UBC Faculty Research and Publications

Seismic Vulnerability Assessment and Prioritization of Masonry Railway Tunnels : A Case Study Hosseini, Yaser; Karami Mohammadi, Reza; Yang, Tony T. Y.

Abstract

Assessing seismic vulnerability and prioritizing railway tunnels for seismic rehabilitation are critical components of railway infrastructure management, especially in seismically active regions. This study focuses on a railway network in Northwest Iran, consisting of 103 old masonry rock tunnels. The vulnerability of these tunnels is evaluated under 12 active faults as seismic sources. Fragility curves derived from the HAZUS methodology estimate the probability of various damage states under seismic intensities, including peak ground acceleration (PGA) and peak ground displacement (PGD). The expected values of the damage states are computed as the damage index (DI) to measure the severity of damage. A normalized prioritization index (NPI) is proposed, considering seismic vulnerability and life cycle damages in tunnel prioritizing. Finally, a detailed prioritization is provided in four classes. The results indicate that 10% of the tunnels are classified as priority, 33% as second priority, 40% as third priority, and 17% as fourth priority. This prioritization is necessary when there are budget limitations and it is not possible to retrofit all tunnels simultaneously. The main contribution of this study is the development of an integrated, data-driven framework for prioritizing the seismic rehabilitation of aging masonry railway tunnels, combining fragility-based vulnerability assessment with life-cycle damage considerations in a high-risk and data-limited region. The framework outlined in this study enables decision-making organizations to efficiently prioritize the tunnels based on vulnerability, which helps to increase seismic resilience.

Item Media