- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Utilizing Variants Identified with Multiple Genome-Wide...
Open Collections
UBC Faculty Research and Publications
Utilizing Variants Identified with Multiple Genome-Wide Association Study Methods Optimizes Genomic Selection for Growth Traits in Pigs Zhang, Ruifeng; Zhang, Yi; Liu, Tongni; Jiang, Bo; Li, Zhenyang; Qu, Youping; Chen, Yaosheng; Li, Zhengcao
Abstract
Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.
Item Metadata
Title |
Utilizing Variants Identified with Multiple Genome-Wide Association Study Methods Optimizes Genomic Selection for Growth Traits in Pigs
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2023-02-17
|
Description |
Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2025-06-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0449183
|
URI | |
Affiliation | |
Citation |
Animals 13 (4): 722 (2023)
|
Publisher DOI |
10.3390/ani13040722
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0