- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Development of a High-Throughput Urosepsis Mouse Model
Open Collections
UBC Faculty Research and Publications
Development of a High-Throughput Urosepsis Mouse Model Herout, Roman; Vappala, Sreeparna; Hanstock, Sarah; Moskalev, Igor; Lange, Dirk (Microbiologist); Chew, Ben; Kizhakkedathu, Jayachandran N.
Abstract
Murine sepsis models are typically polymicrobial, and are associated with high mortality. We aimed to develop a high-throughput murine model that mimics a slow-paced, monomicrobial sepsis originating from the urinary tract. A total of 23 male C57Bl/6 mice underwent percutaneous insertion of a 4 mm catheter into the bladder using an ultrasound-guided method, previously developed by our group. The following day, Proteus mirabilis (PM) was introduced percutaneously in the bladder in three groups: g1—50 µL 1 × 10⁸ CFU/mL solution (n = 10); g2—50 µL 1 × 10⁷ CFU/mL solution (n = 10); and g3 (sham mice)—50 µL sterile saline (n = 3). On day 4, mice were sacrificed. The number of planktonic bacteria in urine, adherent to catheters, and adherent to/invaded into the bladder and spleen was assessed. Cell-free DNA, D-dimer, thrombin–antithrombin complex (TAT), and 32 pro-/anti-inflammatory cytokines/chemokines were quantified in the blood. All mice survived the 4 day postinterventional period. Mean weight loss was 11% in g1, 9% in g2, and 3% in the control mice. Mean urine CFU counts were highest in group 1. All catheters showed high catheter-adhered bacterial counts. Of the infected mice, 17/20 had CFU counts in the splenic tissue, indicating septicemia. Plasma levels of cell-free DNA, D-dimer, and the proinflammatory cytokines IFN-γ, IL-6, IP-10, MIG, and G-CSF were significantly elevated in infected mice versus controls. We present a reproducible, monomicrobial murine model of urosepsis that does not lead to rapid deterioration and death, and is useful for studying prolonged urosepsis.
Item Metadata
| Title |
Development of a High-Throughput Urosepsis Mouse Model
|
| Creator | |
| Contributor | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2023-04-15
|
| Description |
Murine sepsis models are typically polymicrobial, and are associated with high mortality. We aimed to develop a high-throughput murine model that mimics a slow-paced, monomicrobial sepsis originating from the urinary tract. A total of 23 male C57Bl/6 mice underwent percutaneous insertion of a 4 mm catheter into the bladder using an ultrasound-guided method, previously developed by our group. The following day, Proteus mirabilis (PM) was introduced percutaneously in the bladder in three groups: g1—50 µL 1 × 10⁸ CFU/mL solution (n = 10); g2—50 µL 1 × 10⁷ CFU/mL solution (n = 10); and g3 (sham mice)—50 µL sterile saline (n = 3). On day 4, mice were sacrificed. The number of planktonic bacteria in urine, adherent to catheters, and adherent to/invaded into the bladder and spleen was assessed. Cell-free DNA, D-dimer, thrombin–antithrombin complex (TAT), and 32 pro-/anti-inflammatory cytokines/chemokines were quantified in the blood. All mice survived the 4 day postinterventional period. Mean weight loss was 11% in g1, 9% in g2, and 3% in the control mice. Mean urine CFU counts were highest in group 1. All catheters showed high catheter-adhered bacterial counts. Of the infected mice, 17/20 had CFU counts in the splenic tissue, indicating septicemia. Plasma levels of cell-free DNA, D-dimer, and the proinflammatory cytokines IFN-γ, IL-6, IP-10, MIG, and G-CSF were significantly elevated in infected mice versus controls. We present a reproducible, monomicrobial murine model of urosepsis that does not lead to rapid deterioration and death, and is useful for studying prolonged urosepsis.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2026-01-21
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0451337
|
| URI | |
| Affiliation | |
| Citation |
Pathogens 12 (4): 604 (2023)
|
| Publisher DOI |
10.3390/pathogens12040604
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty; Researcher
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0