- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- Canadian Summer School on Quantum Information (CSSQI) (10th : 2010) /
- Adiabatic Quantum Algorithms for the NP-Complete MIS,...
Open Collections
Canadian Summer School on Quantum Information (CSSQI) (10th : 2010)
Adiabatic Quantum Algorithms for the NP-Complete MIS, Exact Cover and 3SAT Problems Choi, Vicky
Description
The problem Hamiltonian of the adiabatic quantum algorithm for the maximum-weight independent set problem (MIS) that is based on the reduction to the Ising problem (as described in [Choi08]) has flexible parameters. We show that by choosing the parameters appropriately in the problem Hamiltonian (without changing the problem to be solved) for MIS on CK graphs, we can prevent the first order quantum phase transition and significantly change the minimum spectral gap. We raise the basic question about what the appropriate formulation of adiabatic running time should be. We also describe adiabatic quantum algorithms for Exact Cover and 3SAT in which the problem Hamiltonians are based on the reduction to MIS. We point out that the argument in Altshuler et al.(arXiv:0908.2782 [quant-ph]) that their adiabatic quantum algorithm failed with high probability for randomly generated instances of Exact Cover does not carry over to this new algorithm.
Item Metadata
Title |
Adiabatic Quantum Algorithms for the NP-Complete MIS, Exact Cover and 3SAT Problems
|
Creator | |
Contributor | |
Date Issued |
2010-07-23
|
Description |
The problem Hamiltonian of the adiabatic quantum algorithm for the maximum-weight independent set problem (MIS) that is based on the reduction to the Ising problem (as described in [Choi08]) has flexible parameters. We show that by choosing the parameters appropriately in the problem Hamiltonian (without changing the problem to be solved) for MIS on CK graphs, we can prevent the first order quantum phase transition and significantly change the minimum spectral gap. We raise the basic question about what the appropriate formulation of adiabatic running time should be. We also describe adiabatic quantum algorithms for Exact Cover and 3SAT in which the problem Hamiltonians are based on the reduction to MIS. We point out that the argument in Altshuler et al.(arXiv:0908.2782 [quant-ph]) that their adiabatic quantum algorithm failed with high probability for randomly generated instances of Exact Cover does not carry over to this new algorithm.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-11-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0103157
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International