- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Undergraduate Research /
- Quantum Monte Carlo for Quantum-dot Cellular Automata
Open Collections
UBC Undergraduate Research
Quantum Monte Carlo for Quantum-dot Cellular Automata Savard, Ezra
Abstract
A fast solver that can find ground state solutions while providing information about the occupation of states in quantum annealing (QA) systems is very desirable. The path-integral Quantum Monte Carlo (QMC) as described by Martonak et al. is an interesting candidate due to having been modeled on physical quantum annealing [1]. While this implementation of QMC behaved similarly, it did not achieve the same levels of performance as reported by Martonak or Denchev [1][2]. Some interesting results were obtained simulating the final distributions of physical quantum annealing on quantum-dot cellular automata (QCA) circuits, but more work is needed on this front before it could become useful.
Item Metadata
| Title |
Quantum Monte Carlo for Quantum-dot Cellular Automata
|
| Creator | |
| Date Issued |
2016-04-24
|
| Description |
A fast solver that can find ground state solutions while providing information about the occupation of states in quantum annealing (QA) systems is very desirable. The path-integral Quantum Monte Carlo (QMC) as described by Martonak et al. is an interesting candidate due to having been modeled on physical quantum annealing [1]. While this implementation of QMC behaved similarly, it did not achieve the same levels of performance as reported by Martonak or Denchev [1][2]. Some interesting results were obtained simulating the final distributions of physical quantum annealing on quantum-dot cellular automata (QCA) circuits, but more work is needed on this front before it could become useful.
|
| Genre | |
| Type | |
| Language |
eng
|
| Series | |
| Date Available |
2017-02-01
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0304646
|
| URI | |
| Affiliation | |
| Campus | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Undergraduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International