- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Electrophysiological Phenotyping of hiPSC-Derived Atrial...
Open Collections
UBC Faculty Research and Publications
Electrophysiological Phenotyping of hiPSC-Derived Atrial Cardiomyocytes Using Automated Patch-Clamp : A Platform for Studying Atrial Inherited Arrhythmias Jiménez-Sábado, Verónica; Babini, Hosna; Ruben, Peter C.; Accili, Eric A.; Claydon, Thomas W.; Hove-Madsen, Leif; Tibbits, Glen
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a robust platform for modelling inherited cardiac disorders. Comparative analysis of ion channel activity in patient-specific and isogenic control lines provides critical insights into the molecular mechanisms underlying channelopathies and arrhythmias. Atrial-specific hiPSC-CMs (hiPSC-aCMs) exhibit distinct electrophysiological properties governed by unique ion channel expression profiles, underscoring the need for optimized methodologies to record atrial ionic currents accurately. Here, we characterized the electrophysiological features of hiPSC-aCMs using the Nanion Patchliner automated patch-clamp system. An optimized cell dissociation protocol was developed to enhance cell integrity and seal formation, while tailored intra- and extracellular solutions were employed to isolate specific ionic currents. Using this approach, we reliably recorded major atrial currents, including the sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), ultrarapid component of the delayed rectifier current (IKur), small-conductance calcium-activated potassium current (ISK), and pacemaker funny current (If). The resulting current profiles were reproducible and consistent with those observed in native atrial cardiomyocytes. These findings establish the feasibility of the automated electrophysiological characterization of ion channels in hiPSC-aCMs. This platform enables more efficient investigation of pathogenic variants and facilitates the development of targeted therapeutics for atrial arrhythmias and related channelopathies.
Item Metadata
| Title |
Electrophysiological Phenotyping of hiPSC-Derived Atrial Cardiomyocytes Using Automated Patch-Clamp : A Platform for Studying Atrial Inherited Arrhythmias
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-12-06
|
| Description |
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a robust platform for modelling inherited cardiac disorders. Comparative analysis of ion channel activity in patient-specific and isogenic control lines provides critical insights into the molecular mechanisms underlying channelopathies and arrhythmias. Atrial-specific hiPSC-CMs (hiPSC-aCMs) exhibit distinct electrophysiological properties governed by unique ion channel expression profiles, underscoring the need for optimized methodologies to record atrial ionic currents accurately. Here, we characterized the electrophysiological features of hiPSC-aCMs using the Nanion Patchliner automated patch-clamp system. An optimized cell dissociation protocol was developed to enhance cell integrity and seal formation, while tailored intra- and extracellular solutions were employed to isolate specific ionic currents. Using this approach, we reliably recorded major atrial currents, including the sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), ultrarapid component of the delayed rectifier current (IKur), small-conductance calcium-activated potassium current (ISK), and pacemaker funny current (If). The resulting current profiles were reproducible and consistent with those observed in native atrial cardiomyocytes. These findings establish the feasibility of the automated electrophysiological characterization of ion channels in hiPSC-aCMs. This platform enables more efficient investigation of pathogenic variants and facilitates the development of targeted therapeutics for atrial arrhythmias and related channelopathies.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2026-01-09
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0451177
|
| URI | |
| Affiliation | |
| Citation |
Cells 14 (24): 1941 (2025)
|
| Publisher DOI |
10.3390/cells14241941
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0