- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Pineapple-Derived Nanocellulose for Nanocomposites...
Open Collections
UBC Faculty Research and Publications
Pineapple-Derived Nanocellulose for Nanocomposites : Extraction, Processing, and Properties Esquivel-Alfaro, Marianelly; Rojas-Carrillo, Oscar; Sulbarán-Rangel, Belkis; Rodríguez-Barquero, Lilliana; Palacios-Hinestroza, Hasbleidy; Rojas, Orlando J.
Abstract
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains.
Item Metadata
| Title |
Pineapple-Derived Nanocellulose for Nanocomposites : Extraction, Processing, and Properties
|
| Creator | |
| Contributor | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-12-01
|
| Description |
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2026-01-09
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0451173
|
| URI | |
| Affiliation | |
| Citation |
Journal of Composites Science 9 (12): 652 (2025)
|
| Publisher DOI |
10.3390/jcs9120652
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0