UBC Faculty Research and Publications

Wet-Bulb Temperature from Relative Humidity and Air Temperature. 2011

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata


Stull_AMS_2011_JAMC-D-11-0143.pdf [ 655.94kB ]
JSON: 1.0041967.json
JSON-LD: 1.0041967+ld.json
RDF/XML (Pretty): 1.0041967.xml
RDF/JSON: 1.0041967+rdf.json
Turtle: 1.0041967+rdf-turtle.txt
N-Triples: 1.0041967+rdf-ntriples.txt

Full Text

Wet-Bulb Temperature from Relative Humidity and Air Temperature ROLAND STULL University of British Columbia, Vancouver, British Columbia, Canada (Manuscript received 14 July 2011, in final form 28 August 2011) ABSTRACT An equation is presented for wet-bulb temperature as a function of air temperature and relative humidity at standard sea level pressure. It was found as an empirical fit using gene-expression programming. This equation is valid for relative humidities between 5% and 99% and for air temperatures between 2208 and 508C, except for situations having both low humidity and cold temperature. Over the valid range, errors in wet-bulb temperature range from 218 to 10.658C, with mean absolute error of less than 0.38C. 1. Introduction To calculate relative humidity in percent (hereinafter denoted as RH%) from dry-bulb temperatureT and wet- bulb temperature Tw, one can use a well-known set of ‘‘forward’’ analytical psychrometric equations (Bohren andAlbrecht 1998; Stull 2011). For any pressure, such as standard sea level pressure of 101.325 kPa, the resulting calculated values of RH%can be listed in psychrometric tables or plotted in graphs such as Fig. 1. There is, how- ever, no easy analytical ‘‘inverse’’ solution to get Tw from T and RH%. Yet some applications require estimates of Tw, given electronic sensor measurements or numerical forecasts of T and RH%. For example, the ‘‘wet-bulb globe tem- perature’’ is used by industrial hygienists, athletes, and the military to estimate the composite effect of tem- perature, solar radiation, humidity, and wind speed on people (see, e.g., online at http://en.wikipedia.org/wiki/ Wet_Bulb_Globe_Temperature). The effectiveness of snowmaking equipment is a strong function of Tw, be- cause snow can be produced in air temperatures slightly above freezing ifTw is below about228C (see, e.g., online at http://en.wikipedia.org/wiki/Snowmaking). In a similar way, subzero Tw values can exacerbate freezing-rain events. Lower Tw allows industrial cooling towers and other evaporative coolers (also called swamp coolers or desert coolers) to operate more efficiently (see http:// en.wikipedia.org/wiki/Wet-bulb_temperature; http:// en.wikipedia.org/wiki/Evaporative_cooler).Wet-bulb tem- perature Tw and wet-bulb potential temperature can be used to label saturated adiabats on thermodynamic dia- grams such as skew Ts and tephigrams (Stull 2011). In a similar way, sometimes it is desirable to estimate Tw without using Normand’s rule (Stull 2011) on a thermo- dynamic diagram. 2. Empirical expression for wet-bulb temperature Presented here is an empirical inverse solution found by a function fit to the data in Fig. 1. It yields Tw (8C) as a function ofT (8C) andRH%(where a humidity such as 65.8% is input as the number 65.8): Tw 5 T atan[0:151 977(RH%1 8:313 659) 1/2] 1 atan(T 1 RH%) 2 atan(RH% 2 1:676 331) 1 0:003 918 38(RH%)3/2 atan(0:023 101RH%) 2 4:686 035. (1) The arctangent function uses argument values as if they are in radians. The curves in Fig. 2 were calculated using Eq. (1) to showTw as an explicit function ofT andRH%. Equation (1) is valid for a pressure of 101.325 kPa and for the combinations of dry-bulb temperatures and Corresponding author address: Roland Stull, Earth and Ocean Sciences Dept., University of British Columbia, 6339 Stores Rd., Vancouver, BC V6T 1Z4, Canada. E-mail: rstull@eos.ubc.ca NOVEMBER 2011 S TULL 2267 DOI: 10.1175/JAMC-D-11-0143.1  2011 American Meteorological Society relative humidities as plotted in Fig. 2. Saturation is with respect to liquid water over all temperatures. To illustrate its usage, pluggingT (8C)5 20 andRH%5 50 into Eq. (1) gives Tw 5 20 atan[0:151 977(501 8:313 659) 1/2] 1 atan(20 1 50) 2 atan(50 2 1:676 331) 1 0:003 918 38(50)3/2 atan(0:023 1013 50) 2 4:686 035 5 13:78C. The errors between the Eq. (1) estimate and the Tw values from Fig. 1 are plotted in Fig. 3. Mean error is 20.00528C, median error is 0.0268C, mean absolute er- ror is 0.288C, and the fraction of variance (r2) explained by the regression is 99.95%. Figures 2 and 3 are plotted on the same scale so that at any point (T, RH%) one can find Tw from Fig. 2 and the corresponding error from Fig. 3. Two factors influence the errors in Fig. 3. One is that the regression was based only on the data from Fig. 1, for 1% # RH% # 99%. Thus, the region of cold temperatures and low relative humidities in the lower-right corner of Fig. 1, for which no data are provided, corresponds to the region in the lower-left corner of Fig. 3, for which the regression does not apply. The valid region from Fig. 3 is outlined with the dashed line in Fig. 2. The second factor is that the regression is highly nonlinear and is not based on physical principles. Thus, the Tw errors have multiple relative maxima and minima of order from 21.08 to 10.68C, with larger errors generally near the edges of the valid domain. Outside the valid region plotted in Figs. 2 and 3, Tw from the regression equation can quickly diverge from reality. 