- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Functional Genetic Frontiers in Plant ABC Transporters...
Open Collections
UBC Faculty Research and Publications
Functional Genetic Frontiers in Plant ABC Transporters : Avenues Toward Cadmium Management Novaes Marques, Deyvid; Mason, M. Chase
Abstract
Cadmium (Cd) is a pervasive and highly toxic heavy metal that severely threatens environmental integrity, agricultural systems, plant metabolism, ecosystem health, and human food safety. Plants have evolved intricate detoxification mechanisms aimed at mitigating heavy metal toxicity, in which ATP-binding cassette (ABC) transporters play pivotal roles. This article contextualizes findings on the functional genetic manipulation of plant ABC transporters in Cd-exposed species, integrating evidence from model plants, crops, and transgenic systems. Key insights reveal how these transporters contribute to Cd distribution through multiple cellular and physiological pathways. We highlight the contribution of ABC transporters both in modulating Cd accumulation in plant tissues for food safety considerations and in regulating Cd-related parameters relevant to environmental cleanup and phytoremediation. Functional studies in different plant species demonstrate differential outcomes depending on transporter specificity and regulatory context. Cross-kingdom engineering further expands the biotechnological toolkit for Cd mitigation. Additionally, we performed a bibliometric analysis that underscores research trends linking ABC transporters with genetic manipulation strategies. The body of evidence highlights the perspective that precise modulation of ABC transporters—through strategies such as multi-gene engineering, tissue-specific expression, or fine-tuned regulatory approaches—offers a promising yet complex route to reconcile scientific and applied Cd management strategies.
Item Metadata
| Title |
Functional Genetic Frontiers in Plant ABC Transporters : Avenues Toward Cadmium Management
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-12-02
|
| Description |
Cadmium (Cd) is a pervasive and highly toxic heavy metal that severely threatens environmental integrity, agricultural systems, plant metabolism, ecosystem health, and human food safety. Plants have evolved intricate detoxification mechanisms aimed at mitigating heavy metal toxicity, in which ATP-binding cassette (ABC) transporters play pivotal roles. This article contextualizes findings on the functional genetic manipulation of plant ABC transporters in Cd-exposed species, integrating evidence from model plants, crops, and transgenic systems. Key insights reveal how these transporters contribute to Cd distribution through multiple cellular and physiological pathways. We highlight the contribution of ABC transporters both in modulating Cd accumulation in plant tissues for food safety considerations and in regulating Cd-related parameters relevant to environmental cleanup and phytoremediation. Functional studies in different plant species demonstrate differential outcomes depending on transporter specificity and regulatory context. Cross-kingdom engineering further expands the biotechnological toolkit for Cd mitigation. Additionally, we performed a bibliometric analysis that underscores research trends linking ABC transporters with genetic manipulation strategies. The body of evidence highlights the perspective that precise modulation of ABC transporters—through strategies such as multi-gene engineering, tissue-specific expression, or fine-tuned regulatory approaches—offers a promising yet complex route to reconcile scientific and applied Cd management strategies.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2026-01-09
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0451162
|
| URI | |
| Affiliation | |
| Citation |
International Journal of Molecular Sciences 26 (23): 11662 (2025)
|
| Publisher DOI |
10.3390/ijms262311662
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty; Researcher
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0