  PV	
  system	
  matches	
  on-­‐peak	
  hours.	
  However,	
  it	
  is	
  not	
  currently	
  possible	
  for	
  Fortis	
  BC	
  customers	
  to	
  combine	
  Time	
  of	
  Use	
  and	
  Net	
  Metering	
  agreements.	
  In	
  order	
  to	
  quantify	
  the	
  potential	
  benefits	
  of	
  combined	
  TOU	
  and	
  Net	
  Metering	
  further	
  research	
  would	
  be	
  required.	
  	
   Summer (July, August) On-Peak Hours:  9:00 am - 11:00 am Monday - Friday: 13.564¢/kWh  3:00 pm - 11:00 pm Monday - Friday: 13.564¢/kWh  Off-Peak Hours:  11:00 pm - 9:00 am Monday - Friday: 4.394¢/kWh  11:00 am - 3:00 pm Monday - Friday: 4.394¢/kWh  All hours on Saturday and Sunday: 4.394¢/kWh All other months On-Peak Hours:  8:00 am - 1:00 pm Monday - Friday: 13.564¢/kWh  5:00 pm - 10:00 pm Monday - Friday: 13.564¢/kWh  Off-Peak Hours:  10:00 pm - 8:00 am Monday - Friday: 4.394¢/kWh  1:00 pm - 5:00 pm Monday - Friday: 4.394¢/kWh  All hours on Saturday and Sunday: 4.394¢/kWh Figure 14 Time of Use charges for Fortis BC customers163 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   160 BC Hydro Green & Alternative Energy Division, Green energy study for British Columbia Phase 2: Mainland, October 2002, retrieved November 12th, 2009, from <www.bchydro.com>. 161 BC Hydro, Conservation Research Initiative, last modified February 24th 2010, accessed March 1st 2010 from <http://www.bchydro.com/powersmart/residential/conservation_research_initiative.html>. 162 P. Denholm, et al., Op. cit. 163 Fortis BC, Rates, retrieved March 13th 2010 from <http://www.fortisbc.com/about_fortisbc/rates/rates.html>. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   41	
   Feed-­‐in	
  Tariffs	
  	
  The	
  world’s	
  leaders	
  in	
  solar	
  PV	
  deployment	
  have	
  promoted	
  solar	
  through	
  Feed-­‐in	
  Tariffs	
  (FiTs).164	
  There	
  are	
  many	
  versions	
  of	
  FiTs,	
  but	
  in	
  general	
  they	
  are	
  characterized	
  by	
  fixed	
  electricity	
  prices	
  at	
  above-­‐market	
  rates.	
  These	
  rates	
  are	
  guaranteed	
  by	
  long-­‐term	
  (20-­‐30	
  years)	
  contracts,	
  providing	
  stable	
  revenue	
  over	
  the	
  life	
  of	
  the	
  system.	
  By	
  improving	
  the	
  business	
  case	
  for	
  renewable	
  energy,	
  these	
  policies	
  are	
  thought	
  to	
  provide	
  economic	
  and	
  environmental	
  returns	
  by	
  stimulating	
  employment	
  and	
  by	
  decreasing	
  reliance	
  on	
  fossil	
  fuel	
  energy.	
  	
  For	
  example,	
  Ontario	
  offers	
  a	
  FiT	
  under	
  the	
  Green	
  Energy	
  and	
  Economy	
  Act,	
  which	
  is	
  intended	
  to:	
  	
   • Help	
  Ontario	
  phase	
  out	
  coal-­‐fired	
  electricity	
  generation	
  by	
  2014;	
  and	
  	
   • Boost	
  economic	
  activity	
  by	
  creating	
  new	
  green	
  industries	
  and	
  jobs.165	
  	
  Many	
  FiT	
  policies	
  offer	
  prices	
  for	
  electricity	
  generated	
  by	
  PV	
  well	
  above	
  the	
  prices	
  offered	
  to	
  any	
  other	
  renewable	
  energy	
  source.	
  One	
  of	
  the	
  most	
  well	
  documented	
  examples	
  is	
  the	
  FiT	
  in	
  Germany,	
  which	
  has	
  been	
  in	
  effect	
  since	
  2000.	
  The	
  program	
  has	
  increased	
  the	
  share	
  of	
  energy	
  provided	
  by	
  PV	
  and	
  decreased	
  the	
  installed	
  costs	
  for	
  residential	
  PV	
  systems	
  to	
  nearly	
  US	
  $6,600/kW.166	
  Other	
  jurisdictions	
  are	
  following	
  similar	
  policies,	
  most	
  recently	
  including	
  Ontario	
  and	
  the	
  United	
  Kingdom.	
  Table	
  8	
  below	
  shows	
  sample	
  tariff-­‐rates	
  for	
  electricity	
  from	
  residential	
  PV	
  systems	
  for	
  these	
  jurisdictions.	
  FiT	
  programs	
  are	
  generally	
  funded	
  with	
  a	
  rider	
  on	
  electricity	
  bills.	
  In	
  Germany,	
  for	
  example,	
  this	
  rider	
  has	
  amounted	
  to	
  €1	
  per	
  month	
  (around	
  $16.00	
  per	
  year).167	
  	
  	
  If	
  a	
  similar	
  FiT	
  were	
  to	
  be	
  created	
  within	
  the	
  next	
  several	
  years	
  in	
  BC,	
  it	
  is	
  likely	
  that	
  the	
  tariff	
  would	
  need	
  to	
  be	
  priced	
  similarly	
  to	
  these	
  other	
  jurisdictions.168	
  As	
  described	
  above,	
  these	
  high	
  prices	
  are	
  not	
  likely	
  to	
  be	
  justified	
  benefits	
  to	
  the	
  utility,	
  such	
  as	
  coincidence	
  of	
  PV	
  output	
  with	
  peak	
  demand.	
  Therefore	
  the	
  decision	
  to	
  implement	
  a	
  high	
  FiT	
  for	
  PV	
  in	
  BC	
  would	
  need	
  to	
  be	
  based	
  on	
  the	
  environmental	
  and	
  economic	
  benefits.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   164 National Renewable Energy Laboratory, NREL Energy analysts dig into Feed-In Tariffs, June 12th 2009, retrieved March 3rd 2010 from <http://www.nrel.gov/features/20090612_fits.html>. 165 Ontario Power Authority, What is the Feed-in tariff program?, Ontario Power Authority website, retrieved February 20th 2010 from <http://fit.powerauthority.on.ca/Page.asp?PageID=1115&SiteNodeID=1052>. 166 Wiser, Barbose, and Peterman, Op. cit. 167  M. Landler, ‘Germany debates subsidies for solar industry,’ May 16th 2008, retrieved March 13th 2010 from <http://www.nytimes.com/2008/05/16/business/worldbusiness/16solar.html?pagewanted=2&_r=3&sq=Solar%20Valle y%20Overcast&scp=1>. 168 The current FiT in Ontario replaces the former RESOP program, which offered electricity prices of $0.42/kWh on 20 year contracts. This program did not bring about widespread PV uptake, implying that a FiT for PV in BC would need to be priced higher than the former RESOP program. Table 8 – Selected FiT Prices for Residential PV Country In place since Current Tariff Rate Germany 2000 <$0.60 Ontario 2009 $0.80/kWh United Kingdom 2010 <$0.60/kWh 	
   42	
   Unfortunately,	
  FiTs	
  for	
  solar	
  PV	
  may	
  not	
  deliver	
  either	
  the	
  environmental	
  or	
  economic	
  benefits	
  promised	
  in	
  other	
  jurisdictions.	
  In	
  regards	
  to	
  environmental	
  benefits,	
  BC’s	
  electricity	
  mix	
  is	
  already	
  relatively	
  clean	
  and	
  draws	
  a	
  high	
  proportion	
  of	
  its	
  electricity	
  from	
  renewable	
  sources	
  compared	
  to	
  most	
  other	
  jurisdictions.	
  Meanwhile,	
  recent	
  criticisms	
  of	
  the	
  FiT	
  in	
  Germany	
  have	
  stated	
  that	
  job	
  creation	
  has	
  been	
  grossly	
  overestimated.169	
  	
  Indeed,	
  it	
  appears	
  likely	
  that	
  the	
  net	
  employment	
  effect	
  of	
  the	
  FiT	
  may	
  actually	
  have	
  been	
  negative.170	
  Of	
  the	
  jobs	
  which	
  were	
  created	
  within	
  the	
  PV	
  sector,	
  the	
  FiT	
  program	
  may	
  have	
  indirectly	
  subsidized	
  each	
  job	
  by	
  as	
  much	
  as	
  €175,000	
  (CAD$230,000).171	
  	
  	
  	
  	
  One	
  of	
  the	
  problems	
  in	
  the	
  German	
  case	
  appears	
  to	
  be	
  international	
  competition	
  for	
  PV	
  manufacturing.	
  Other	
  countries	
  have	
  been	
  able	
  to	
  produce	
  PV	
  systems	
  at	
  lower	
  costs	
  than	
  in	
  Germany,	
  and	
  as	
  a	
  result	
  a	
  large	
  portion	
  of	
  PV	
  systems	
  have	
  been	
  imported.	
  This	
  likely	
  created	
  jobs	
  in	
  other	
  countries,	
  but	
  the	
  benefits	
  were	
  not	
  felt	
  domestically.172	
  Ontario’s	
  FiT	
  appears	
  to	
  be	
  trying	
  to	
  avoid	
  this	
  problem	
  by	
  tying	
  their	
  FiT	
  for	
  PV	
  to	
  a	
  required	
  “domestic	
  content”	
  requirement,	
  although	
  this	
  requirement	
  is	
  not	
  without	
  its	
  own	
  challenges.173	
  	
  	
  It	
  may	
  be	
  too	
  early	
  to	
  accurately	
  measure	
  the	
  net	
  effect	
  of	
  the	
  FiT	
  for	
  PV	
  in	
  other	
  jurisdictions.	
  However,	
  there	
  is	
  a	
  need	
  to	
  approach	
  high	
  FiT	
  policies	
  cautiously.174175	
  	
  	
  	
  	
   	
   Financing	
  	
  The	
  up-­‐front	
  costs	
  of	
  PV	
  remain	
  a	
  substantial	
  barrier	
  to	
  PV	
  ownership,	
  even	
  in	
  jurisdictions	
  with	
  high	
  FiTs	
  or	
  other	
  incentive	
  programs.176	
  For	
  many	
  potential	
  system	
  owners,	
  financing	
  and	
  loans	
  will	
  be	
  important	
  determinants	
  of	
  their	
  willingness	
  to	
  purchase	
  these	
  systems.	
  	
  	
  Where	
  FiTs	
  and	
  other	
  financial	
  support	
  mechanisms	
  provide	
  guaranteed	
  rates	
  of	
  return	
  to	
  customers,	
  financing	
  becomes	
  much	
  easier	
  to	
  acquire	
  from	
  the	
  private	
  sector.	
  In	
  Ontario,	
  for	
  example,	
  Pure	
  Energies	
  Inc177	
  leases	
  rooftops	
  on	
  20-­‐year	
  contracts.	
  During	
  the	
  course	
  of	
  the	
  contract,	
  the	
  customer	
  is	
  paid	
  between	
  several	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   169 M. Frondel et. al., Economic impacts from the promotion of renewable energy technology: The German experience, Ruhr University Economic Papers, November 2009, retrieved online February 13th 2010 from <http://repec.rwi- essen.de/files/REP_09_156.pdf>. 170 M. Frondel, N. Ritter, and M. Schmidt, ‘Germany’s solar cell promotion: Dark clouds on the horizon,’ Energy Policy 36, 2008, pp. 4198–4204 171 M. Frondel et. al., Op. cit. 172 Ibid. 173 Worren, J.,‘Ontario FIT program off to a cautious start,’ Renewable Energy World, October 12th 2009, retrieved March 3rd 2010 from <http://www.renewableenergyworld.com/rea/news/article/2009/10/ontario-fit-program-off-to-a- catious-start>. 174 A. Curtright, M. G. Morgan, and D. Keith, ‘Assessments of future pv.’ Environmental Science and Technology, Vol. 42, No. 24, 2008, P. 9033. 175 International Energy Agency, Energy Policies of IEA Countries: Germany, 2007 Review, International Energy Agency, OECD, Paris, retrieved March 13th 2010 from <http://www.iea.org/publications/free_new_Desc.asp?PUBS_ID=1922>. 176 P. Denholm et. al., Op. cit. 177 T. Hamilton, ‘Solar panel startup to lease residential rooftops,’ Yourhome.ca, March 10th 2010, accessed March 13th 2010 from <http://www.yourhome.ca/homes/realestate/article/777492--solar-panel-startup-to-lease-residential- rooftops>. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   43	
  hundred	
  and	
  $1,200,	
  depending	
  on	
  system	
  size.	
  At	
  the	
  end	
  of	
  the	
  contract	
  the	
  solar	
  system	
  becomes	
  the	
  property	
  of	
  the	
  homeowner.	
  As	
  the	
  interest	
  rates	
  related	
  to	
  private	
  sector	
  financing	
  are	
  generally	
  determined	
  by	
  perceived	
  risk,	
  such	
  innovative	
  financing	
  mechanisms	
  are	
  likely	
  to	
  occur	
  only	
  after	
  the	
  risk	
  of	
  engaging	
  in	
  a	
  loan	
  appears	
  minimal.	
  Risk	
  reduction	
  will	
  likely	
  only	
  occur	
  after	
  the	
  business	
  case	
  for	
  PV	
  systems	
  improves.	
  	
  	
  	
  	
  	
  	
  There	
  are	
  a	
  variety	
  of	
  models	
  for	
  clean	
  energy	
  loans,	
  including	
  conventional	
  financing	
  and	
  utility-­‐led	
  financing.178	
  Loan	
  programs	
  for	
  PV	
  systems	
  could	
  be	
  implemented	
  as	
  stand-­‐alone	
  measures,	
  but	
  realistically	
  widespread	
  PV	
  uptake	
  would	
  still	
  depend	
  on	
  an	
  attractive	
  long-­‐term	
  business	
  case.	
  Any	
  potential	
  system	
  owners	
  who	
  cannot	
  afford	
  the	
  up-­‐front	
  capital	
  to	
  purchase	
  a	
  system	
  are	
  also	
  unlikely	
  to	
  be	
  able	
  to	
  afford	
  a	
  substantial	
  net	
  financial	
  loss	
  over	
  the	
  life	
  of	
  the	
  system.	
  	
  	
  	
   Conclusions	
  	
  There	
  appears	
  to	
  be	
  no	
  low-­‐cost	
  solution	
  for	
  stimulating	
  widespread	
  PV	
  uptake	
  in	
  BC.	
  Internalizing	
  the	
  full	
  costs	
  and	
  benefits	
  of	
  renewable	
  electricity	
  may	
  go	
  some	
  way	
  to	
  improving	
  the	
  business	
  case	
  for	
  residential	
  PV	
  systems,	
  but	
  will	
  likely	
  not	
  be	
  enough	
  to	
  make	
  PV	
  a	
  viable	
  investment	
  for	
  most	
  BC	
  homeowners.	
  Fortunately,	
  policies	
  such	
  as	
  TOU	
  can	
  also	
  provide	
  an	
  incentive	
  for	
  conservation	
  or	
  increased	
  energy	
  efficiency.	
  Such	
  policies,	
  which	
  serve	
  multiple	
  objectives,	
  are	
  likely	
  to	
  afford	
  higher	
  benefits	
  at	
  lower	
  cost	
  than	
  policies	
  designed	
  only	
  to	
  support	
  PV	
  systems.	
  	