3. Regression method Gene-expression programming (GEP) was the method used to find a best-fit function to the data. GEP (Ferreira 2006) is an efficient variant of genetic programming, in which candidate functions evolve through various forms of mutation and compete by a computational natural selection until the fittest candidate (with the lowest veri- fication error) is found. Details of GEP for meteorolog- ical applications are presented by Bakhshaii and Stull (2009) and Roebber (2010). GEP can explore a wide range of the function space to find a best fit and can yield a nonlinear result [such as Eq. (1)] that would not necessarily have been obvious if the function fit had been attempted manually. The input data for this regression were only Tw, T, and RH% for standard sea level pressure of 101.325 kPa. Pressure was not used as one of the predictor variables, and hence the resulting regression does not vary with pressure. Also, because the regression equation is only a statistical fit and is not based on physical principles, one cannot assume that it would be valid at other pressures. If one wanted to apply Eq. (1) to other pressures, however, how much error can one expect? The error is indicated in Fig. 2 by the difference be- tween the thick black curve [from Eq. (1)] and the light-gray curves as found from traditional forward calculations. As an alternative, the reader can use GEP to create new regressions based on Tw, T, and RH% data for any other pressure of interest. Given the quasi-randomnature of evolution, it is unlikely that the resulting equations would look like Eq. (1). Namely, both the functional form and the numerical coefficients would likely be consider- ably different. FIG. 1. Psychrometric graph for standard sea level pressure of 101.325 kPa. The abscissa changes scale at the dark vertical lines. In the saturation calculation to determine relative humidity, Teten’s equation was used to account for variations in latent heat of vapor- ization (Stull 2011). 2268 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 50 Acknowledgments. I am grateful to Atoossa Bakhshaii who helped with the graphics. This research was sup- ported with a grant from the Canadian Natural Sciences and Engineering Research Council. REFERENCES Bakhshaii, A., and R. Stull, 2009: Deterministic ensemble forecasts using gene-expression programming. Wea. Forecasting, 24, 1431–1451. Bohren, C. F., and B. A. Albrecht, 1998: Atmospheric Thermody- namics. Oxford University Press, 402 pp. Ferreira, C., 2006: Gene Expression Programming: Mathematical Modeling by anArtificial Intelligence. 2nd ed. Springer, 478 pp. Roebber, P. J., 2010: Seeking consensus: A new approach. Mon. Wea. Rev., 138, 4402–4415. Stull, R., 2011: Meteorology for Scientists and Engineers. 3rd ed. Discount Textbooks, 924 pp. [Available online at http://www. eos.ubc.ca/courses/atsc201/MSE3.html.] FIG. 2. Isopleths ofTw (thick black curves) vs RH%andT, found fromEq. (1). The valid range is enclosed by a dashed line, and the valid pressure is 101.325 kPa. The gray curves associated with each Tw are for P 5 80 kPa (thinner lines) and P 5 60 kPa (thinnest lines, located farther away from each black line). These gray curves [not found from Eq. (1)] are useful for estimating the error if Eq. (1) is applied to pressures that are not equal to 101.325 kPa. FIG. 3. The Tw errors (8C), computed as Eq. (1) values minus the values fromFig. 1, forP5 101.325 kPa.Gray shading highlights near- zero errors. The empirical fit is not valid in the black-shaded region. NOVEMBER 2011 S TULL 2269


Citation Scheme:


Usage Statistics

Country Views Downloads
Canada 16 0
United States 10 6
India 9 1
Sweden 7 0
China 7 11
Spain 7 4
Turkey 4 1
Taiwan 3 1
Slovak Republic 3 0
Japan 2 0
United Kingdom 2 0
Singapore 2 0
Peru 2 0
City Views Downloads
Unknown 27 17
Tyreso Strand 6 0
Richmond 5 0
Hamilton 5 0
Surrey 4 0
Shenzhen 4 9
Madrid 4 4
Beijing 3 0
Redmond 3 1
Vancouver 2 0
Singapore 2 0
Tokyo 2 0
Mountain View 2 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}


Share to:


Related Items