American Physical Society Northwestern Section Annual Meeting (APS-NW) (11th : 2009)

Identifying, measuring, and teaching physics expertise Wieman, Carl May 15, 2009

Item Metadata

Download

Media
59371-Wieman_Carl_APS_NW_Section_11thAnnual Meeting_2009.ppt [ 646.52kB ]
59371-Session1Part1_APS_NW_Section_11th_Annual Meeting_2009.mp3 [ 105.51MB ]
Metadata
JSON: 59371-1.0041687.json
JSON-LD: 59371-1.0041687-ld.json
RDF/XML (Pretty): 59371-1.0041687-rdf.xml
RDF/JSON: 59371-1.0041687-rdf.json
Turtle: 59371-1.0041687-turtle.txt
N-Triples: 59371-1.0041687-rdf-ntriples.txt
Original Record: 59371-1.0041687-source.json
Full Text
59371-1.0041687-fulltext.txt
Citation
59371-1.0041687.ris

Full Text

de nt i f y i ng, me a s ur t e a c hi i ng, a ng phy nd si cs e x pe r t i se  Car l Wi eman  Cl i c k t o edi t Mas t er s ubt i t l e s t y l e  Colorado physics & chem education research group: W. Adams, K. Perkins, K. Gray, L. Koch, J. Barbera, S. McKagan, N. Finkelstein, S. Pollock, R. Lemaster, S. Reid, C. Malley, M. Dubson... $$ NSF, Hewlett)  Sci enc e educ at i on Model 1  ( I us ed f or many year s)  t hi nk har d, f i gur e out s ubj ec t  t el l s t udent s how t o under s t and it  gi v e pr obl em t o s ol v e Cl i c k t o edi t Mas t er s ubt i t l e s t y l e yes no  done  s t udent s l az y or poor l y pr epar ed  t el l agai n  Loude r  Model 1 ( f i gur e out and t el l ) St r engt hs & Weaknesses Wor ks wel l f or bas i c k nowl edge, pr epar ed br ai n:  bad, av oi d  good, seek  Fai l s f or mor e c ompl ex knowl edge, l i k e bec omi ng phy s i c i s t Mor e c ompl ex l ear ni ng- - c hangi ng br ai n, not j us t addi ng bi t s of k nowl edge.  Sc i enc e Educ at i on Model 2- l i k e do s c i ence.  prior research prior research  Goal s . What s t udent s wi l l be abl e t o do. ( s ol v e, des i gn, anal y z e, c apac i t y t o l ear n, . . . )  Cr eat e ac t i v i t i es and f eedbac k t ar get i ng des i r ed ex per t i s e.  Us e, and meas ur e r es ul t s . Cl i c k t o edi t Mas t er s ubt i t l e s t y l e  yes  modi f y  no why ?  done goal s unr eal i s t ic  wr ong t r eat ment  Model 2- - s c i ent i f i c appr oac h  What has been l ear ned? 1. I dent i f y i ng c omponent s of ex per t i s e, and how ex per t i s e dev el oped. 2. How t o meas ur e c omponent s of s c i enc e ex per t i se. ( and what t r adi t i onal ex ams hav e been mi s s i ng) 3. Component s of ef f ec t i v e t eac hi ng and l ear ni ng. Cl i c k t o edi t Mas t er s ubt i t l e s t y l e  Ex per t compet enc e hirstes or ear i ans ,c sh* c i ent i s t s , c hes s  pl ay er s , doct or s, . . .  Expert competence = •factual knowledge •Organizational framework O effective retrieval and application  or ?  pat t er ns , associ at i ons, s c i ent i f i c concept s  Ability to monitor own thinking and learning ("Do I understand this? How can I check?") •  New ways of t hi nk i ng- - r equi r e MANY hour s of i nt ense pr act i ce wi t h gui danc e/ r ef l ec t i on. Change br ai n “ wi r i ng”  Measur i ng how wel l ex per t t hi nk i ng i s dev el oped. * Cambr i dge Handbook on Ex per t i se and Exper t  Meas ur i ng c onc ept ual mas t er y For ce Conc ept I nv ent or y - bas i c c onc ept s of f or ce and mot i on 1st semest er phy s i c s •  Ask at st ar t and end of s emes t er - What % l ear ned? ( 100’ s of c our s es )  Average learned/course 16 traditional Lecture courses  i mpr oved met hods  Fraction of unknown basic concepts learned On aver age l ear n <30% of c onc ept s di d not al r eady know. Lect ur er qual i t y , c l as s s i z e, i ns t i t ut i on, . . . doesn' t mat t er ! Si mi l ar dat a f or c onc ept ual l ear ni ng i n ot her cour ses. R. Hake, ”…A six-thousand-student survey…” AJP 66, 64-74 (‘98).  