  	
  	
  FiTs	
  appear	
  to	
  be	
  the	
  most	
  popular	
  and	
  successful	
  means	
  to	
  support	
  widespread	
  PV	
  system	
  uptake.	
  However,	
  the	
  high	
  FiT	
  for	
  solar	
  PV	
  in	
  Germany	
  is	
  receiving	
  mounting	
  criticism.	
  It	
  remains	
  an	
  open	
  question	
  whether	
  other	
  jurisdictions	
  will	
  realize	
  positive	
  long-­‐term	
  economic	
  effects,	
  such	
  as	
  gains	
  in	
  net	
  employment.	
  The	
  decision	
  to	
  support	
  PV	
  financially	
  must	
  also	
  be	
  weighed	
  against	
  alternative	
  technologies	
  for	
  renewable	
  energy,	
  which	
  may	
  provide	
  higher	
  environmental	
  benefits	
  at	
  lower	
  economic	
  cost.	
  	
  	
  	
  	
  	
  In	
  the	
  short	
  term,	
  it	
  appears	
  more	
  prudent	
  to	
  explore	
  ways	
  in	
  which	
  the	
  benefits	
  of	
  PV	
  for	
  utilities	
  can	
  be	
  internalized	
  for	
  PV	
  customers.	
  Over	
  the	
  longer	
  term,	
  as	
  PV	
  system	
  costs	
  decrease,	
  further	
  consideration	
  could	
  be	
  given	
  to	
  programs	
  like	
  FiTs,	
  loans,	
  or	
  direct	
  subsidies	
  designed	
  to	
  promote	
  the	
  uptake	
  of	
  residential	
  grid-­‐tied	
  systems.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   178 Clean Energy Group and Clean Energy States Alliance, Developing an effective state clean energy program: Clean energy loans, March 2009, retrieved February 13th 2010 from <www.cleanenergystates.org/publications/CESA_Loan_Programs_March09.pdf>. 	
   44	
   6. Local	
  Government:	
  Planning	
  and	
  Regulatory	
  Powers	
  for	
   Promoting	
  Solar	
  PV	
  	
  	
  	
  While	
  immediate	
  widespread	
  uptake	
  of	
  PV	
  may	
  be	
  unlikely	
  in	
  BC,	
  there	
  are	
  other	
  important	
  policy	
  measures	
  that	
  can	
  be	
  undertaken	
  to	
  support	
  medium	
  and	
  longer-­‐term	
  uptake	
  of	
  PV	
  in	
  the	
  residential	
  market.	
  	
  	
  Policies	
  that	
  encourage	
  and	
  protect	
  solar	
  access	
  may	
  be	
  one	
  of	
  the	
  most	
  important	
  measures	
  for	
  promoting	
  solar	
  PV.	
  Due	
  to	
  Solar	
  PV’s	
  high	
  sensitivity	
  to	
  shade,	
  future	
  uptake	
  of	
  solar	
  systems	
  may	
  be	
  enabled	
  or	
  constrained	
  by	
  the	
  degree	
  to	
  which	
  solar	
  access	
  is	
  encouraged	
  by	
  local	
  government.	
  Once	
  solar	
  access	
  is	
  lost,	
  it	
  is	
  not	
  easy	
  to	
  regain:	
  buildings	
  are	
  often	
  in	
  place	
  for	
  decades	
  and	
  will	
  continue	
  to	
  block	
  solar	
  access	
  long	
  after	
  solar	
  systems	
  become	
  a	
  more	
  common	
  source	
  of	
  energy.	
  This	
  can	
  create	
  a	
  major	
  barrier	
  to	
  solar	
  energy	
  development.	
  Planning	
  for	
  solar	
  access	
  can	
  enable	
  all	
  types	
  of	
  solar	
  energy	
  systems,	
  including	
  not	
  only	
  PV	
  but	
  also	
  passive	
  and	
  active	
  systems.179	
  Solar	
  access	
  can	
  also	
  provide	
  economic	
  and	
  aesthetic	
  benefits.180	
  	
  Solar	
  access	
  has	
  in	
  some	
  jurisdictions	
  been	
  protected	
  as	
  a	
  “Right	
  to	
  Light”.	
  Historically	
  this	
  protection	
  arose	
  from	
  concerns	
  related	
  to	
  human	
  health,	
  and	
  not	
  from	
  a	
  desire	
  to	
  protect	
  access	
  to	
  energy.182	
  More	
  recently	
  legislation	
  has	
  been	
  passed	
  in	
  other	
  jurisdictions	
  to	
  protect	
  solar	
  energy	
  installations	
  from	
  shading.	
  In	
  California,	
  for	
  example,	
  the	
  Solar	
  Shade	
  Control	
  Act	
  provides	
  prescriptions	
  for	
  the	
  protection	
  of	
  solar	
  PV	
  systems	
  from	
  shade	
  due	
  to	
  vegetation	
  on	
  neighboring	
  properties.	
  	
  No	
  equivalent	
  protections	
  exist	
  in	
  BC.	
  	
  	
   	
  Solar	
  access	
  in	
  BC	
  can	
  be	
  regulated	
  most	
  easily	
  using	
  either	
  zoning	
  or	
  development	
  permit	
  areas	
  (DPAs).	
  These	
  tools,	
  as	
  well	
  as	
  development	
  permits,	
  demonstration	
  projects,	
  and	
  requirements	
  for	
  green	
  building	
  standards	
  are	
  explored	
  in	
  this	
  section.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   179 US Department of Energy, Efficiency and Renewable Energy, Community solar access, accessed March 13th 2010 from <http://www.energysavers.gov/renewable_energy/solar/index.cfm/mytopic=50013>. 180 Ibid.  181	
  F. Barringer, ‘Trees block solar panels, and a feud ends in court,’ New York Times, published April 7, 2008, retrieved September 18th 2009 from < http://www.nytimes.com/2008/04/07/science/earth/07redwood.html> 182 Previously the “Doctrine of Ancient Lights” created under British common law protected solar access in Canada, but is no longer in effect. Such guarantees are challenging to regulate and no equivalent law has been enacted in Canada since. Vegetation and the Shading of Solar Panels: California’s 1978 Solar Shade Control Act181 The 1978 Solar Shade Control Act protects owners of solar systems, including photovoltaic systems, by requiring that no more than 10% of a Solar Collector may be shaded by neighboring trees. A recent court decision applied this law, requiring a family to prune several trees that had grown in size to shade the solar panels on a neighbors property. The case cost each family tens of thousands of dollars in court.  While this case has no legal bearing in BC, it serves to highlight the types of land-use conflicts that can occur as solar energy becomes more prevalent. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   45	
   Zoning	
  to	
  Promote	
  Solar	
  Access	
  and	
  Solar	
  PV	
  Systems	
   	
  Zoning	
  is	
  perhaps	
  the	
  most	
  oft-­‐cited	
  local	
  government	
  tool.	
  Zoning	
  includes	
  provisions	
  not	
  only	
  to	
  regulate	
  permitted	
  uses	
  of	
  land,	
  but	
  also	
  to	
  dictate	
  the	
  envelope	
  of	
  a	
  building,	
  including	
  positioning	
  of	
  the	
  building	
  through	
  setbacks	
  and	
  building	
  height	
  restrictions.	
  These	
  can	
  substantially	
  influence	
  solar	
  access.	
  	
  	
  	
  In	
  addition,	
  zoning	
  can	
  determine	
  the	
  ease	
  with	
  which	
  homeowners	
  may	
  install	
  solar	
  PV	
  equipment.	
  For	
  example,	
  BC’s	
  Climate	
  Action	
  Toolkit	
  recommends	
  the	
  following	
  considerations:	
  	
   • Zoning code can include provisions for solar collectors to extend into setback areas; • Solar rooftop equipment can be excluded form building height measurement; • Policies can be created to provide variances in trade for green building features. 	
   Comprehensive	
  Development	
  (CD)	
  zoning	
  allows	
  even	
  greater	
  control	
  over	
  an	
  area	
  than	
  standard	
  zoning	
  measures.	
  This	
  type	
  of	
  zoning	
  can	
  allow	
  extremely	
  specific	
  features	
  to	
  be	
  added	
  to	
  a	
  development,	
  and	
  may	
  include	
  provisions	
  for	
  building	
  orientation.183	
  	
  	
   Development	
  Permit	
  Areas	
  (DPAs)	
  and	
  Solar	
  Access 	
  Development	
  Permit	
  Areas	
  are	
  another	
  valuable	
  tool	
  in	
  protecting	
  and	
  promoting	
  solar	
  access.	
  Once	
  a	
  DPA	
  has	
  been	
  specified	
  in	
  the	
  Official	
  Community	
  Plan,	
  development	
  within	
  a	
  specified	
  area	
  becomes	
  conditional	
  on	
  certain	
  criteria,	
  which	
  include	
  rules	
  for:	
  	
   • Landscaping; • Siting or form of buildings and other structures; • Specific features in the development; and • Equipment and systems external to buildings.184  	
  The	
  conditions	
  can	
  be	
  provided	
  in	
  a	
  somewhat	
  flexible	
  manner,	
  using	
  language	
  such	
  as	
  “should”	
  and	
  “where	
  possible”	
  instead	
  of	
  “must”.	
  This	
  flexibility	
  is	
  important	
  as	
  solar	
  availability	
  is	
  often	
  site-­‐specific,	
  and	
  it	
  is	
  generally	
  desirable	
  to	
  avoid	
  unnecessarily	
  burdening	
  development	
  process.	
  	
  	
  Relevant	
  DPA	
  powers	
  traditionally	
  include	
  objectives	
  for	
  the	
  form	
  and	
  character	
  of	
  development.	
  	
  This	
  gives	
  local	
  governments	
  the	
  ability	
  to	
  regulate	
  the	
  siting	
  or	
  form	
  of	
  buildings	
  and	
  structures	
  in	
  a	
  manner	
  similar	
  to	
  zoning,	
  but	
  which	
  can	
  be	
  tied	
  explicitly	
  to	
  solar	
  access.	
  For	
  example,	
  the	
  District	
  of	
  Maple	
  Ridge	
  encourages	
  solar	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   183 Province of British Columbia, Local Government Act, Part 26, Section 903: Zoning bylaws, Queen’s Printer, Victoria BC, accessed January 3rd 2010 from <www.bclaws.ca>. 184 Province of British Columbia, Local Government Act, Part 26, Section 920: Planning and Land Use Management, Queen’s Printer, Victoria BC, accessed January 3rd 2010 from <www.bclaws.ca>. Development Permit Areas: Development Permit Areas can be used to promote solar access by specifying objectives which: • specify the form and character of a development; • promote energy conservation; and • which reduce greenhouse gas emissions.  	
   46	
   using	
  a	
  DPA.	
  The	
  relevant	
  section	
  of	
  the	
  District’s	
  DPA	
  Guidelines	
  are	
  copied	
  in	
  figure	
  15	
  below.	
  	
  	
  Recent	
  amendments	
  to	
  the	
  BC	
  Local	
  Government	
  Act	
  have	
  expanded	
  powers	
  related	
  to	
  Development	
  Permit	
  Areas.	
  Local	
  Governments	
  may	
  now	
  require	
  measures	
  that	
  encourage	
  energy	
  conservation	
  and/or	
  greenhouse	
  gas	
  emissions	
  reduction.185	
  	
  For	
  example,	
  municipalities	
  can	
  provide	
  an	
  objective	
  target	
  for	
  GHG	
  emissions	
  reductions	
  and	
  suggest	
  correlations	
  with	
  specific	
  features	
  (eg.	
  different	
  types	
  of	
  solar)	
  without	
  specifically	
  requiring	
  one	
  technology	
  or	
  another.	
  This	
  is	
  an	
  approach	
  more	
  likely	
  to	
  yield	
  GHG	
  reductions	
  at	
  lower	
  cost	
  than	
  more	
  prescriptive	
  regulatory	
  tools.	
  	
  	
  Within	
  the	
  new	
  DPA	
  powers,	
  it	
  even	
  appears	
  possible	
  that	
  local	
  government	
  may	
  be	
  able	
  to	
  require	
  solar	
  systems	
  (eg.	
  a	
  solar	
  PV	
  panel)	
  as	
  long	
  as	
  they	
  are	
  external	
  to	
  the	
  building	
  or	
  structure.	
  Anything	
  part	
  of,	
  or	
  internal	
  to,	
  the	
  building	
  remains	
  within	
  the	
  jurisdiction	
  of	
  the	
  BC	
  Building	
  Code.	
  This	
  implies	
  that	
  local	
  governments	
  would	
  not	
  have	
  the	
  ability	
  to	
  require	
  BIPVs,	
  which	
  by	
  definition	
  are	
  part	
  of	
  the	
  building	
  itself.	
  	
  	
  	
  As	
  of	
  yet	
  neither	
  of	
  the	
  “new”	
  DPA	
  powers	
  have	
  been	
  applied	
  in	
  BC	
  any	
  BC	
  municipality.	
  Therefore	
  applying	
  these	
  tools	
  to	
  solar	
  PV	
  has	
  yet	
  to	
  be	
  tested	
  by	
  municipalities	
  or	
  by	
  the	
  courts.186	
  	
   	
   	
   Figure 15 The District of Maple Ridge is using DPA guidelines to protect solar access. 187 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   185 Ibid, Section 919.1. 186 BC Climate Action Toolkit, DPA guidelines, accessed March 1st 2010 from <http://www.toolkit.bc.ca/tool/development-permit-area-guidelines>. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   47	
   Educational	
  Tools	
  	
  Including	
  provisions	
  for	
  solar	
  energy	
  in	
  OCP	
  can	
  be	
  an	
  initial	
  step	
  towards	
  exercising	
  DPA	
  powers	
  while	
  meeting	
  educational	
  goals	
  (raising	
  public	
  awareness).	
  Few	
  tools,	
  however,	
  are	
  as	
  powerful	
  as	
  direct	
  demonstration.	
  Solar	
  PV	
  systems	
  on	
  municipal	
  buildings	
  are	
  visible	
  and	
  can	
  be	
  combined	
  with	
  educational	
  signage	
  or	
  public	
  discourse	
  that	
  raises	
  awareness.	
  This	
  is	
  already	
  being	
  promoted	
  in	
  regards	
  to	
  solar	
  hot	
  water,	
  and	
  solar	
  PV	
  demonstrations	
  could	
  similarly	
  be	
  encouraged.	
  	
