Canadian Summer School on Quantum Information (CSSQI) (10th : 2010)

Simulating quantum computers with probabilistic methods Van den Nest, Maarten

Description

The study of quantum computations that can be simulated efficiently classically is of interest for numerous reasons. From a fundamental point of view, such an investigation sheds light on the intrinsic computational power harnessed in quantum mechanics as compared to classical physics. More practically, understanding which quantum computations do not offer any speed-up over classical computation provides insights in where (not) to look for novel quantum algorithmic primitives. In this talk we discuss novel classical simulation methods that are centered on probabilistic methods ('weak simulation'). We show how these techniques outperform existing methods that rely on the exact computation of measurement probabilities ('strong simulation'). Using weak simulation methods, several new classes of simulatable quantum circuits are generated. For example, we show that various concatenations of matchgate, Toffoli, Clifford, bounded-depth, Fourier transform an! d other circuits are classically simulatable. Finally, we focus on famous quantum algorithms and investigate the origin of their computational power, or their lack thereof.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International