Physicists also have unique “belief” systems  Novice  Physicist  Content: isolated pieces of information to be memorized.  Content: coherent structure of concepts.  Handed down by an authority. Unrelated to world.  Describes nature, established by experiment.  Problem solving: pattern matching to memorized recipes.  Prob. Solving: Systematic conceptbased strategies. Widely applicable.  * adapt ed f r om D.  Measuring student beliefs about science  Expert  Novice  Sur vey i ns t r ument s - MPEX- - 1st y r phy s i c s , CLASS- - phy s i c s , c hem, bi o t est s ~40 statements, strongly agree to strongly disagree--  Understanding physics basically means being able to recall something you've read or been shown. I do not expect physics equations to help my understanding of the ideas; they are just for doing calculations. pr e & post % shi f t ?  5- 10%  i nt r o physi cs  mor e novi ce  ref.s Redish et al, CU work--Adams, Perkins, MD, NF, SP, CW I nt r o Chemi s t r y and bi ol ogy j us t as bad! * adapt ed f r om D.  Test dev el opment pr oc es s 1. 2. 2 mi  ( ~ 6 mont hs pos t - doc )  I nt er v i ew f ac ul t y - - es t abl i s h l ear ni ng goal s. I nt er v i ew s t udent s - - under s t and t hi nk i ng on t opi c pat t er ns emer ge wher e nonex per t t hi nk i ng & t r adi t i onal exams ssi ng.  Way knowl edge i n s ubj ec t i s or gani z ed and appl i ed = “ Concept ual mas t er y ” •W ay exper t s appr oac h l ear ni ng and pr obl em s ol vi ng •  Cr eat e t es t s , v al i dat e and r ef i ne wi t h i nt er vi ews and st at i st i c al anal y s i s  Val i dat ed Conc ept I nv ent or i es f ol l owi ng t hi s pr ocess FCI and FMCE ( i nt r o mec hani c s ) BEMA ( i nt r o el ec t r i c i t y and magnet i s m) QMCI Quant um mec hani c s c onc ept i nv ent or y ( i nt r o quant um) 3r d year quant um t es t i n dev el opment CUSE ( 3r d y ear el ec t r i c i t y ) Concept i nv ent or y t es t s under dev el opment or i n ear l y us e i n geol ogy , c hem, bi ol ogy , phy s i ol ogy, . . .  “ At t i t udi nal ” s ur v ey s f or Phy s i c s , Chemi s t r y , Bi ol ogy, Ear t h Sci enc es  Model 2- - s c i ent i f i c appr oac h  What has been l ear ned? 1. I dent i f y i ng c omponent s of ex per t i s e, and how ex per t i s e dev el oped. 2. How t o meas ur e c omponent s of s c i enc e ex per t i se. ( and what t r adi t i onal ex ams hav e been mi s s i ng) ( 3. Component s of ef f ect i ve t eachi ng and l ear ni ng. Cl i c k t o edi t Mas t er s ubt i t l e s t y l e  Component s of ef f ec t i v e t eachi ng/ l ear ni ng appl y t o al l l ev el s , al l s et t i ngs ( i nc l udi ng conf er ence t al ks! ) 1. Reduce unnec es s ar y demands on wor k i ng memor y  2. Expl i c i t aut hent i c model i ng and pr ac t i c e of exper t t hi nki ng. Ex t ended & s t r enuous ( br ai n l i k e muscl e) 3. Mot i vat i on 4. Connec t wi t h and bui l d on pr i or t hi nk i ng  Li mi t s on wor ki ng memor y- - bes t es t abl i s hed, most i gnor ed r esul t f r om c ogni t i v e s c i enc e  Wor k i ng memor y capaci t y VERY LI MI TED! ( r emember & pr ocess <7 di s t i nc t new i t ems)  MUCH l ess t han i n t ypi cal sci ence l ect ur e < f r ac t i on r et ai ned t i ny  Mr Ander son, May I be ex c us ed? My br ai n i s f ul l .  