   Other	
  Tools	
  	
   Fast-­tracking	
  permits:	
  	
  	
  Fast-­‐tracking	
  permits	
  for	
  developments	
  which	
  include	
  certain	
  green	
  features	
  is	
  an	
  increasingly	
  common	
  practice	
  and	
  could	
  be	
  applied	
  to	
  Solar	
  PV	
  systems.	
  Currently	
  Local	
  Governments	
  can	
  fast-­‐track	
  re-­‐zoning,	
  development	
  permits,	
  and	
  subdivision	
  applications	
  based	
  on	
  “green”	
  criteria.	
  For	
  example,	
  the	
  City	
  of	
  Port	
  Coquitlam	
  includes	
  a	
  Sustainability	
  Checklist	
  in	
  its	
  development	
  application	
  process.	
  Applications	
  that	
  score	
  highly	
  are	
  fast-­‐tracked.188	
  	
  	
   	
   Permit	
  rebates:	
   	
  Local	
  governments	
  may	
  also	
  provide	
  incentives	
  through	
  rebates	
  for	
  permits.	
  For	
  example	
  the	
  District	
  of	
  Saanich	
  provides	
  rebates	
  on	
  building	
  permits	
  for	
  buildings	
  that	
  achieve	
  certain	
  building	
  energy	
  efficiency	
  ratings.	
  A	
  sample	
  of	
  the	
  requirements	
  for	
  rebates	
  is	
  shown	
  in	
  Figure	
  16.	
  	
  	
   Covenants,	
  Easements,	
  Nuisance	
  Laws,	
  and	
  Other	
  Tools:	
  	
  	
  	
  Other	
  legal	
  tools	
  are	
  available	
  but	
  may	
  be	
  somewhat	
  burdensome	
  to	
  use.	
  For	
  example,	
  as	
  a	
  condition	
  of	
  approving	
  a	
  specified	
  number	
  of	
  units	
  or	
  floor	
  area	
  ratio,	
  or	
  a	
  rezoning,	
  a	
  local	
  government	
  may	
  require	
  registration	
  of	
  a	
  Section	
  219	
  covenant	
  on	
  title	
  to	
  guarantee	
  green	
  building	
  performance	
  features	
  or	
  requirements	
  for	
  alternative	
  energy.	
  Such	
  tools	
  may	
  be	
  difficult	
  to	
  administer	
  over	
  the	
  long	
  term.190	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   187 District of Maple Ridge, ‘Development permit area guidelines,’ 2006 Official Community Plan, Chapter 8, p 42. Retreived January 19th 2010 from <http://www.mapleridge.ca/EN/main/business/4389/ocp.html> 188 BC Climate Action Toolkit, ‘Fast tracking,’ accessed March 6th from <http://www.toolkit.bc.ca/tool/fast-tracking> 189 District of Saanich, Green building rebate program, retrieved March 13th, 2010, from <http://www.saanich.ca/business/development/greenbuilding/GreenBuilding.html> 190 R. Kruhlak, A Legal Review of Access to Sunlight in Sunny Alberta, 1981, retrieved March 1st 2010 from <http://www.cansia.ca/government-regulatory-issues/archives> Figure 16 District of Saanich Permit Rebates189 	
   48	
   Green	
  Building	
  Standards	
  and	
  Solar	
  PV:	
  LEED,	
  Built	
  Green,	
  and	
  R-­‐2000	
  	
  Green	
  building	
  standards	
  are	
  frequently	
  used	
  as	
  a	
  means	
  to	
  promote	
  more	
  sustainable	
  buildings.	
  Local	
  governments	
  have	
  in	
  some	
  cases	
  adopted	
  green	
  building	
  standards	
  for	
  municipal	
  buildings.	
  These	
  standards	
  may	
  also	
  be	
  applied	
  to	
  the	
  residential	
  sector	
  through	
  a	
  variety	
  of	
  means,	
  such	
  as	
  fast-­‐tracking	
  development	
  permits	
  which	
  meet	
  green	
  building	
  standards	
  criteria.	
  Common	
  points-­‐based	
  systems	
  for	
  residential	
  development	
  in	
  British	
  Columbia	
  include	
  LEED,	
  Built	
  Green,	
  and	
  R-­‐2000.191	
  	
  	
  	
   Leadership	
  in	
  Energy	
  and	
  Environmental	
  Design	
  (LEED):	
   	
  LEED	
  is	
  the	
  most	
  prominent	
  green	
  building	
  rating	
  system	
  in	
  Canada.	
  PV	
  is	
  accounted	
  for	
  in	
  the	
  LEED	
  standard.	
  For	
  example,	
  LEED	
  for	
  New	
  Construction	
  (NC)	
  provides	
  points	
  based	
  on	
  the	
  percentage	
  of	
  a	
  building’s	
  total	
  energy	
  use	
  provided	
  by	
  on-­‐site	
  renewable	
  energy	
  systems.	
  Meeting	
  5%,	
  10%,	
  or	
  20%	
  of	
  annual	
  energy	
  needs	
  with	
  renewable	
  energy	
  will	
  earn	
  1,	
  2,	
  or	
  3	
  points	
  respectively.192	
  	
  	
   Built	
  Green:	
   	
  Built	
  Green	
  is	
  another	
  green	
  building	
  rating	
  system	
  that	
  also	
  accounts	
  for	
  solar	
  PV	
  systems.	
  Under	
  this	
  standard	
  a	
  renewable	
  energy	
  system	
  capable	
  of	
  meeting	
  30%,	
  50%,	
  or	
  80%	
  of	
  the	
  electrical	
  load	
  will	
  provide	
  4,	
  6,	
  or	
  8	
  points	
  respectively.193	
  	
  	
   R-­2000:	
   	
  R-­‐2000	
  is	
  a	
  voluntary	
  national	
  standard	
  for	
  the	
  environmental	
  performance	
  of	
  homes.194	
  Energy	
  efficiency	
  is	
  measured	
  using	
  the	
  Hot2000	
  software	
  available	
  through	
  NRCan.	
  This	
  tool	
  appears	
  to	
  include	
  provisions	
  for	
  including	
  Solar	
  Hot	
  Water	
  systems,195	
  but	
  there	
  is	
  no	
  mention	
  of	
  Solar	
  PV	
  systems.	
  This	
  implies	
  that	
  solar	
  PV	
  systems	
  will	
  not	
  contribute	
  towards	
  meeting	
  R-­‐2000	
  status.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   191 BOMA is another Canadian building standard that assigns points to on-site renewables, including Solar PV. However, because it targets commercial buildings instead of residential buildings it is not discussed here. 192 Canada Green Building Council, ‘LEED green building rating system,’ Rating System and Addenum for New Construction and Major Renovations Version 1.0, December 2004, p. 42-44. 193 Built Green, 2010 Checklist, 2010, p. 3. <http://www.builtgreencanada.ca/> 194 Natural Resources Canada, About the R-2000 standard, retrieved February 25th 2010 from <http://oee.nrcan.gc.ca/residential/personal/new-homes/r-2000/standard/standard.cfm?attr=4> 195 Natural Resources Canada, Hot2000 features, retrieved February 25th 2010 from <http://canmetenergy- canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000/features.html> [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   49	
  	
  	
   Conclusions:	
  	
  	
  Existing	
  green	
  building	
  standards	
  do	
  account	
  for	
  solar	
  PV	
  and	
  provide	
  points	
  for	
  its	
  use	
  as	
  an	
  on-­‐site	
  renewable	
  energy	
  generating	
  technology.	
  The	
  adoption	
  of	
  these	
  standards	
  as	
  a	
  means	
  to	
  determine	
  incentives	
  (such	
  as	
  building	
  permit	
  fee	
  reductions	
  or	
  fast-­‐tracking)	
  will	
  not	
  provide	
  a	
  barrier	
  to	
  solar	
  PV.	
  Over	
  the	
  short	
  term,	
  however,	
  it	
  is	
  likely	
  that	
  developers	
  and	
  homeowners	
  will	
  seek	
  out	
  lower	
  cost	
  options	
  for	
  meeting	
  these	
  green	
  building	
  standards.	
  	
  	
  	
  Local	
  Governments	
  in	
  BC	
  have	
  planning	
  powers	
  that	
  can	
  be	
  used	
  to	
  encourage	
  solar	
  access	
  through	
  the	
  regulation	
  of	
  urban	
  form	
  and	
  vegetation.	
  New	
  Development	
  Permit	
  Area	
  powers	
  appear	
  fairly	
  well	
  suited	
  to	
  promoting	
  solar	
  PV.	
  Unfortunately	
  these	
  tools	
  do	
  not	
  eliminate	
  the	
  possibility	
  of	
  land-­‐use	
  conflict.	
  Legal	
  measures	
  to	
  protect	
  solar	
  systems	
  may	
  be	
  warranted	
  and	
  could	
  require	
  further	
  exploration.	
  Such	
  legislation	
  may	
  be	
  best	
  dealt	
  with	
  at	
  the	
  Provincial	
  level	
  and	
  would	
  provide	
  more	
  security	
  to	
  PV	
  system	
  owners.	
  Presumably	
  the	
  same	
  law	
  that	
  protects	
  solar	
  access	
  for	
  PV	
  systems	
  would	
  also	
  protect	
  passive	
  and	
  active	
  solar	
  systems.	
  Further	
  research	
  into	
  this	
  issue	
  could	
  draw	
  on	
  experience	
  from	
  other	
  jurisdictions,	
  such	
  as	
  California,	
  which	
  have	
  a	
  longer	
  experience	
  with	
  solar	
  energy	
  planning	
  and	
  regulation.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   50	
   7. Conclusions	
  and	
  Recommendations	
  	
  The	
  field	
  of	
  solar	
  PV	
  is	
  changing	
  rapidly.	
  Conventional	
  silicon-­‐crystalline	
  modules	
  are	
  being	
  complemented	
  by	
  thin-­‐film	
  technologies,	
  which	
  deliver	
  even	
  greater	
  environmental	
  benefits.	
  PV	
  modules	
  can	
  now	
  be	
  integrated	
  directly	
  into	
  the	
  envelope	
  of	
  a	
  building	
  and	
  offer	
  great	
  potential	
  to	
  meet	
  electricity	
  demand	
  at	
  the	
  point	
  of	
  consumption.	
  	
  	
  	
  	
  	
  BC	
  has	
  substantial	
  solar	
  PV	
  potential,	
  although	
  regionally	
  this	
  potential	
  differs	
  by	
  up	
  to	
  40%.	
  A	
  high-­‐level	
  estimate	
  implies	
  that	
  residential	
  PV	
  capacity	
  in	
  the	
  Province	
  is	
  between	
  283,000	
  mWh	
  and	
  850,000	
  mWh	
  annually.	
  PV	
  systems	
  can	
  therefore	
  help	
  to	
  meet	
  growing	
  electricity	
  demand	
  within	
  the	
  Province.	
  	
  By	
  reducing	
  the	
  need	
  to	
  import	
  electricity,	
  PV	
  systems	
  can	
  reduce	
  greenhouse	
  gas	
  emissions.	
  A	
  3kw	
  roof-­‐mounted	
  system	
  could	
  meet	
  up	
  to	
  one-­‐third	
  of	
  average	
  electricity	
  consumption	
  in	
  a	
  BC	
  household.	
  Such	
  a	
  system	
  would	
  potentially	
  reduce	
  emissions	
  by	
  81	
  to	
  141	
  kilograms	
  of	
  greenhouse	
  gases	
  annually.	
  Even	
  when	
  comparing	
  residential	
  grid-­‐connected	
  PV	
  systems	
  to	
  expanding	
  hydroelectric	
  capacity,	
  emissions	
  associated	
  with	
  PV	
  compare	
  favorably.	
  In	
  addition,	
  these	
  PV	
  systems	
  do	
  not	
  require	
  the	
  conversion	
  of	
  land	
  or	
  extensive	
  electrical	
  infrastructure	
  grids,	
  thereby	
  preserving	
  the	
  environment.	
  This	
  provides	
  additional	
  environmental	
  benefits	
  that	
  are	
  less	
  easy	
  to	
  quantify	
  than	
  GHG	
  emissions,	
  but	
  which	
  add	
  value	
  to	
  electricity	
  generated	
  by	
  PV.	
  	
  	
  The	
  key	
  barrier	
  to	
  PV	
  deployment	
  in	
  BC	
  is	
  the	
  cost	
  of	
  these	
  systems.	
  Current	
  prices	
  for	
  a	
  residential	
  grid-­‐connected	
  system	
  in	
  BC	
  are	
  between	
  $8,000	
  and	
  $10,000	
  per	
  kilowatt	
  of	
  installed	
  capacity.	
  When	
  maintenance	
  costs	
  (inverter	
  replacement)	
  is	
  factored	
  in,	
  these	
  life-­‐cycle	
  costs	
  will	
  increase	
  by	
  at	
  least	
  10%.	
  Despite	
  much	
  progress	
  within	
  the	
  industry,	
  price	
  reductions	
  from	
  technological	
  innovations	
  are	
  occurring	
  only	
  gradually.	
  The	
  gap	
  between	
  the	
  cost	
  of	
  electricity	
  delivered	
  by	
  a	
  residential	
  PV	
  system	
  and	
  the	
  market	
  price	
  of	
  electricity	
  remains	
  large;	
  current	
  electricity	
  prices	
  are	
  near	
  $0.08/kWh	
  while	
  electricity	
  from	
  residential	
  PV	
  systems	
  may	
  cost	
  closer	
  to	
  $0.30/kWh.	
  Simply	
  put,	
  in	
  the	
  absence	
  of	
  policy	
  interventions	
  to	
  financially	
  support	
  PV	
  system	
  development,	
  residential	
  grid-­‐connected	
  PV	
  systems	
  are	
  unlikely	
  to	
  become	
  economical	
  within	
  the	
  next	
  decade.	
  It	
  therefore	
  appears	
  likely	
  that	
  a	
  substantial	
  incentive	
  would	
  be	
  required	
  to	
  encourage	
  PV	
  uptake.	
  In	
  order	
  to	
  achieve	
  break-­‐even	
  pricing	
  for	
  system	
  owners,	
  it	
  is	
  likely	
  that	
  the	
  following	
  would	
  be	
  required:	
  	
   • Revenue from PV must increase by approximately 4 times, such as through increasing the price of electricity from $0.08 to $0.32 per kWh; • Installed system costs must decrease by 70%; • A subsidy of approximately $7,600/kW, instead of the current $280/kw offered through Livesmart BC; or • Some combination of above. [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   51	
    One	
  of	
  the	
  most	
  popular	
  means	
  of	
  encouraging	
  widespread	
  PV	
  uptake	
  in	
  other	
  jurisdictions	
  is	
  through	
  Feed-­‐in	
  Tariffs.	
  FiTs	
  show	
  promise	
  in	
  greatly	
  increasing	
  PV	
  system	
  uptake	
  by	
  providing	
  high	
  financial	
  incentives	
  to	
  system	
  owners.	
  The	
  rationale	
  behind	
  a	
  high	
  FiT,	
  such	
  as	
  the	
  program	
  in	
  Germany,	
  is	
  that	
  it	
  will	
  achieve	
  substantial	
  GHG	
  reductions	
  and	
  provide	
  economic	
  benefits	
  by	
  creating	
  new	
  jobs	
  and	
  drawing	
  investment.	
  However,	
  the	
  jurisdictions	
  pursuing	
  FiTs	
  at	
  present	
  will	
  derive	
  higher	
  environmental	
  benefits	
  compared	
  to	
  BC,	
  as	
  they	
  do	
  not	
  possess	
  similar	
  hydroelectric	
  capacity.	
  FiTs	
  would	
  be	
  an	
  expensive	
  way	
  to	
  create	
  a	
  relatively	
  small	
  reduction	
  in	
  greenhouse	
  gases.	
  In	
  addition,	
  recent	
  criticisms	
  of	
  the	
  long-­‐term	
  effects	
  of	
  Germany’s	
  FiT	
  for	
  solar	
  PV	
  show	
  that	
  the	
  net	
  economic	
  effects	
  (such	
  as	
  net	
  employment)	
  may	
  actually	
  be	
  negative.	
  Although	
  Ontario’s	
  program	
  seeks	
  to	
  address	
  some	
  of	
  the	
  shortcomings	
  of	
  other	
  FiT	
  programs	
  through	
  domestic	
  content	
  requirements,	
  it	
  will	
  take	
  time	
  before	
  the	
  results	
  of	
  the	
  program	
  are	
  clear.	
  	
