- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Life Cycle Assessment Sheds New Insights Toward Sustainable...
Open Collections
UBC Faculty Research and Publications
Life Cycle Assessment Sheds New Insights Toward Sustainable Management of Biodegradable Resin Blends Used in Packaging : A Case Study on PBAT Akbarian-Saravi, Niloofar; Larizadeh, Razieh; Gupta, Arvind; Shum, Daniel; Milani, Abbas S.
Abstract
Bioplastics are gaining attention as eco-friendly alternatives to conventional plastics, with Polybutylene Adipate Terephthalate (PBAT) emerging as a promising biodegradable substitute for polyethylene (PE) in food packaging. Commercial PBAT is often blended with other plastics or bio-based fillers to improve mechanical properties and reduce costs, though these additives can influence its environmental footprint. Therefore, this study quantifies the environmental impacts of producing PBAT resin blends reinforced with common inorganic fillers and compares end-of-life (EoL) performance against PE. While prior studies have largely assessed virgin PBAT or PBAT/Polylactic Acid (PLA) systems, systematic LCA of commercial-style PBAT blends with inorganic fillers and screening LCA level for comparisons of composting vs. landfill remain limited. The contributions of this study are to: (i) map gate-to-gate environmental hotspots for PBAT-blend conversion, (ii) provide a screening gate-to-grave comparison of PBAT composting vs. PE landfill using ReCiPe 2016 and IPCC GWP100 methods, and (iii) discuss theoretical implications for material substitution in the context of EoL strategies. The results indicated that producing 1 kg of PBAT blend generated a single score impact of 921 mPt with Human Health and Resource categories contributing similarly, and a GWP of 8.64 kg CO2-eq, dominated by mixing and drying processes. EoL screening showed PBAT composting offered clear advantages over landfilling PE, yielding −53.9 mPt and 11.35 kg CO2-eq savings, effectively offsetting production emissions. In contrast, landfilling PE resulted in 288.8 mPt and 2.2 kg CO2-eq emissions. Sensitivity analysis further demonstrated that a 30% reduction in electricity use could decrease impacts by up to 10%, underscoring the importance of energy efficiency improvements and renewable energy adoption for sustainable PBAT development.
Item Metadata
| Title |
Life Cycle Assessment Sheds New Insights Toward Sustainable Management of Biodegradable Resin Blends Used in Packaging : A Case Study on PBAT
|
| Creator | |
| Contributor | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-09-25
|
| Description |
Bioplastics are gaining attention as eco-friendly alternatives to conventional plastics, with Polybutylene Adipate Terephthalate (PBAT) emerging as a promising biodegradable substitute for polyethylene (PE) in food packaging. Commercial PBAT is often blended with other plastics or bio-based fillers to improve mechanical properties and reduce costs, though these additives can influence its environmental footprint. Therefore, this study quantifies the environmental impacts of producing PBAT resin blends reinforced with common inorganic fillers and compares end-of-life (EoL) performance against PE. While prior studies have largely assessed virgin PBAT or PBAT/Polylactic Acid (PLA) systems, systematic LCA of commercial-style PBAT blends with inorganic fillers and screening LCA level for comparisons of composting vs. landfill remain limited. The contributions of this study are to: (i) map gate-to-gate environmental hotspots for PBAT-blend conversion, (ii) provide a screening gate-to-grave comparison of PBAT composting vs. PE landfill using ReCiPe 2016 and IPCC GWP100 methods, and (iii) discuss theoretical implications for material substitution in the context of EoL strategies. The results indicated that producing 1 kg of PBAT blend generated a single score impact of 921 mPt with Human Health and Resource categories contributing similarly, and a GWP of 8.64 kg CO2-eq, dominated by mixing and drying processes. EoL screening showed PBAT composting offered clear advantages over landfilling PE, yielding −53.9 mPt and 11.35 kg CO2-eq savings, effectively offsetting production emissions. In contrast, landfilling PE resulted in 288.8 mPt and 2.2 kg CO2-eq emissions. Sensitivity analysis further demonstrated that a 30% reduction in electricity use could decrease impacts by up to 10%, underscoring the importance of energy efficiency improvements and renewable energy adoption for sustainable PBAT development.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-10-22
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0450528
|
| URI | |
| Affiliation | |
| Citation |
Sustainability 17 (19): 8645 (2025)
|
| Publisher DOI |
10.3390/su17198645
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0