- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- Canadian Summer School on Quantum Information (CSSQI) (10th : 2010) /
- Adiabatic Quantum Optimization and Anderson Localization
Open Collections
Canadian Summer School on Quantum Information (CSSQI) (10th : 2010)
Adiabatic Quantum Optimization and Anderson Localization Altshuler, Boris
Description
Understanding NP-complete problems is a central topic in computer science. This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian. We will discuss the statistics of the gaps using the borrowed from the theory of quantum disordered systems. It turns out that due to a phenomenon similar to Anderson localization exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. We will present the quantitative analysis of the small spectral gaps and discuss possible consequence of this phenomenon on the adiabatic optimization paradigm.
Item Metadata
Title |
Adiabatic Quantum Optimization and Anderson Localization
|
Creator | |
Contributor | |
Date Issued |
2010-07-23
|
Description |
Understanding NP-complete problems is a central topic in computer science. This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian. We will discuss the statistics of the gaps using the borrowed from the theory of quantum disordered systems. It turns out that due to a phenomenon similar to Anderson localization exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. We will present the quantitative analysis of the small spectral gaps and discuss possible consequence of this phenomenon on the adiabatic optimization paradigm.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-11-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0103155
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International