  Until	
  then,	
  the	
  net	
  benefits	
  of	
  high	
  FiTs	
  designed	
  to	
  promote	
  widespread	
  uptake	
  of	
  PV	
  systems	
  remain	
  in	
  question.	
  Substantial	
  additional	
  research	
  would	
  be	
  required	
  to	
  justify	
  a	
  high	
  FiT	
  of	
  the	
  type	
  being	
  applied	
  in	
  Germany,	
  Ontario,	
  or	
  the	
  United	
  Kingdom.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Over	
  the	
  shorter	
  term	
  (approximately	
  5	
  years),	
  lower-­‐cost	
  measures	
  to	
  remove	
  barriers	
  to	
  PV	
  may	
  be	
  more	
  feasible.	
  Foremost	
  among	
  these	
  measures	
  could	
  be	
  to	
  renew	
  the	
  PST	
  tax	
  exemption	
  under	
  the	
  HST.	
  This	
  would	
  continue	
  to	
  send	
  a	
  signal	
  of	
  support	
  for	
  PV	
  systems	
  while	
  expending	
  few	
  resources.	
  In	
  addition,	
  tax	
  exemptions	
  can	
  easily	
  be	
  applied	
  to	
  off-­‐grid	
  PV	
  installations,	
  which	
  appear	
  to	
  remain	
  the	
  most	
  economical	
  application	
  of	
  PV	
  systems.	
  	
  Changes	
  to	
  utility	
  rate	
  structures	
  are	
  likely	
  to	
  benefit	
  both	
  overall	
  electricity	
  conservation	
  efforts	
  and	
  the	
  business	
  case	
  for	
  solar	
  PV.	
  For	
  example,	
  Time	
  of	
  Use	
  charges	
  will	
  deliver	
  both	
  of	
  these	
  benefits	
  while	
  also	
  providing	
  a	
  level	
  playing	
  field	
  for	
  other	
  types	
  of	
  renewable	
  energy	
  generation.	
  The	
  implementation	
  of	
  such	
  rate	
  changes	
  are	
  likely	
  relatively	
  low	
  in	
  cost	
  and	
  may	
  also	
  be	
  more	
  politically	
  feasible	
  than	
  simply	
  increasing	
  the	
  price	
  of	
  electricity.	
  In	
  addition,	
  further	
  research	
  should	
  be	
  undertaken	
  into	
  the	
  potential	
  economic	
  value	
  of	
  expanded	
  on-­‐grid	
  PV	
  capacity	
  in	
  BC.	
  As	
  in	
  other	
  jurisdictions,	
  PV	
  may	
  provide	
  value	
  to	
  utilities	
  by	
  reducing	
  the	
  need	
  for	
  peak	
  generation	
  or	
  transmission	
  infrastructure.	
  Unfortunately	
  these	
  benefits	
  are	
  likely	
  much	
  smaller	
  than	
  in	
  other	
  jurisdictions,	
  as	
  peak	
  demand	
  in	
  BC	
  occurs	
  during	
  winter	
  evenings	
  when	
  no	
  sunlight	
  is	
  available.	
  	
  	
  	
  	
  	
  Non-­‐financial	
  policies	
  to	
  support	
  PV	
  are	
  also	
  likely	
  to	
  be	
  extremely	
  important	
  over	
  the	
  long	
  term.	
  Recently	
  the	
  Province	
  has	
  taken	
  some	
  important	
  steps	
  which	
  directly	
  or	
  indirectly	
  support	
  solar	
  PV	
  systems,	
  including	
  the	
  promotion	
  of	
  Net	
  Metering,	
  the	
  development	
  of	
  a	
  Solar	
  Hot	
  Water	
  Ready	
  standard,	
  and	
  enabling	
  legislation	
  for	
  local	
  governments	
  through	
  new	
  Development	
  Permit	
  Area	
  powers.	
  Buildings	
  constructed	
  today	
  will	
  last	
  for	
  decades,	
  and	
  what	
  is	
  done	
  now	
  to	
  improve	
  solar	
  access	
  and	
  reduce	
  the	
  cost	
  of	
  PV	
  retrofits	
  may	
  substantially	
  benefit	
  uptake	
  in	
  the	
  future.	
  	
  	
   	
   52	
   Additional	
  policies	
  to	
  encourage	
  and	
  protect	
  solar	
  access,	
  such	
  as	
  laws	
  that	
  protect	
  solar	
  access	
  for	
  PV	
  systems,	
  may	
  also	
  be	
  warranted.	
  A	
  review	
  of	
  laws	
  implemented	
  in	
  other	
  jurisdictions	
  could	
  aid	
  in	
  the	
  development	
  of	
  such	
  regulations.	
  	
  	
  	
  Over	
  the	
  longer	
  term	
  (approximately	
  10	
  years)	
  the	
  gap	
  between	
  the	
  cost	
  of	
  electricity	
  produced	
  by	
  residential	
  PV	
  systems	
  and	
  conventional	
  electricity	
  sources	
  is	
  likely	
  to	
  narrow.	
  Some	
  estimates	
  suggest	
  system	
  price	
  decreases	
  of	
  50%	
  over	
  the	
  next	
  10-­‐20	
  years.	
  If	
  these	
  lower	
  system	
  costs	
  materialize,	
  a	
  variety	
  of	
  financial	
  measures	
  such	
  as	
  Feed-­‐in	
  Tariffs,	
  low-­‐interest	
  loans,	
  and	
  subsidies	
  are	
  more	
  likely	
  to	
  be	
  justified.	
  The	
  rationale	
  for	
  these	
  investments	
  is	
  still	
  likely	
  to	
  depend	
  on	
  wider	
  benefits,	
  such	
  as	
  the	
  creation	
  of	
  new	
  “green”	
  jobs.	
  These	
  wider	
  benefits	
  are	
  important	
  areas	
  for	
  further	
  research,	
  and	
  the	
  results	
  of	
  these	
  policies	
  in	
  Ontario	
  and	
  in	
  other	
  jurisdictions	
  will	
  provide	
  valuable	
  lessons.	
  	
  	
  	
  	
  Grid-­‐connected	
  solar	
  PV	
  systems	
  can	
  play	
  a	
  role	
  in	
  meeting	
  several	
  of	
  the	
  overarching	
  Provincial	
  goals	
  laid	
  out	
  in	
  the	
  BC	
  Energy	
  Plan,	
  including	
  energy	
  independence	
  and	
  the	
  reduction	
  of	
  greenhouse	
  gases.	
  Clearly,	
  however,	
  the	
  benefits	
  of	
  PV	
  must	
  be	
  weighed	
  against	
  other	
  policy	
  options,	
  which	
  may	
  deliver	
  similar	
  environmental	
  benefits	
  at	
  lower	
  cost.	
  Until	
  the	
  business	
  case	
  for	
  residential	
  PV	
  systems	
  improves,	
  it	
  is	
  mainly	
  non-­‐financial	
  interventions	
  that	
  are	
  likely	
  to	
  be	
  justifiable.	
  Fortunately	
  many	
  of	
  these	
  non-­‐financial	
  interventions	
  are	
  those	
  which	
  also	
  benefit	
  other	
  renewable	
  energy	
  technologies,	
  such	
  as	
  solar	
  hot	
  water,	
  or	
  which	
  encourage	
  energy	
  conservation.	
  This	
  adds	
  value	
  to	
  these	
  measures,	
  making	
  them	
  a	
  more	
  effective	
  use	
  of	
  resources	
  than	
  stand-­‐alone	
  policies	
  to	
  promote	
  residential	
  PV	
  systems.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   53	
   Appendix	
  A:	
  The	
  Grid	
  Interconnection	
  Process	
  and	
  Solar	
   PV	
  in	
  British	
  Columbia	
   	
  One	
  of	
  the	
  major	
  barriers	
  to	
  solar	
  PV	
  uptake	
  is	
  traditionally	
  grid	
  interconnection.	
  	
  BC	
  Hydro	
  and	
  Fortis	
  BC	
  now	
  allow	
  Net	
  Metering	
  in	
  British	
  Columbia.	
  This	
  appendix	
  examines	
  the	
  process	
  of	
  installing	
  a	
  PV	
  system	
  and	
  the	
  steps	
  required	
  for	
  the	
  grid	
  interconnection	
  process.	
  	
   Electrical	
  Permits	
  &	
  Fees	
   	
  As	
  part	
  of	
  any	
  major	
  electrical	
  work	
  homeowners	
  (or	
  their	
  contractors)	
  must	
  arrange	
  for	
  an	
  inspection	
  from	
  the	
  designated	
  Electrical	
  Inspection	
  Authority	
  in	
  their	
  area.	
  The	
  fee	
  for	
  an	
  inspection	
  varies	
  based	
  on	
  location:	
  the	
  BC	
  Safety	
  Authority	
  carries	
  out	
  electrical	
  inspections	
  in	
  most	
  areas	
  of	
  BC	
  but	
  many	
  larger	
  municipalities	
  have	
  their	
  own	
  electrical	
  permit	
  and	
  fee	
  systems.	
  	
  	
   The	
  BC	
  Safety	
  Authority	
  (BCSA)	
  Electrical	
  Permit	
   	
  BC	
  Safety	
  Authority	
  carries	
  out	
  electrical	
  inspections	
  in	
  most	
  areas	
  in	
  BC.	
  Fees	
  are	
  assessed	
  based	
  on	
  a	
  cost-­‐recovery	
  basis.	
  Two	
  variables	
  affect	
  the	
  cost	
  of	
  an	
  inspection	
  fee	
  for	
  the	
  BCSA:	
  the	
  value	
  of	
  the	
  installation,	
  and	
  whether	
  the	
  installation	
  was	
  completed	
  by	
  a	
  contractor	
  or	
  by	
  a	
  homeowner.	
  	
  	
  	
  Where	
  installs	
  were	
  completed	
  by	
  a	
  contractor,	
  inspection	
  fees	
  range	
  from	
  $400	
  for	
  an	
  electrical	
  installation	
  valued	
  at	
  $10,000	
  to	
  $809	
  for	
  an	
  installation	
  valued	
  at	
  $30,000.196	
  These	
  values	
  correspond	
  to	
  a	
  1kW	
  or	
  a	
  3kW	
  system	
  respectively.	
  	
  	
  	
   Local	
  Government	
  Electrical	
  Permit	
  Fees	
   	
  In	
  several	
  cases,	
  municipalities	
  carry	
  out	
  and	
  assess	
  fees	
  for	
  electrical	
  permits	
  independently	
  of	
  the	
  BC	
  Safety	
  Authority.	
  For	
  example,	
  the	
  City	
  of	
  Vancouver	
  charges	
  $544	
  for	
  an	
  installation	
  worth	
  $10,000	
  and	
  $1,063	
  for	
  an	
  installation	
  worth$30,000.197	
  Fees	
  in	
  North	
  Vancouver	
  are	
  virtually	
  identical	
  and	
  fees	
  in	
  Burnaby	
  are	
  5%	
  lower.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   196 BC Safety Authority, Electrical program quick reference fee table: Electrical contractor installations, January 1st 2010, retrieved February 23rd 2010 from <http://www.safetyauthority.ca/?q=feesforms_feeschedules>. 197 City of Vancouver Development Services Department, Electrical permit fee schedule, 2010, retrieved February 23rd 2010 from <http://vancouver.ca/commsvcs/developmentservices/tradespermits/index.htm>. Solar system owners can expect to pay $540-$1,000 for a solar system sized between 1kW and 3kWs. This represents approximately 3%-5% of total installed system costs. 	
  	
   	
   54	
   Prospective	
  PV	
  system	
  owners	
  can	
  expect	
  to	
  pay	
  approximately	
  $540	
  for	
  a	
  system	
  valued	
  at	
  $10,000	
  (around	
  1kW)	
  and	
  close	
  to	
  $1,000	
  for	
  a	
  system	
  valued	
  at	
  $30,000	
  (around	
  3kW).	
  Relative	
  to	
  the	
  total	
  cost	
  of	
  PV	
  systems,	
  these	
  fees	
  amount	
  to	
  approximately	
  3%-­‐5%	
  of	
  installed	
  costs.	
  In	
  some	
  jurisdictions	
  outside	
  of	
  BC	
  inspection	
  fees	
  have	
  been	
  reduced	
  or	
  waived	
  entirely,	
  and	
  similar	
  policies	
  could	
  be	
  considered	
  in	
  BC.	
   Steps	
  for	
  Homeowners	
  to	
  Install	
  and	
  Operate	
  a	
  Grid-­‐Connected	
  PV	
  System	
  	
  There	
  are	
  a	
  variety	
  of	
  steps	
  for	
  the	
  homeowner	
  to	
  complete	
  in	
  order	
  to	
  get	
  ‘grid-­‐connected’	
  under	
  net	
  metering	
  programs.	
  For	
  BC	
  Hydro	
  customers,	
  the	
  entire	
  process	
  is	
  projected	
  to	
  take	
  two	
  months	
  or	
  longer	
  from	
  the	
  date	
  of	
  a	
  suitability	
  assessment	
  from	
  the	
  contractor	
  to	
  the	
  point	
  at	
  which	
  electricity	
  can	
  be	
  put	
  back	
  into	
  the	
  grid.	
  The	
  steps	
  and	
  relevant	
  time	
  frames	
  for	
  this	
  connection	
  process	
  are	
  described	
  below.	
  	
  	
   1.	
  Site	
  Assessment	
  	
   	
   	
   	
   	
   	
   	
   Time:	
  several	
  hours	
  	
  A	
  homeowner	
  who	
  wishes	
  to	
  install	
  a	
  Solar	
  PV	
  system	
  would	
  first	
  need	
  a	
  solar	
  assessment.	
  As	
  with	
  solar	
  hot	
  water,	
  these	
  site-­‐assessments	
  are	
  generally	
  offered	
  free	
  by	
  installers	
  and	
  likely	
  take	
  only	
  about	
  an	
  hour.	
   	
