- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Oral Microbiome in Oral Cancer Research from Sampling...
Open Collections
UBC Faculty Research and Publications
Oral Microbiome in Oral Cancer Research from Sampling to Analysis : Strategies, Challenges, and Recommendations Liu, Kelly Yi Ping; Huang, Andrew; Pepin, Catherine; Shen, Ya; Tsang, Phoebe; Poh, Catherine F.
Abstract
The oral microbiome has become an emerging focus of oral cancer research, with growing evidence linking microbial communities to disease development, progression, and prognosis. However, there is limited consensus on optimal sampling strategies, storage methods, and analytical approaches. This narrative review critically evaluates current strategies for sampling, preservation, DNA extraction, sequencing, and data analysis in oral microbiome research related to oral cancer. We compared commonly used sampling methods, including saliva, oral rinse, swab, brush, and tissue biopsy, and reviewed preservation conditions, extraction kits, sequencing platforms, and analytical pipelines reported in recent oral microbiome studies. Sampling approaches affect microbial yield and site specificity. Saliva and oral rinse samples are convenient and noninvasive but may dilute lesion-specific microbial signals, whereas lesion-directed swabbing or brushing yields greater microbial biomass and biological relevance. Preservation media and storage temperature significantly influence microbial stability, and DNA extraction methods vary in their ability to remove host DNA. Although 16S rRNA gene sequencing remains the most common approach, shotgun metagenomics offers higher resolution and function insights but is still limited by clinical applicability. Differences in data pre- and post-processing models and normalization strategies further contribute to inconsistent microbial profiles. Given that oral mucosal sites differ markedly in structure and microenvironment, careful consideration is required to ensure that collected samples accurately represent the biological question being addressed. Methodological consistency across all workflow stages—from collection to analysis—is essential to generate reproducible, high-quality data and to enable reliable translation of oral microbiome research into clinical applications for cancer detection and risk assessment. Together, these insights provide a framework to guide future study design and support the development of clinically applicable microbiome-based biomarkers.
Item Metadata
| Title |
Oral Microbiome in Oral Cancer Research from Sampling to Analysis : Strategies, Challenges, and Recommendations
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-12-31
|
| Description |
The oral microbiome has become an emerging focus of oral cancer research, with growing evidence linking microbial communities to disease development, progression, and prognosis. However, there is limited consensus on optimal sampling strategies, storage methods, and analytical approaches. This narrative review critically evaluates current strategies for sampling, preservation, DNA extraction, sequencing, and data analysis in oral microbiome research related to oral cancer. We compared commonly used sampling methods, including saliva, oral rinse, swab, brush, and tissue biopsy, and reviewed preservation conditions, extraction kits, sequencing platforms, and analytical pipelines reported in recent oral microbiome studies. Sampling approaches affect microbial yield and site specificity. Saliva and oral rinse samples are convenient and noninvasive but may dilute lesion-specific microbial signals, whereas lesion-directed swabbing or brushing yields greater microbial biomass and biological relevance. Preservation media and storage temperature significantly influence microbial stability, and DNA extraction methods vary in their ability to remove host DNA. Although 16S rRNA gene sequencing remains the most common approach, shotgun metagenomics offers higher resolution and function insights but is still limited by clinical applicability. Differences in data pre- and post-processing models and normalization strategies further contribute to inconsistent microbial profiles. Given that oral mucosal sites differ markedly in structure and microenvironment, careful consideration is required to ensure that collected samples accurately represent the biological question being addressed. Methodological consistency across all workflow stages—from collection to analysis—is essential to generate reproducible, high-quality data and to enable reliable translation of oral microbiome research into clinical applications for cancer detection and risk assessment. Together, these insights provide a framework to guide future study design and support the development of clinically applicable microbiome-based biomarkers.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2026-01-09
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0451201
|
| URI | |
| Affiliation | |
| Citation |
Cancers 18 (1): 145 (2026)
|
| Publisher DOI |
10.3390/cancers18010145
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0