Reduci ng unnec es s ar y demands on wor k i ng memor y i mpr oves l ear ni ng.  jargon, use figures, analogies, avoid digressions  Feat ur es of ef f ec t i v e ac t i v i t i es f or l ear ni ng. 1. Reduce unnec es s ar y demands on wor k i ng memor y  2. Expl i c i t aut hent i c model i ng and pr ac t i c e of exper t t hi nki ng. Ex t ended & s t r enuous ( br ai n l i k e muscl e)  3. Mot i vat i on 4. Connec t wi t h and bui l d on pr i or t hi nki ng  3. Mot i v at i on- - es s ent i al ( compl ex- depends on pr ev i ous exper i ences , . . . )  a. Rel evant / us ef ul / i nt er es t i ng t o l ear ner ( meani ngf ul cont ext - - connect t o what t hey know and val ue) Pr obl ems wher e v al ue of s ol ut i on obv i ous .  b. Sense t hat c an mas t er s ubj ec t and how t o mast er  c. Sense of per s onal c ont r ol / c hoi c e  Ef f ect i v e ac t i v i t i es f or l ear ni ng. 1. Reduce unnec es s ar y demands on wor k i ng memor y  2. Expl i c i t aut hent i c pr ac t i c e of ex per t t hi nki ng. Ext ended & st r enuous ( br ai n l i k e mus c l e) 3. Mot i vat i on 4. Connec t wi t h and bui l d on pr i or t hi nk i ng  F=ma  l i st eni ng t o l ec t ur es not t he r equi r ed “ s t r enuous ment al ef f or t ”  Pr ac t i c i ng ex per t - l i k e t hi nk i ng- Chal l engi ng but doabl e t asks/ quest i ons  Expl i ci t f oc us on ex per t - l i k e t hi nk i ng • conc ept s and ment al model s • r ec ogni z i ng r el ev ant & i r r el ev ant i nf or mat i on • sel f - c hec k i ng, s ens e mak i ng, & r ef l ec t i on Pr ovi de ef f ec t i v e f eedbac k ( t i mel y and s pec i f i c) “ c ogni t i v e c oac h”  Exampl e f r om a cl ass- - pr act i ci ng exper t t hi nki ng wi t h ef f ect i ve gui dance/ f eedback 1. Assi gnment - - Read c hapt er on el ec t r i c c ur r ent . Lear n basi c f act s and t er mi nol ogy . Shor t qui z t o c hec k / r ewar d. 2. Cl ass bui l t ar ound s er i es of ques t i ons .  2  3  (%)  1  When s wi t c h i s c l os ed, bul b 2 wi l l a. s t ay s ame br i ght nes s , b. get br i ght er c . get di mmer , d. go out .  A  B  C  D  3. I ndi vi dual ans wer wi t h c l i c k er ( account abi l i t y , pr i med t o l ear n)  4. Di scuss wi t h “ c ons ens us gr oup” , r ev ot e. ( pr of l i st en i n! ) 5. Show r es pons es . El i c i t s t udent r eas oni ng. Do “ exper i ment . ” - - s i mul at i on.  E  Pr ac t i c i ng ex per t - l i k e t hi nk i ng- Chal l engi ng but doabl e t asks/ quest i ons  Expl i ci t f oc us on ex per t - l i k e t hi nk i ng • conc ept s and ment al model s • r ec ogni z i ng r el ev ant & i r r el ev ant i nf or mat i on • sel f - c hec k i ng, s ens e mak i ng, & r ef l ec t i on Pr ovi de ef f ec t i v e f eedbac k ( t i mel y and s pec i f i c) “ c ogni t i v e c oac h”  Onl y a s t ar t ! Fol l ow up wi t h homewor k pr obl ems t o do muc h mor e of t he s ame!  Some Data: Model 1 ( t el l i ng) t r adi t i onal l ec t ur e met hod  •  Ret ent i on of i nf or mat i on f r om l ec t ur e 10% af t er 15 mi nut es  •  >90 % af t er 2 days  Fr act i on of c onc ept s mas t er ed i n c our s e 15- 25%  •  Model 2 sci ent i f i c t eachi ng  > 50- 70% wi t h r et ent i on  Bel i ef s about s c i enc e- - what i t i s , how t o l ear n,  si gni f i cant l y l ess ( 5- 10%) l i ke sci ent i st  mor e l i ke sci ent i st  Summar y: Sci ent i f i c appr oac h t o phy s i c s educ at i on. Under st and and t eac h phy s i c s ex per t i s e.  Good Ref s . : NAS Pr ess “ How peopl e l ear n” Redi sh, “ Teac hi ng Phy s i c s ” ( Phy s . Ed. Res . ) Wi eman, Change Magaz i ne- Oc t . 07 at www. c ar negi ef oundat i on. or g/ c hange/  CLASS bel i ef sur vey:  CLASS. col or ado. edu  phet si mul at i ons : phet . c ol or ado. edu cwsei . ubc . c a- - r es our c es , Gui de t o ef f ec t i ve use of cl i cker s  n  Not  c l i c k er s * aut omat i c al- l y hel pf ul - gi v e ac c ount abi l i t y , anony mi t y , f as t r esponse  Used/ per c ei v ed as ex pens i v e at t endanc e and t est i ng devi ce l i t t l e benef i t , s t udent r es ent ment .  