   2.	
  Net	
  Metering	
  Documentation	
  pt.	
  1	
   	
   	
   	
   Time:	
  several	
  hours	
  	
  Assuming	
  that	
  solar	
  access	
  is	
  favorable	
  and	
  the	
  homeowner	
  wished	
  to	
  continue	
  with	
  the	
  process,	
  the	
  second	
  step	
  is	
  as	
  follows:	
  	
  	
   • Download and complete the Net Metering Interconnection Application form from the Utility, including: o An "electric single-line-diagram" of the system to be installed and a site- plan showing the location of the house and means to disconnect the system;  • Submit documents to BC Hydro.  3.	
  Technical	
  Assessment	
  and	
  Interconnection	
  Agreement	
   	
   Time:	
  2-­3	
  weeks	
   • Customer must wait at least two weeks for BC Hydro to complete a Technical Assessment; • Customer will receive an Interconnection Agreement, which must be signed and returned for the process to continue. 	
   4.	
  Installation	
  	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  Time:	
  1	
  day	
  to	
  2	
  weeks	
  	
   • The customer and contractor may now install the system. The actual installation can be completed within one or two days.  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   55	
   	
   5.	
  Inspection	
  and	
  Electrical	
  Permit	
  	
   	
   	
   	
   	
   Time:	
  0-­2	
  weeks	
   • The designated Electrical Inspector must inspect and approve the system. The fee for this is generally around $400-$550 for a smaller system (1kW) to over $1,000 for a 3kW system; • The customer must provide BC Hydro with a signed copy of the inspector's final inspection approval document. 	
   6.	
  Final	
  Documentation	
  	
   	
   	
   	
   	
   	
   Time:	
  2	
  weeks	
  	
   • BC Hydro processes and then sends Distribution Operating Order; • The Revenue Meter is installed; • The Customer receives authorization for final interconnection. 	
  Overall	
  the	
  process	
  should	
  take	
  approximately	
  eight	
  weeks.	
  The	
  forms	
  are	
  relatively	
  simple.	
  Customers	
  face	
  an	
  additional	
  step	
  for	
  larger	
  PV	
  projects	
  which	
  incurs	
  some	
  additional	
  cost	
  and	
  additional	
  time.	
  	
  	
  	
   Projects	
  over	
  5kW	
  	
   	
  There	
  is	
  no	
  fee	
  for	
  grid	
  connection	
  for	
  PV	
  systems	
  under	
  5kW.198	
  However,	
  if	
  a	
  project	
  is	
  over	
  5kW	
  there	
  is	
  an	
  additional	
  inspection	
  step	
  and	
  a	
  BC	
  Hydro	
  Site	
  Verification	
  and	
  Assessment	
  Fee	
  of	
  $600.	
  This	
  can	
  also	
  add	
  time	
  to	
  the	
  process.	
  In	
  other	
  jurisdictions,	
  such	
  as	
  Ontario,	
  such	
  additional	
  verifications	
  are	
  only	
  carried	
  out	
  for	
  systems	
  over	
  10kW.	
  	
  	
  	
   System	
  Maintenance	
  and	
  Warranties	
  	
  The	
  output	
  efficiency	
  of	
  solar	
  panels	
  decreases	
  over	
  time.	
  Warranties	
  are	
  generally	
  tied	
  to	
  a	
  minimum	
  output	
  efficiency.	
  For	
  example,	
  panels	
  may	
  be	
  warranted	
  to	
  perform	
  at	
  90%	
  of	
  original	
  efficiency	
  for	
  the	
  first	
  10	
  years	
  and	
  80%	
  for	
  the	
  first	
  20	
  years.	
  	
  In	
  general	
  solar	
  panels	
  in	
  Canada	
  are	
  warrantied	
  for	
  a	
  period	
  of	
  25	
  years,199	
  and	
  the	
  world-­‐wide	
  failure	
  rate	
  appears	
  to	
  be	
  low	
  at	
  near	
  .01%	
  per	
  year.200	
  This	
  leads	
  to	
  an	
  expected	
  useful	
  life	
  of	
  at	
  least	
  30	
  years	
  for	
  solar	
  panels.201	
  30+	
  year	
  warranties	
  are	
  likely	
  to	
  become	
  more	
  common	
  in	
  the	
  near	
  future.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   198 BC Hydro, Net Metering FAQ, retrieved January 30th 2010 from <http://www.bchydro.com/etc/medialib/internet/documents/info/pdf/info_net_metering_faq.Par.0001.File.info_net_met ering_faq.pdf> 199 Eng, S. and Gill, S., Solar PV Community Action Manual, Ontario Sustainable Energy Association and Canadian Solar Industries Association, Canada, 2008, page 40. 200 US Department of Energy: Building America, ‘High-performance home technologies: Solar thermal and photovoltaic systems,’ Building America Best Practices Series Volume 6, June 4th 2007, p. 6, retrieved August 2008 from <http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/41085.pdf> 201 R. Harrabin, Solar panel costs set to fall, BBC, updated Monday November 30th 2009, retrieved January 5th 2010 from <http://news.bbc.co.uk/2/hi/science/nature/8386460.stm>. 	
   56	
   Inverters	
  are	
  the	
  ‘weak	
  link’	
  in	
  the	
  system	
  as	
  they	
  are	
  likely	
  the	
  first	
  component	
  to	
  fail:	
  inverter	
  life	
  in	
  Europe	
  is	
  generally	
  10-­‐15	
  years.202	
  Warranties	
  for	
  inverters	
  sold	
  in	
  Canada	
  are	
  often	
  5-­‐10	
  years203	
  although	
  longer	
  warranties	
  are	
  available	
  from	
  some	
  companies.	
  	
  	
  Other	
  small	
  parts	
  (eg	
  wiring)	
  as	
  well	
  as	
  frames	
  and	
  mounts	
  are	
  highly	
  reliable.	
  However,	
  warranties	
  for	
  the	
  installation	
  itself	
  should	
  also	
  be	
  considered.	
  The	
  Ontario	
  Sustainable	
  Energy	
  Association	
  cautions:	
  	
   	
   Possibly the most important warranty to consider is that which the installer will offer on the installation itself. This should be a minimum of one year, and it is recommended to request a longer warrantee. It should also explicitly include coverage for any roof leaks resulting from the mounting of panels. Prior to the warrantee expiring, it is recommended that the system owner inspect the entire system, including wiring, connections and performance, and report any issues to the installer to ensure repairs or corrections will be covered.204 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   202 US Department of Energy: Building America, Op. cit., p. 6. 203 Eng, S. and Gill, S., Solar PV Community Action Manual, Ontario Sustainable Energy Association and Canadian Solar Industries Association, Canada, 2008, p. 40, retrieved September 30th 2009 from <www.ontario-sea.org/Storage.asp?StorageID=445>. 204 Ibid. Appendix	
  B:	
  Market	
  Survey	
  of	
  PV	
  Systems	
  in	
  BC	
  This	
  market	
  survey	
  was	
  initially	
  conducted	
  through	
  a	
  Google	
  search	
  of	
  available	
  online	
  retailers	
  based	
  in	
  British	
  Columbia.	
  This	
  was	
  followed	
  by	
  a	
  search	
  for	
  installers	
  who	
  listed	
  system	
  prices	
  on	
  their	
  websites.	
  Finally,	
  results	
  were	
  assessed	
  verbally	
  by	
  several	
  of	
  the	
  key	
  informants	
  in	
  order	
  to	
  ensure	
  that	
  they	
  reflect	
  true	
  market	
  prices.	
  	
  	
  There	
  is	
  some	
  variation	
  in	
  PV	
  prices	
  between	
  online	
  retailers	
  and	
  installers.	
  In	
  many	
  cases	
  this	
  variation	
  reflects	
  the	
  warranties	
  associated	
  with	
  the	
  particular	
  products	
  being	
  sold.	
  	
     Market Survey - PV Module Prices in British Columbia Type Brand/Model Size Price Price/kW Notes Source  Website Multicrystalline Panel Sharp 230 W $920  $4,000 Renewable Future Energy Resources Inc. http://shop.solarp owernrg.com/Solar -Panels_c2.htm Multicrystalline Panel Day 4 Energy 48MC 185 W $657.50  $3,500 25 year warranty Renewable Future Energy Resources Inc. http://shop.solarp owernrg.com/Solar -Panels_c2.htm Multicrystalline Panel Day 4 Energy 48MC 185W $1,350  $7,300 Energy Alternatives Website http://www.energ yalternatives.ca/a mazing/items.asp? CartId={8CEVERE ST3C4D49-CFB1- 4848-8553- B83C94445444}& Cc=110&iTpStatus =0&Tp=&Bc= Multicrystalline Panel Sharp ND- 130UJF130W solar PV module  130W $649  $5,000 Energy Alternatives Website http://www.energ yalternatives.ca/a mazing/items.asp? CartId={8CEVERE ST3C4D49-CFB1- 4848-8553- B83C94445444}& Cc=110&iTpStatus =0&Tp=&Bc= Multicrystalline Panel Sharp NU-235F1 235W $899  $3,800  25 year warranty We Go Solar Website http://wegosolar.c om/index.php?mai n_page=index&cP ath=35 Multicrystalline Panel Sharp NE-80EJE 80W $399  $5,000   We Go Solar Website http://wegosolar.c om/index.php?mai n_page=index&cP ath=35 	
   58	
  	
   Type Brand/Model Size Price Price/kW Notes Source  Website Multicrystalline Panel Kyocera KD205GX-LPU 205W $1,035  $5,000 20 year warranty AEE Solar Website http://aeesolar.co m/catalog/product s/H_ASW_SM_PVM _KYO.htm Multicrystalline Panel Kyocera KD235GX-LB 235W $1,186 $5,000 20 year warranty AEE Solar Website http://aeesolar.co m/catalog/product s/H_ASW_SM_PVM _KYO.htm Multicrystalline Panel Mitsubishi PV UE125MF5N 125W $925 $7,400 10 year warranty for 90% power, 25 year warranty for 80% AEE Solar Website http://aeesolar.co m/catalog/product s/H_ASW_SM_PVM _MIT.htm Multicrystalline Panel Mitsubishi PV UD190MF5 190W $1,276 $6,715 10 year warranty for 90% power, 25 year warranty for 80% AEE Solar Website http://aeesolar.co m/catalog/product s/H_ASW_SM_PVM _MIT.htm Multicrystalline Panel SW220-mono 220W $1,120 $5,000 10 year warranty for 90% power, 25 year warranty for 80% AEE Solar Website http://aeesolar.co m/catalog/product s/H_ASW_SM_PVM _SWD.htm Multicrystalline Panel w/ inverter Future Energy 200W AC Solar Panel 200W $930 $4,650 Built-in Inverter; 12 and 25 year power warranty  http://shop.solarp owernrg.com/Futu re-Energy-200- watt-AC-Solar- Panel-AC-Solar- Panel.htm Roof-integrated PV panels (BIPV) Interlock Solar Roof 1.8kW $20,000 (with roof) $11,000 Interlock Roofing Website http://www.bcsbes troof.com/  	
  	
  	
   Please	
  note	
  that	
  these	
  online	
  retailer	
  prices	
  do	
  not	
  include	
  tax	
  or	
  the	
  cost	
  of	
  delivery,	
  which	
  could	
  significantly	
  affect	
  the	
  prices.	
  In	
   addition,	
  some	
  of	
  these	
  prices	
  are	
  not	
  available	
  for	
  individual	
  consumers.	
  	
  	
  	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   59	
    Market Survey – Balance of System Prices  Type Brand/Model Size Price Price/kW Notes Source  Website Inverter Enphase MicroInverter M210 210 W $255 $1,210 Renewable Future Energy Resources Inc. http://shop.solarpow ernrg.com/Enphase- MicroInverter-M210- FEIEnphaseM210.htm Inverter Xantrex GT Grid Intertie Inverter 2.8kW $2,285 $816 10 year warranty Energy Alternatives Website http://www.energyalt ernatives.ca/amazing /items.asp?CartId={ 8CEVEREST3C4D49- CFB1-4848-8553- B83C94445444}&Cc =152&iTpStatus=0&T p=&Bc= Inverter Xantrex GT Grid Intertie Inverter 4kW $2,995 $748 10 year warranty Energy Alternatives Website http://www.energyalt ernatives.ca/amazing /items.asp?CartId={ 8CEVEREST3C4D49- CFB1-4848-8553- B83C94445444}&Cc =152&iTpStatus=0&T p=&Bc= Inverter Xantrex GT 2.8 2.8kW $2,375 $848  AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_XTX_R.ht m Inverter Xantrex GT 4.0 4kW $3,130 $782  AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_XTX_R.ht m Inverter Magnum MS2012 2kW $1,599 $799  We Go Solar http://wegosolar.com /index.php?main_pag e=product_info&cPat h=93&products_id=4 23 Inverter Magnum MS4024 4kW $2,089 $522 3 year warranty We Go Solar http://wegosolar.com /index.php?main_pag e=product_info&cPat h=93&products_id=7 2 Inverter GTFX3048 Grid-Intertie Inverter 3kW $2,275 $758 2 year warranty Energy Alternatives Website http://www.energyalt ernatives.ca/amazing /itemdesc.asp?CartId ={8CEVEREST3C4D4 9-CFB1-4848-8553- B83C94445444}&ic= GTFX3048&eq=&Tp=  	
  	
  	
   	
   60	
   Type Brand/Model Size Price Price/kW Notes Source  Website Inverter KACO Blueplanet 1502xi 1.5kW $2,150 $1,433  AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_KAC_R.ht m Inverter KACO Blueplanet 3502xi 3.5kW $2,850 $814 10 year warranty AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_KAC_R.ht m Inverter KACO Blueplanet 5002xi 5kW $3,550 $710  AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_KAC_R.ht m Inverter Solectria PVI 1800 1.8kW $2,510 $1,394 5, 10, or 15 year warranty options AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_SOL_R.ht m Inverter Solectria 4000W 3.9kW $3,498 $896 10 year warranty AEE Solar website http://aeesolar.com/ catalog/products/H_A SW_IN_GT_SOL_R.ht m  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   Please	
  note	
  that	
  these	
  online	
  retailer	
  prices	
  do	
  not	
  include	
  tax	
  or	
  the	
  cost	
  of	
  delivery,	
  which	
  could	
  significantly	
  affect	
  the	
  prices.	
  In	
   addition,	
  some	
  of	
  these	
  prices	
  are	
  not	
  available	
  for	
  individual	
  consumers.	
  	
  	
  	
  	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   61	
  	
   Market Survey – Complete PV System Prices Type Brand/Model Size Price Price/kW Notes Source  Website Complete system, Equipment Only Renewable Future Energy Resources Inc. 2.1kW System $16,175  $7,700 Includes mounting structure; excludes tax and shipping costs Wholesaler website http://shop.solarp owernrg.com/Futu re-Energy-Solar- PV-Grid-Tie-Kit- 2100-Watts- FEKitPVGridTie210 0W.htm Complete system, does not include flashing or conductors Renewable Future Energy Resources Inc. 4.4kW $16,156  $3,670 Does not include flashing or conductors; excludes tax and shipping costs Wholesaler Website http://shop.solarp owernrg.com/Futu re-Energy-Solar- PV-Grid-Tie-Kit- 2100-Watts- FEKitPVGridTie210 0W.htm Installed costs for residential PV system Resolution Electric 3kW $25,000 $8,300 Estimate from installer www.resolutionele ctric.ca Complete system, INCLUDING installation and electrical permits Suddwick Homes 4.1kW System $42,000  $10,240 Complete install, packaged system Installer website http://www.suddw ickhomes.ca/solar package-pv.html Complete ‘flush- mounted’ system Terratek Energy Solutions Per kW $8,000- $10,000 $8,000- $10,000 Estimate from installer www.terratek.ca  	
  	
   	
   	
   	
   	
   Please	
  note	
  that	
  these	
  systems	
  may	
  vary	
  in	
  the	
  quality	
  and	
  type	
  of	
  selected	
  components.	
  Installer	
  estimates	
  are	
  approximate	
  and	
  may	
   reflect	
  geographic	
  variations,	
  which	
  can	
  affect	
  the	
  cost	
  of	
  delivery.	
  Please	
  contact	
  the	
  companies	
  directly	
  if	
  you	
  would	
  like	
  a	
  quote	
  or	
   estimate.	
   Bibliography	
  	
  Association	
  of	
  Canadian	
  Community	
  Colleges,	
  Government	
  of	
  Canada	
  supports	
  training	
  for	
  solar	
   energy	
  workers,	
  December	
  8th	
  2008,	
  retrieved	
  January	
  10th	
  2010	
  from	
  <http://www.accc.ca/english/publications/media/0812_solar_energy_workers.htm>.	
  	
  	
  Ayoub,	
  J.,	
  and	
  Dignard-­‐Bailey,	
  L.,	
  Photovoltaic	
  technology	
  status	
  and	
  prospects:	
  Canadian	
  annual	
  report	
   2007,	
  CanmetENERGY,	
  Natural	
  Resources	
  Canada,	
  retrieved	
  November	
  20th	
  2009	
  from	
  <http://www.canmetenergy.nrcan.gc.ca>.	
  	
  Ayoub,	
  J.,	
  and	
  Dignard-­‐Bailey,	
  L.,	
  Photovoltaic	
  technology	
  status	
  and	
  prospects:	
  Canadian	
  annual	
  report	
   2008,	
  CanmetENERGY,	
  Natural	
  Resources	
  Canada,	
  retrieved	
  November	
  20th	
  2009	
  from	
  <http://www.canmetenergy.nrcan.gc.ca>.	
  	
  Ayoub,	
  J.,	
  Dignard-­‐Bailey,	
  L.,	
  and	
  Fillion,	
  A.,	
  Photovoltaics	
  for	
  buildings:	
  Opportunities	
  for	
  Canada,	
  CanmetENERGY,	
  Natural	
  Resources	
  Canada,	
  2000,	
  retrieved	
  August	
  1st	
  2009	
  from	
  <http://canmetenergy-­‐canmetenergie.nrcan-­‐rncan.gc.ca/eng/buildings_communities/buildings/pv_buildings/publications.html?2001-­‐123>	
  	
  	
  	
  	
  Barringer,	
  F.,	
  ‘Trees	
  block	
  solar	
  panels,	
  and	
  a	
  feud	
  ends	
  in	
  court,’	
  New	
  York	
  Times,	
  published	
  April	
  7	
  2008,	
  accessed	
  November	
  20th	
  2009	
  from	
  	
  	
  	
  	
  <http://www.nytimes.com/2008/04/07/science/earth/07redwood.html>	
  	
  BC	
  Climate	
  Action	
  Toolkit,	
  DPA	
  guidelines,	
  Climate	
  Action	
  Toolkit	
  website,	
  accessed	
  March	
  1st	
  2010	
  from	
  <http://www.toolkit.bc.ca/tool/development-­‐permit-­‐area-­‐guidelines>	
  	
  	
  	
  BC	
  Housing,	
  Technical	
  bulletin	
  no.	
  14-­08,	
  issued	
  January	
  18th	
  2008,	
  retrieved	
  August	
  20th	
  2009	
  from	
  <http://www.bchousing.org/resources/Programs/ILBC/technical	
  bulletins/TB_14_Energy_Performance.pdf>.	
  	
  	
  ‘BC	
  Hydro	
  seeks	
  33%	
  rate	
  hike	
  over	
  next	
  four	
  years,’	
  CBC	
  News,	
  Wednesday	
  March	
  3rd	
  2010,	
  retrieved	
  Thursday	
  March	
  4th	
  2010	
  from	
  <http://www.cbc.ca/canada/british-­‐columbia/story/2010/03/03/bc-­‐hydro-­‐rate-­‐increases.html?ref=rss>.	
  	
  	
  BC	
  Hydro,	
  BC	
  Hydro	
  annual	
  report	
  2009,	
  retrieved	
  March	
  2nd	
  2010	
  from	
  <www.bchydro.com>.	
  	
  	
  	
  	
  BC	
  Hydro,	
  Net	
  Metering	
  FAQ,	
  BC	
  Hydro	
  website,	
  accessed	
  January	
  30th	
  2010	
  from	
  	
  <http://www.bchydro.com/etc/medialib/internet/documents/info/pdf/info_net_metering_faq.Par.0001.File.info_net_metering_faq.pdf>.	
  	
  	
  BC	
  Hydro,	
  Net	
  Metering,	
  BC	
  Hydro	
  website,	
  last	
  modified	
  Feb	
  8,	
  2010,	
  accessed	
  February	
  24th	
  2010,	
  from	
  	
  <http://www.bchydro.com/planning_regulatory/acquiring_power/net_metering.html>.	
  	
  	
  	
  BC	
  Hydro,	
  Peace	
  River	
  Site	
  C	
  Hydro	
  Project	
  Stage	
  2	
  -­	
  Environmental	
  studies	
  study	
  outline:	
  Preliminary	
   greenhouse	
  gas	
  emissions	
  study,	
  n.d.,	
  retrieved	
  February	
  20th	
  2010	
  from	
  <www.bchydro.com>.	
  	
  	
  BC	
  Hydro,	
  Conservation	
  Research	
  Initiative,	
  last	
  modified	
  February	
  24th	
  2010,	
  accessed	
  March	
  1st	
  2010	
  from	
  <http://www.bchydro.com/powersmart/residential/conservation_research_initiative.html>	
  	
  	
  	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   63	
  BC	
  Hydro,	
  Electric	
  load	
  forecast	
  2005/06	
  to	
  2025/26,	
  December	
  2005	
  Forecast,	
  Market	
  Forecasting	
  Power	
  Planning	
  and	
  Portfolio	
  Management	
  Distribution	
  Line	
  of	
  Business	
  BC	
  Hydro,	
  retrieved	
  November	
  13th	
  2009	
  from	
  <http://www.bchydro.com/etc/medialib/internet/documents/policies/pdf/policies_2005_electric_load_forecast.Par.0001.File.policies_2005_electric_load_forecast.pdf>.	
  	
  	
  BC	
  Hydro	
  Customer	
  Service	
  Representative,	
  Personal	
  communication	
  with	
  the	
  author,	
  March	
  26th	
  2010.	
  	
  	
  BC	
  Hydro	
  Green	
  &	
  Alternative	
  Energy	
  Division,	
  Executive	
  report	
  on	
  the	
  green	
  energy	
  study	
  for	
  British	
   Columbia	
  Phase	
  1:	
  Vancouver	
  Island,	
  July	
  2001,	
  retrieved	
  December	
  20th	
  2009	
  from	
  <www.bchydro.com>.	
  	
  	
  BC	
  Hydro	
  Green	
  &	
  Alternative	
  Energy	
  Division,	
  Green	
  energy	
  study	
  for	
  British	
  Columbia	
  Phase	
  2:	
   Mainland,	
  October	
  2002,	
  retrieved	
  November	
  12th	
  2009	
  from	
  <www.bchydro.com>.	
  	
  	
  BC	
  Ministry	
  of	
  Community	
  and	
  Rural	
  Development,	
  Greenhouse	
  Gas	
  (GHG)	
  emission	
  reduction	
  targets,	
   policies	
  and	
  actions,	
  Ministry	
  of	
  Community	
  and	
  Rural	
  Development	
  website,	
  accessed	
  January	
  13th	
  2010	
  from	
  <http://www.cd.gov.bc.ca/lgd/greencommunities/targets.htm>.	
  	
  	
  	
  BC	
  Ministry	
  of	
  Energy,	
  Mines,	
  and	
  Petroleum	
  Resources,	
  Energy	
  in	
  action,	
  retrieved	
  September	
  30th	
  2009	
  from	
  <http://www.energyplan.gov.bc.ca/bcep/default.aspx?hash=12>.	
  	
  	
  BC	
  Ministry	
  of	
  Energy,	
  Mines,	
  and	
  Petroleum	
  Resources,	
  Energy	
  Plan:	
  A	
  Vision	
  for	
  Clean	
  Energy	
   Leadership,	
  2007,	
  retrieved	
  February	
  20th	
  2010	
  from	
  <http://www.energyplan.gov.bc.ca/efficiency/>.	
  	
  	
  	
  	
  BC	
  Ministry	
  of	
  Energy,	
  Mines,	
  and	
  Petroleum	
  Resources,	
  For	
  the	
  record:	
  Facts	
  on	
  independent	
  power	
   production,	
  March	
  25th	
  2009,	
  accessed	
  March	
  1st	
  2010	
  from	
  	
  <http://www.gov.bc.ca/fortherecord/independent/in_environment.html?src=/environment/in_environment.html>.	
  	
  	
  	
  BC	
  Ministry	
  of	
  Energy,	
  Mines,	
  and	
  Petroleum	
  Resources,	
  Livesmart	
  BC	
  efficiency	
  incentive	
  program:	
   Home	
  improvement	
  incentive	
  brochure,	
  retrieved	
  February	
  14th	
  2010	
  from	
  <http://www.energyplan.gov.bc.ca/efficiency/>.	
  	
  	
  	
  BC	
  Ministry	
  of	
  Energy,	
  Mines,	
  and	
  Petroleum	
  Resources,	
  What	
  is	
  solar	
  energy?,	
  retrieved	
  November	
  20th	
  2009	
  from	
  <http://www.empr.gov.bc.ca/RET/RenewableEnergyTechnologies/Solar/Pages/default.aspx>.	
  	
  	
  BC	
  Ministry	
  of	
  the	
  Environment,	
  Greenhouse	
  gas	
  reduction	
  target	
  act,	
  January	
  2008,	
  retrieved	
  September	
  18th	
  2009	
  from	
  <http://www.env.gov.bc.ca/epd/codes/ggrta/>.	
  	
  	
  BC	
  Ministry	
  of	
  Housing	
  and	
  Social	
  Development,	
  Greening	
  the	
  BC	
  Building	
  Code:	
  First	
  steps,	
  BC	
  Housing	
  website,	
  accessed	
  August	
  29th	
  2009	
  from	
  <http://www.housing.gov.bc.ca/building/green/>.	
  	
  BC	
  Safety	
  Authority,	
  Electrical	
  program	
  quick	
  reference	
  fee	
  table:	
  Electrical	
  contractor	
  installations,	
  January	
  1st	
  2010,	
  retrieved	
  February	
  23rd	
  2010	
  from	
  <http://www.safetyauthority.ca/?q=feesforms_feeschedules>.	
  	
  	
  BC	
  Safety	
  Authority,	
  Electrical	
  program	
  quick	
  reference	
  fee	
  table:	
  Electrical	
  homeowners	
  installations,	
  January	
  1st	
  2010,	
  retrieved	
  February	
  23rd	
  2010	
  from	
  <http://www.safetyauthority.ca/?q=feesforms_feeschedules>.	
  	
  	
  	
   	
   64	
   Becker,	
  G.,	
  et	
  al.,	
  An	
  approach	
  to	
  the	
  impact	
  of	
  snow	
  on	
  the	
  yield	
  of	
  grid-­connected	
  PV	
  systems,	
  	
  n.d.,	
  retrieved	
  January	
  30th	
  2010	
  from	
  <www.sev-­‐bayern.de/content/snow.pdf>.	
  	
  Bornstein,	
  S.,	
  ‘The	
  market	
  value	
  and	
  cost	
  of	
  solar	
  photovoltaic	
  electricity	
  production,’	
  Center	
  for	
  the	
   Study	
  of	
  Energy	
  Markets	
  Working	
  Paper,	
  Berkley,	
  January	
  2008,	
  retrieved	
  January	
  30th	
  2010	
  from	
  <www.ucei.berkeley.edu/PDF/csemwp176.pdf>.	
  	
  	
  	
  Boubekri,	
  M.,	
  ‘Solar	
  access	
  legislation,	
  a	
  historical	
  perspective	
  of	
  New	
  York	
  City	
  and	
  Tokyo,’	
  American	
   Planning	
  Association:	
  Planning	
  and	
  Environmental	
  Law,	
  May	
  2005,	
  Vol.	
  57,	
  No.	
  51.	
  	
  	
  Brown,	
  S.,	
  and	
  Rowlands,	
  I.,	
  ‘Nodal	
  pricing	
  in	
  Ontario,	
  Canada:	
  Implications	
  for	
  solar	
  PV	
  electricity,’	
   Renewable	
  Energy	
  34,	
  2009,	
  pp.	
  170-­‐178.	
  	
  	
  	
  Built	
  Green,	
  2010	
  Checklist,	
  accessed	
  February	
  27th	
  2009	
  from	
  <http://www.builtgreencanada.ca/>.	
  	
  	
  Canada	
  Green	
  Building	
  Council,	
  ‘LEED	
  green	
  building	
  rating	
  system,’	
  Rating	
  System	
  and	
  Addenum	
  for	
   New	
  Construction	
  and	
  Major	
  Renovations	
  Version	
  1.0,	
  December	
  2004,	
  p.	
  42-­‐44,	
  retrieved	
  January	
  18th	
  2010	
  from	
  <http://www.cagbc.org/leed/systems/neighbourhood_developments/index.php>.	
  	
  	
  	
  	
  Canada	
  Mortgage	
  and	
  Housing	
  Corporation,	
  Occupied	
  Housing	
  Type	
  by	
  Structure	
  Type	
  and	
  Tenure,	
   1991-­2006:	
  British	
  Columbia,	
  retrieved	
  March	
  1st	
  2010	
  from	
  <http://www.cmhc.ca/en/corp/about/cahoob/data/data_007.cfm>.	
  	
  	
  ‘Canadian	
  Solar	
  joins	
  ranks	
  of	
  PV	
  Cycle,’	
  Renewable	
  Energy	
  Focus,	
  July	
  27th	
  2009,	
  retrieved	
  February	
  3rd	
  2010	
  from	
  	
  <http://www.renewableenergyfocus.com/view/2720/canadian-­‐solar-­‐joins-­‐ranks-­‐of-­‐pv-­‐cycle/>.	
  	
  	
  Cha,	
  A.,	
  ‘Solar	
  energy	
  firms	
  leave	
  waste	
  behind,’	
  Washington	
  Post,	
  Sunday	
  March	
  9th	
  2008,	
  accessed	
  September	
  30th	
  2008	
  from	
  	
  <http://www.washingtonpost.com/wpdyn/content/article/2008/03/08/AR2008030802595.html>.	
  	
  	
  Community	
  Energy	
  Association	
  Powering	
  our	
  communities:	
  Renewable	
  energy	
  guide	
  for	
  local	
   governments	
  in	
  British	
  Columbia,	
  2008,	
  retrieved	
  November	
  12th	
  2009	
  from	
  <http://www.communityenergy.bc.ca/>.	
  	
  	
  City	
  of	
  Vancouver	
  Development	
  Services	
  Department,	
  Electrical	
  permit	
  fee	
  schedule,	
  2010,	
  retrieved	
  February	
  23rd	
  2010	
  from	
  <http://vancouver.ca/commsvcs/developmentservices/tradespermits/index.htm>.	
  	