Used/ per cei v ed t o enhanc e engagement , c ommuni cat i on, and l ear ni ng e t r ans f or mat i v e  chal l engi ng ques t i ons - - c onc ept s •st udent - st udent di s c us s i on ( “ peer i ns t r uc t i on” ) & r esponses ( l ear ni ng and f eedbac k ) •f ol l ow up i ns t r uc t or di s c us s i on- t i mel y s pec i f i c f eedback •m i ni mal but nonz er o gr ade i mpac t •  * An i ns t r uc t or ' s gui de t o t he ef f ec t i v e use of per sonal r es pons e s y s t ems ( " c l i c k er s " ) i n t eac hi ng- -  I mpl i cat i ons f or i ns t r uc t i on  Student beliefs about science and science problem solving important! • •  Bel i ef s im cont ent l ear ni ng Bel i ef s - - power f ul f i l t er r et ent i on  choi c e of maj or &  • Teachi ng pr act i ces  st udent s’ bel i ef s t y pi c al s i gni f i cant decl i ne ( phys and  Avoi d dec l i ne i f ex pl i c i t l y addr es s bel i ef s.  Why i s t hi s wor t h l ear ni ng? How does i t c onnec t t o r eal wor l d? How connec t s t o t hi ngs s t udent k nows / mak es sense?  UBC CW Sc i enc e Educ at i on I ni t i at i v e and U.  Col . SEI  f r om “ bl oodl et t i ng t o ant i bi ot i c s ” i n s c i enc e educat i on Changi ng educ at i onal c ul t ur e i n maj or r es ear ch uni ver si t y sci ence depar t ment s necessar y f i r s t s t ep f or s c i enc e educ at i on over al l  •  Depar t ment al l ev el  sci ent i f i c appr oach t o t eachi ng, al l under gr ad cour ses = l ear ni ng goal s, measur es, t est ed best pr act i ces Di ssemi nat i on and dupl i cat i on. Al l mat er i al s , as s es s ment t ool s , et c t o be avai l abl e on web  Data 2. Conceptual understanding in traditional course  el ec t r i c i t y  1  Er i c Maz ur ( Har v ar d Uni v . ) End of cour s e. 70% can c al c ul at e c ur r ent s and vol t ages i n t hi s c i r c ui t .  onl y 40% c or r ec t l y pr edi c t c hange i n br i ght nes s of bul bs when s wi t c h cl osed!  8V A 12 V  2  1  B  El ect r i ci t y & Magnet i sm concept s 6 0  Cons umer behav i or c l as s  t est of mas t er y ( s c or e)  1. 5 yr s l at er 4 0  2 0  r l iatt lere , s tbel Cl i c k t o edi t ~1/ Mas2t er¼ syubt y l eow 0. 2 af t er 2 yr s  1. 0. 1. 0 5 5 t i me f r om begi nni ng of c our s e ( yr s)  2. 0  Hi ghl y I nt er ac t i v e educ at i onal s i mul at i ons - phet . col or ado. edu ~80 s i mul at i ons phy s i cs & chem FREE, Run t hr ough r egul ar br ows er Bui l d- i n & t es t t hat dev el op ex per t - l i k e t hi nki ng and l ear ni ng ( & f un)  bal l oons and s weat er  l aser  Char ac t er i s t i c s of exper t t ut or s * ( Whi c h c an be dupl i c at ed i n c l as s r oom?) Mot i vat i on maj or f ocus ( c ont ex t , pi que c ur i osi t y, . . . ) Never pr ai s e per s on- - l i mi t ed pr ai s e, al l f or pr ocess Under st ands what s t udent s do and do not k now. U t i mel y, s pec i f i c , i nt er ac t i v e f eedbac k Al most nev er t el l s t udent s any t hi ng- - pos e quest i ons. Most l y st udent s ans wer i ng ques t i ons and ex pl ai ni ng. Aski ng r i ght ques t i ons s o s t udent s c hal l enged but can f i gur e out . Syst emat i c pr ogr es s i on. Let st udent s mak e mi s t ak es , t hen di s c ov er and f i x. Requi r e r ef l ec t i on: how s ol v ed, ex pl ai n, gener al i ze, et c.  * Lepper and Wool v er t on pg 135 i n I mpr ovi ng Academi c  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.59371.1-0041687/manifest

Comment

Related Items