  	
  City	
  of	
  Vancouver,	
  Pre-­piping	
  for	
  roof-­mounted	
  Solar	
  Energy	
  generation,	
  City	
  of	
  Vancouver	
  website,	
  accessed	
  February	
  13th	
  2010	
  from	
  <http://vancouver.ca/commsvcs/cbofficial/greenbuildings/greenhomes/solarenergy.htm>.	
  	
  	
  Clean	
  Energy	
  Group	
  and	
  Clean	
  Energy	
  States	
  Alliance,	
  Developing	
  an	
  effective	
  state	
  clean	
  energy	
   program:	
  Clean	
  energy	
  loans,	
  March	
  2009,	
  retrieved	
  February	
  13th	
  2010	
  from	
  <www.cleanenergystates.org/publications/CESA_Loan_Programs_March09.pdf>.	
  	
  	
  Contreras,	
  J.,	
  et.	
  al.	
  Photovoltaics	
  Value	
  Analysis,	
  National	
  Renewable	
  Energy	
  Laboratory,	
  February	
  2008,	
  retrieved	
  September	
  30th	
  2009,	
  from	
  <www.nrel.com>.	
  	
  	
  Curtright,	
  A.,	
  Morgan,	
  M.	
  G.,	
  and	
  Keith,	
  D.	
  ‘Assessments	
  future	
  pv,’	
  Environmental	
  Science	
  and	
   Technology,	
  2008,	
  Vol.	
  42,	
  No.	
  24,	
  pp.	
  9031-­‐9038.	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   65	
  Denholm,	
  P.,	
  et.	
  al.,	
  Break-­even	
  cost	
  for	
  residential	
  photovoltaics	
  in	
  the	
  United	
  States:	
  Key	
  drivers	
  and	
   sensitivities,	
  National	
  Research	
  Energy	
  Laboratory,	
  December	
  2009,	
  retrieved	
  February	
  12th	
  2010	
  from	
  <www.nrel.gov/docs/fy10osti/46909.pdf>.	
  	
  	
  	
  	
  	
  Duancey,	
  G.,	
  ‘HST	
  should	
  have	
  been	
  an	
  ecologically	
  harmonized	
  sales	
  tax,’	
  BC	
  Sustainable	
  Energy	
   Association,	
  August	
  24th	
  2009,	
  retrieved	
  February	
  1st	
  2010	
  from	
  <http://www.bcsea.org/blog/guy-­‐dauncey/2009/08/24/hst-­‐should-­‐have-­‐been-­‐ecologically-­‐harmonized-­‐sales-­‐tax>.	
  	
  	
  Encorp	
  Pacific,	
  Electronics	
  recycling	
  fees,	
  retrieved	
  September	
  13th	
  2009	
  from	
  <http://www.encorp.ca>.	
  	
  Eng,	
  S.	
  and	
  Gill,	
  S.,	
  Solar	
  PV	
  Community	
  Action	
  Manual,	
  Ontario	
  Sustainable	
  Energy	
  Association	
  and	
  Canadian	
  Solar	
  Industries	
  Association,	
  Canada,	
  2008,	
  retrieved	
  September	
  30th	
  2009	
  from	
  <www.ontario-­‐sea.org/Storage.asp?StorageID=445>.	
  	
  European	
  Commission,	
  Global	
  irradiation	
  and	
  solar	
  electricity	
  potential:	
  Germany,	
  retrieved	
  January	
  3rd	
  2010	
  from	
  	
  	
  <http://re.jrc.ec.europa.eu/pvgis/cmaps/eu_opt/pvgis_solar_optimum_DE.png>.	
  	
  	
  	
  First	
  Solar,	
  Refunded	
  collection	
  and	
  recycling	
  program,	
  accessed	
  January	
  13th	
  2010	
  from	
  <http://www.firstsolar.com/en/recycle_program.php>.	
  	
  Fortis	
  BC,	
  Rates,	
  accessed	
  March	
  13th	
  2010	
  from	
  <http://www.fortisbc.com/about_fortisbc/rates/rates.html>.	
  	
  	
  Frondel,	
  M.,	
  et.	
  al.,	
  Economic	
  impacts	
  from	
  the	
  promotion	
  of	
  renewable	
  energy	
  technology:	
  The	
  German	
   experience,	
  Ruhr	
  University	
  Economic	
  Papers,	
  November	
  2009,	
  retrieved	
  online	
  February	
  13th	
  2010	
  from	
  <http://repec.rwi-­‐essen.de/files/REP_09_156.pdf>.	
  	
  	
  Frondel,	
  M.,	
  Ritter,	
  N.,	
  and	
  Schmidt,	
  M.,	
  ‘Germany’s	
  solar	
  cell	
  promotion:	
  Dark	
  clouds	
  on	
  the	
  horizon,’	
   Energy	
  Policy	
  36,	
  2008,	
  pp.	
  4198–4204.	
  	
  Fthenakis,	
  V.,	
  Could	
  CdTe	
  PV	
  modules	
  pollute	
  the	
  environment?,	
  National	
  Photovoltaic	
  Environmental	
  Health	
  and	
  Safety	
  Assistance	
  Center,	
  Brookhaven	
  National	
  Laboratory,	
  2002,	
  retrieved	
  January	
  3rd	
  2010	
  from	
  <www.abound.com>.	
  	
  	
  Fthenakis,	
  V.,	
  ‘End-­‐of-­‐life	
  management	
  and	
  recycling	
  of	
  PV	
  modules,’	
  Energy	
  Policy	
  28,	
  2000,	
  pp.	
  1051-­‐1058.	
  	
  Fthenakis,	
  V.,	
  ‘Life	
  cycle	
  impact	
  analysis	
  of	
  cadmium	
  in	
  CdTe	
  PV	
  production,’	
  Renewable	
  and	
   Sustainable	
  Energy	
  Reviews	
  8,	
  2004,	
  pp.	
  303–334.	
  	
  	
  Fthenakis,	
  V.,	
  ‘Sustainability	
  of	
  photovoltaics;	
  The	
  case	
  for	
  thin-­‐film	
  solar	
  cells’	
  Renewable	
  and	
   Sustainable	
  Energy	
  Reviews	
  13	
  (2009)	
  p.	
  2746-­‐2750.	
  Elsevier.	
  	
  	
  Fthenakis,	
  V.,	
  and	
  Alsema,	
  E.,	
  ‘Photovoltaics	
  energy	
  payback	
  times,	
  greenhouse	
  gas	
  emissions,	
  and	
  external	
  costs:	
  2004–early	
  2005	
  Status,’	
  Progress	
  in	
  Photovoltaics:	
  Research	
  and	
  Applications	
  14,	
  2006,	
  pp.	
  275-­‐280.	
  	
  Fthenakis,	
  V.,	
  et	
  al.,	
  ‘Toxicity	
  of	
  Cadmium	
  Telluride,	
  Copper	
  Indium	
  Diselenide,	
  and	
  Copper	
  Gallium	
  Diselenide,’	
  Progress	
  in	
  Photovoltaics,	
  1999,	
  V.	
  7,	
  pp.	
  489-­‐497.	
  Elsevier,	
  www.sciencedirect.com	
  	
  	
  Fthenakis,	
  V.,	
  Kim,	
  H.	
  and	
  Alsema,	
  E.,	
  ‘Emissions	
  from	
  photovoltaic	
  life	
  cycles,’	
  Environmental	
  Science	
   &	
  Technology	
  42,	
  2008,	
  pp.	
  2168–2174.	
  	
  	
   	
   66	
   Hamilton,	
  T.,	
  ‘Solar	
  panel	
  startup	
  to	
  lease	
  residential	
  rooftops,’	
  Yourhome.ca,	
  March	
  10th	
  2010,	
  accessed	
  March	
  13th	
  2010	
  from	
  <http://www.yourhome.ca/homes/realestate/article/777492-­‐-­‐solar-­‐panel-­‐startup-­‐to-­‐lease-­‐residential-­‐rooftops>.	
  	
  	
  Hanova,	
  J.,	
  Dowlatabadi,	
  H.,	
  and	
  Mueller,	
  L.,	
  ‘Ground	
  source	
  heat	
  pump	
  systems	
  in	
  Canada:	
  Economics	
  and	
  GHG	
  reduction	
  potential,’	
  2007	
  in	
  Discussion	
  Papers,	
  Resources	
  For	
  the	
  Future,	
  Washington,	
  DC,	
  retrieved	
  January	
  13th	
  2010	
  from	
  <www.rff.org/documents/RFF-­‐DP-­‐07-­‐18.pdf>.	
  	
  	
  	
  Harrabin,	
  R.,	
  	
  ‘Solar	
  panel	
  costs	
  set	
  to	
  fall,’	
  BBC,	
  updated	
  Monday	
  November	
  30th	
  2009,	
  retrieved	
  January	
  5th	
  2010	
  from	
  <http://news.bbc.co.uk/2/hi/science/nature/8386460.stm>.	
  	
  	
  Higgins,	
  C.,	
  Personal	
  communication	
  with	
  the	
  author,	
  February	
  11th	
  2010.	
  	
  Hoberg,	
  G.,	
  and	
  Mallon,	
  C.,	
  Electricity	
  trade	
  in	
  British	
  Columbia:	
  Are	
  we	
  a	
  net	
  importer	
  or	
  a	
  net	
   exporter?,	
  March	
  17th	
  2009,	
  retrieved	
  January	
  13th	
  2010	
  from	
  <http://greenpolicyprof.org/wordpress>.	
  	
  	
  	
  	
  	
  H.	
  Hondo,	
  ‘Life	
  cycle	
  GHG	
  emission	
  analysis	
  of	
  power	
  generation	
  systems:	
  Japanese	
  case’,	
  Energy,	
  Vol.	
  30,	
  2005,	
  pp.	
  2042-­‐2056.	
  	
  	
  Interlock	
  Roofing,	
  Solar	
  roof,	
  retrieved	
  March	
  13th	
  2010	
  from	
  <http://www.bcsbestroof.com/>.	
  	
  	
  International	
  Energy	
  Association,	
  Energy	
  Policies	
  of	
  IEA	
  Countries:	
  Germany,	
  2007	
  Review,	
  International	
  Energy	
  Agency,	
  OECD,	
  Paris,	
  retrieved	
  March	
  13th	
  2010	
  from	
  <http://www.iea.org/publications/free_new_Desc.asp?PUBS_ID=1922>.	
  	
  	
  Jha,	
  A.,	
  ‘Solar	
  power	
  from	
  Saharan	
  sun	
  could	
  provide	
  Europe’s	
  electricity’	
  The	
  Guardian,	
  July	
  23rd	
  2008,	
  retrieved	
  March	
  3rd	
  2010	
  from	
  <http://www.guardian.co.uk/environment/2008/jul/23/solarpower.windpower>.	
  	
  	
  Johnston,	
  W.,	
  Personal	
  communication	
  with	
  the	
  author,	
  February	
  17th	
  2010.	
  	
  Kalowekamo,	
  J.,	
  and	
  Baker,	
  E.,	
  ‘Estimating	
  the	
  manufacturing	
  cost	
  of	
  purely	
  organic	
  solar	
  cells,’	
  Solar	
   Energy,	
  Vol.	
  83,	
  2009,	
  pp.	
  1224-­‐1231.	
  	
  	
  	
  Kannan,	
  R.,	
  et	
  al.	
  ‘Life	
  cycle	
  assessment	
  study	
  of	
  solar	
  PV	
  systems:	
  An	
  example	
  of	
  a	
  2.7kW	
  distributed	
  solar	
  PV	
  system	
  in	
  Singapore,’	
  Solar	
  Energy	
  80,	
  2006,	
  pp.	
  555–563.	
  	
  Kato,	
  K.,	
  Murata,	
  A.,	
  and	
  Sakuta,	
  K.,	
  ‘An	
  evaluation	
  on	
  the	
  life	
  cycle	
  of	
  photovoltaic	
  energy	
  system	
  considering	
  production	
  energy	
  of	
  off-­‐grade	
  silicon,’	
  Solar	
  Energy	
  Materials	
  and	
  Solar	
  Cells,	
  1997,	
  Vol.	
  47,	
  pp.	
  95–100.	
  	
  Knowles,	
  R.,	
  ‘The	
  Solar	
  envelope,’	
  Energy	
  and	
  Buildings,	
  Vol.	
  35,	
  Issue	
  1,	
  January	
  2003,	
  pp.	
  15-­‐25.	
  	
  	
  	
  Kruhlak,	
  R.,	
  A	
  legal	
  review	
  of	
  access	
  to	
  sunlight	
  in	
  sunny	
  Alberta,	
  Edmonton,	
  1981,	
  retrieved	
  March	
  1st	
  2010	
  from	
  <http://www.cansia.ca/government-­‐regulatory-­‐issues/archives>.	
  	
  	
  Landler,	
  M.,	
  ‘Germany	
  debates	
  subsidies	
  for	
  solar	
  industry,’	
  New	
  York	
  Times,	
  May	
  16th	
  2008,	
  retrieved	
  March	
  13th	
  2010	
  from	
  <http://www.nytimes.com/2008/05/16/business/worldbusiness/16solar.html?pagewanted=2&_r=3&sq=Solar%20Valley%20Overcast&scp=1>.	
  	
  	
  Lisell,	
  L.,	
  Tetreault,	
  T.,	
  and	
  Watson,	
  A.,	
  Solar	
  ready	
  buildings	
  planning	
  guide,	
  December	
  2009,	
  retrieved	
  March	
  10th	
  2010	
  from	
  <www.nrel.gov/docs/fy10osti/46078.pdf	
  >.	
  	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   67	
  Lovgren,	
  S.,	
  ‘Spray-­‐on	
  solar-­‐power	
  cells	
  are	
  true	
  breakthrough,’	
  National	
  Geographic	
  News,	
  January	
  14th	
  2005,	
  retrieved	
  January	
  18th	
  2010	
  from	
  <http://news.nationalgeographic.com/news/2005/01/0114_050114_solarplastic.html>.	
  	
  	
  Miller,	
  N.	
  and	
  Ye,	
  Z.,	
  Report	
  on	
  distributed	
  generation	
  penetration	
  study,	
  August	
  2003,	
  National	
  Research	
  Energy	
  Laboratory,	
  accesses	
  September	
  13th	
  2010	
  from	
  <www.nrel.gov/docs/fy03osti/34715.pdf>.	
  	
  	
  	
  	
  Morton,	
  O.,	
  ‘Solar	
  energy:	
  A	
  new	
  day	
  dawning?,’	
  Nature	
  443,	
  September	
  7th	
  2006,	
  pp.	
  19-­‐22,	
  accessed	
  February	
  23rd	
  2010	
  from	
  <http://www.nature.com/nature/journal/v443/n7107/full/443019a.html>.	
  	
  	
  Muenster,	
  R.,	
  ‘Shade	
  happens,’	
  Renewable	
  Energy	
  World,	
  February	
  2nd	
  2009,	
  accessed	
  March	
  2nd	
  2010	
  from	
  	
  <http://www.renewableenergyworld.com/rea/news/article/2009/02/shade-­‐happens-­‐54551>.	
  	
  	
  Müller,	
  A.,	
  Wambach,	
  K.,	
  and	
  Alsema,	
  E.,	
  ‘Life	
  cycle	
  analysis	
  of	
  a	
  solar	
  module	
  recycling	
  process,’	
   Materials	
  Research	
  Society,	
  Warrendale,	
  PA,	
  USA,	
  2007,	
  retrieved	
  February	
  26	
  2010	
  from	
  <http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=6228&DID=170203&action=detail>.	
  	
  	
  National	
  Renewable	
  Energy	
  Laboratory,	
  PV	
  FAQs,	
  US	
  Department	
  of	
  Energy,	
  Office	
  of	
  Energy	
  Efficiency	
  and	
  Renewable	
  Energy,	
  December	
  2004,	
  retrieved	
  February	
  20th	
  2010	
  from	
  <www.nrel.gov/docs/fy04osti/35489.pdf>.	
  	
  	
  National	
  Renewable	
  Energy	
  Laboratory,	
  NREL	
  energy	
  analysts	
  dig	
  into	
  Feed-­in	
  Tariffs,	
  June	
  12th	
  2009,	
  retrieved	
  March	
  3rd	
  2010	
  from	
  <http://www.nrel.gov/features/20090612_fits.html>.	
  	
  	
  	
  	
  	
  Natural	
  Resources	
  Canada,	
  Photovltaic	
  Potential	
  and	
  Solar	
  Resource	
  Map	
  of	
  Canada,	
  accessed	
  November	
  29th	
  2009	
  from	
  	
  <https://glfc.cfsnet.nfis.org/mapserver/pv/index_e.php>.	
  	
  	
  	
  Odum,	
  H.,	
  Environmental	
  Accounting:	
  Emergy	
  and	
  Environmental	
  Decision	
  Making,	
  John	
  Wiley	
  &	
  Sons,	
  New	
  York,	
  2008.	
  	
  Ontario	
  Power	
  Authority,	
  What	
  is	
  the	
  Feed-­in	
  tariff	
  program?,	
  Ontario	
  Power	
  Authority	
  website,	
  retrieved	
  February	
  20th	
  2010	
  from	
  	
  <http://fit.powerauthority.on.ca/Page.asp?PageID=1115&SiteNodeID=1052>.	
  	
  	
  Pearce,	
  J.,	
  cited	
  in	
  ‘The	
  future	
  of	
  the	
  thin-­‐film	
  solar	
  panel,’	
  Solar	
  Power	
  Beginner	
  retrieved	
  February	
  28th	
  2010	
  from	
  	
  <http://www.solarpowerbeginner.com/thin-­‐film-­‐solar-­‐panel.html	
  >.	
  	
  Pearce,	
  J.,	
  Personal	
  communication	
  with	
  the	
  author,	
  March	
  2nd	
  2010.	
  	
  	
  	
  Province	
  of	
  British	
  Columbia,	
  Local	
  Government	
  Act,	
  Part	
  26,	
  Section	
  903:	
  Zoning	
  bylaws,	
  Queen’s	
  Printer,	
  Victoria	
  BC,	
  accessed	
  January	
  3rd	
  2010	
  from	
  <www.bclaws.ca>.	
  	
  	
  	
  	
  	
  	
  Province	
  of	
  British	
  Columbia,	
  Local	
  Government	
  Act,	
  Part	
  26,	
  Section	
  920:	
  Planning	
  and	
  Land	
  Use	
  Management,	
  Queen’s	
  Printer,	
  Victoria	
  BC,	
  accessed	
  January	
  3rd	
  2010	
  from	
  <www.bclaws.ca>.	
  	
  	
  	
  	
  	
  	
  Province	
  of	
  British	
  Columbia,	
  Climate	
  action	
  plan,	
  June	
  2008,	
  retrieved	
  November	
  13th	
  2009	
  from	
  <http://www.livesmartbc.ca/government/plan.html>.	
  	
  	
  Province	
  if	
  British	
  Columbia,	
  Livesmart	
  BC,	
  accessed	
  November	
  20th	
  2009	
  from	
  <http://www.livesmartbc.ca/>.	
  	
  	
   	
   68	
   ‘PV	
  CYCLE	
  to	
  initiate	
  solar	
  PV	
  module	
  take-­‐back	
  and	
  recycling	
  programme	
  in	
  2010,’	
  Renewable	
   Energy	
  Focus,	
  12	
  October	
  2009,	
  retrieved	
  February	
  3rd	
  2010	
  from	
  <www.renewableenergyfocus.com>.	
  	
  	
  	
  Serrano,	
  E.,	
  Rus,	
  G.,	
  and	
  Garcia-­‐Martinez,	
  J.,	
  ‘Nanotechnology	
  for	
  sustainable	
  energy,’	
   Renewable	
  and	
  Sustainable	
  Energy	
  Reviews	
  13,	
  2009,	
  pp.	
  2373–2384.	
  	
  Silicon	
  Valley	
  Toxics	
  Coalition,	
  Towards	
  a	
  just	
  and	
  sustainable	
  solar	
  industry,	
  January	
  14th	
  2009,	
  retrieved	
  March	
  9th	
  2010	
  from	
  <www.svtc.org/>.	
  	
  	
  Smiley,	
  E.,	
  Green	
  energy	
  study	
  for	
  British	
  Columbia	
  phase	
  2:	
  Mainland	
   building	
  integrated	
  photovoltaic	
  solar	
  and	
  small-­scale	
  wind,	
  BC	
  Hydro,	
  October	
  2002,	
  retrieved	
  November	
  28th	
  2009	
  from	
  	
  <http://www.bchydro.com/etc/medialib/internet/documents/environment/pdf/green_energy_study.Par.0001.File.greenenergystudy-­‐summary.pdf>.	
  	
  Society	
  Promoting	
  Environmental	
  Conservation,	
  Solar	
  technology	
  tours	
  at	
  SPEC,	
  SPEC	
  website,	
  accessed	
  February	
  1st	
  2010	
  from	
  <	
  http://www.spec.bc.ca/article/article.php?articleID=488>.	
  	
  	
  Solar	
  BC,	
  Solar	
  BC	
  incentives	
  double	
  up:	
  $2000	
  now	
  available	
  for	
  new	
  buildings	
  and	
  existing	
  homes,	
  accessed	
  February	
  3rd,	
  2010	
  from	
  <	
  http://www.solarbc.ca/blog/liz-­‐kelly/2010/02/01/solarbc-­‐incentives-­‐double	
  >.	
  	
  	
  SolarBC,	
  Solar	
  hot	
  water	
  simplified,	
  accessed	
  March	
  3rd	
  2010	
  from	
  <http://www.solarbc.ca/learn/solar-­‐hot-­‐water-­‐simplified>.	
  	
  	
  SolarBC,	
  Solar	
  in	
  BC’s	
  climate,	
  accessed	
  March	
  1st	
  2010	
  from	
  	
  <http://www.solarbc.ca/learn/solar-­‐in-­‐bcs-­‐climate>.	
  	
  Solar	
  Buzz,	
  Solar	
  Energy	
  Costs,	
  accessed	
  February	
  23rd	
  2010	
  from	
  <http://www.solarbuzz.com/StatsCosts.htm>.	
  	
  	
  Solar	
  BC,	
  Incentives	
  and	
  costs,	
  accessed	
  March	
  1st	
  2010	
  from	
  <http://www.solarbc.ca/learn/incentives-­‐costs>.	
  	
  	
  Solar	
  Buzz,	
  Module	
  index	
  retail	
  price	
  per	
  watt	
  peak,	
  retrieved	
  March	
  14th	
  2010	
  from	
  <http://www.solarbuzz.com/Moduleprices.htm>.	
  	
  	
  	
  Solar	
  Direct,	
  Solar	
  Water	
  Heater,	
  image	
  retrieved	
  Thursday	
  March	
  4th	
  2010	
  from	
  	
  <http://www.solar-­‐water-­‐heater.com/~images/pt-­‐house.gif>.	
  	
  	
  Stamenic,	
  L.,	
  ‘Developments	
  with	
  BIPV	
  systems	
  in	
  Canada,’	
  Asian	
  Journal	
  on	
  Energy	
  and	
  Environment,	
  Vol.	
  5,	
  Issue	
  4,	
  pp.	
  349-­‐365.	
  	
  	
  	
  Stonier,	
  J.,	
  Personal	
  Interview	
  with	
  the	
  Author,	
  March	
  19th,	
  2010.	
  	
  Suddwick	
  Homes,	
  Solar	
  photovoltaic	
  (PV)	
  packages,	
  retrieved	
  March	
  9th	
  2010	
  from	
  	
  	
  <http://www.suddwickhomes.ca/solarpackage-­‐pv.html>.	
  	
  	
  Suna,	
  D.,	
  Haas,	
  R.,	
  and	
  Lopez	
  Polo,	
  A.,	
  Analysis	
  of	
  pv	
  system’s	
  values	
  beyond	
  energy:	
  by	
  country	
  and	
   stakeholder,	
  International	
  Energy	
  Association,	
  Photovoltaic	
  Power	
  Systems	
  Program,	
  retrieved	
  January	
  3rd	
  2010	
  from	
  <www.iea-­‐pvps.org/products/download/rep10_02.pdf>.	
  	
  Sustainable	
  Energy	
  Authority	
  Victoria,	
  Info	
  fact	
  sheet:	
  Siting	
  and	
  solar	
  access,	
  n.d.,	
  retrieved	
  March	
  3rd	
  from	
  <www.sustainability.vic.gov.au/resources/.../Siting_and_solar_access.pdf>.	
  	
   [Solar	
  Photovoltaics	
  in	
  BC:	
  A	
  Scoping	
  Review	
  of	
  Residential,	
  Grid-­‐Connected	
  Systems]	
  	
   69	
  	
  Taylor,	
  D.,	
  ‘On	
  the	
  job	
  with	
  solar	
  PV,’	
  Environmental	
  Health	
  Perspectives,	
  2010,	
  V.	
  118,	
  p.	
  A19.	
  	
  	
  Torcellini,	
  P.,	
  et	
  al.	
  ‘Solar	
  technologies	
  and	
  the	
  building	
  envelope,’	
  ASHRAE	
  Journal,	
  April	
  2007,	
  pp.	
  14-­‐22,	
  retrieved	
  February	
  13th	
  2010	
  from	
  <www.ashrae.org>.	
  	
  US	
  Department	
  of	
  Energy,	
  Office	
  of	
  Energy	
  Efficiency	
  and	
  Renewable	
  Energy,	
  Small	
  Solar	
  Electric	
   System	
  Components,	
  retrieved	
  February	
  13th	
  2010	
  from	
   <http://www.energysavers.gov/your_home/electricity/index.cfm/mytopic=10790>.	
  	
  US	
  Department	
  of	
  Energy,	
  Cell,	
  module,	
  array,	
  image	
  retrieved	
  November	
  7th	
  2009	
  from	
  <http://www1.eere.energy.gov/solar/pv_systems.html>.	
  	
  	
  	
  US	
  Department	
  of	
  Energy	
  Efficiency	
  and	
  Renewable	
  Energy,	
  Get	
  your	
  power	
  from	
  the	
  sun:	
  A	
   consumer’s	
  guide,	
  December	
  2003,	
  p.	
  5,	
  retrieved	
  October	
  20th	
  2009	
  from	
  <www.nrel.gov/docs/fy04osti/35297.pdf>.	
  	
   	
  US	
  Department	
  of	
  Energy,	
  Efficiency	
  and	
  Renewable	
  Energy,	
  Community	
  solar	
  access,	
  accessed	
  March	
  13th	
  2010	
  from	
  <http://www.energysavers.gov/renewable_energy/solar/index.cfm/mytopic=50013>.	
  	
  	
  US	
  Department	
  of	
  Energy:	
  Building	
  America,	
  ‘High-­‐performance	
  home	
  technologies:	
  Solar	
  thermal	
  and	
  photovoltaic	
  systems,’	
  Building	
  America	
  Best	
  Practices	
  Series	
  Volume	
  6,	
  June	
  4th	
  2007,	
  retrieved	
  August	
  2008	
  from	
  <http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/41085.pdf>.	
  	
  	
  US	
  Department	
  of	
  Energy,	
  Solar	
  history	
  timeline,	
  retrieved	
  March	
  1st	
  2010	
  from	
  <http://www1.eere.energy.gov/solar/m/solar_time_1900.html>.	
  	
   	
  	
  US	
  Department	
  of	
  Energy	
  Office	
  of	
  Building	
  technology,	
  Passive	
  solar	
  design	
  technology	
  fact	
  sheet,	
  December	
  2000,	
  retrieved	
  September	
  20th	
  2009	
  from	
  	
  <http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250>.	
  	
  	
  Varun,	
  I.,	
  Bhat,	
  K.,	
  and	
  Prakash,	
  R.,	
  ‘LCA	
  of	
  renewable	
  energy	
  for	
  electricity	
  generation,’	
  Renewable	
   and	
  Sustainable	
  Energy	
  Reviews,	
  2009,	
  Vol.	
  13,	
  pp.	
  1067–1073.	
  	
  Weisser,	
  D.,	
  A	
  Guide	
  to	
  Life-­Cycle	
  Greenhouse	
  Gas	
  (GHG)	
  Emissions	
  from	
  Electric	
  Supply	
  Technologies,	
  n.d.,	
  	
  International	
  Atomic	
  Energy	
  Association,	
  p.	
  17.,	
  retrieved	
  February	
  20th	
  2010	
  from	
  <http://www.iaea.org/OurWork/ST/NE/Pess/assets/GHG_manuscript_pre-­‐print_versionDanielWeisser.pdf>	
  	
  	
  Weis,	
  T.,	
  and	
  Horne,	
  M.,	
  Residential	
  solar	
  opportunities	
  in	
  Dawson	
  Creek:	
  Solar	
  Hot	
  Water	
  and	
   Electricity	
  Generation	
  Final	
  Report,	
  Pembina	
  Institute,	
  February	
  2008,	
  retrieved	
  February	
  23rd	
  2009	
  from	
  <www.planningforpeople.ca/.../Solar%20Potential%20for%20Dawson%20Creek%20-­‐%20Final.pdf>.	
  	
  	
  Wiser,	
  R.,	
  Barbose,	
  G.,	
  and	
  Peterman,	
  C.,	
  Tracking	
  the	
  Sun:	
  The	
  installed	
  cost	
  of	
  photovoltaics	
  in	
  the	
  U.S.	
   from	
  1998-­2007,	
  Lawrence	
  Berkeley	
  National	
  Laboratory,	
  February	
  2009,	
  retrieved	
  Tuesday	
  March	
  2nd	
  2010	
  from	
  <http://eetd.lbl.gov/ea/emp/reports/lbnl-­‐1516e.pdf>.	
  	
  	
  	
  Worren,	
  J.,	
  ‘Ontario	
  FIT	
  program	
  off	
  to	
  a	
  cautious	
  start,’	
  Renewable	
  Energy	
  World,	
  October	
  12th	
  2009,	
  retrieved	
  March	
  3rd	
  2010	
  from	
  <http://www.renewableenergyworld.com/rea/news/article/2009/10/ontario-­‐fit-­‐program-­‐off-­‐to-­‐a-­‐catious-­‐start>.	
  	
  	
  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 9 0
Canada 9 0
Russia 4 0
China 3 37
France 1 0
Mexico 1 0
City Views Downloads
Unknown 12 1
Vancouver 2 0
Fuzhou 2 0
Boardman 2 0
Sunnyvale 2 0
Monterrey 1 0
Redmond 1 0
Matawan 1 0
Beijing 1 0
Port Moody 1 0
Mountain View 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items