- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- ConvNet-Generated Adversarial Perturbations for Evaluating...
Open Collections
UBC Faculty Research and Publications
ConvNet-Generated Adversarial Perturbations for Evaluating 3D Object Detection Robustness Abraha, Temesgen Mikael; Graham-Knight, John Brandon; Lasserre, P.; Najjaran, Homayoun; Lucet, Yves
Abstract
This paper presents a novel adversarial Convolutional Neural Network (ConvNet) method for generating adversarial perturbations in 3D point clouds, enabling gradient-free robustness evaluation of object detection systems at inference time. Unlike existing iterative gradient methods, our approach embeds the ConvNet directly into the detection pipeline at the voxel feature level. The ConvNet is trained to maximize detection loss while maintaining perturbations within sensor error bounds through multi-component loss constraints (intensity, bias, and imbalance terms). Evaluation on a Sparsely Embedded Convolutional Detection (SECOND) detector with the KITTI dataset shows 8% overall mean Average Precision (mAP) degradation, while CenterPoint on NuScenes exhibits 24% weighted mAP reduction across 10 object classes. Analysis reveals an inverse relationship between object size and adversarial vulnerability: smaller objects (pedestrians: 13%, cyclists: 14%) show higher vulnerability compared to larger vehicles (cars: 0.2%) on KITTI, with similar patterns on NuScenes, where barriers (68%) and pedestrians (32%) are most affected. Despite perturbations remaining within typical sensor error margins (mean L2 norm of 0.09% for KITTI, 0.05% for NuScenes, corresponding to 0.9–2.6 cm at typical urban distances), substantial detection failures occur. The key novelty is training a ConvNet to learn effective adversarial perturbations during a one-time training phase and then using the trained network for gradient-free robustness evaluation during inference, requiring only a forward pass through the ConvNet (1.2–2.0 ms overhead) instead of iterative gradient computation, making continuous vulnerability monitoring practical for autonomous driving safety assessment.
Item Metadata
| Title |
ConvNet-Generated Adversarial Perturbations for Evaluating 3D Object Detection Robustness
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-10-01
|
| Description |
This paper presents a novel adversarial Convolutional Neural Network (ConvNet) method for generating adversarial perturbations in 3D point clouds, enabling gradient-free robustness evaluation of object detection systems at inference time. Unlike existing iterative gradient methods, our approach embeds the ConvNet directly into the detection pipeline at the voxel feature level. The ConvNet is trained to maximize detection loss while maintaining perturbations within sensor error bounds through multi-component loss constraints (intensity, bias, and imbalance terms). Evaluation on a Sparsely Embedded Convolutional Detection (SECOND) detector with the KITTI dataset shows 8% overall mean Average Precision (mAP) degradation, while CenterPoint on NuScenes exhibits 24% weighted mAP reduction across 10 object classes. Analysis reveals an inverse relationship between object size and adversarial vulnerability: smaller objects (pedestrians: 13%, cyclists: 14%) show higher vulnerability compared to larger vehicles (cars: 0.2%) on KITTI, with similar patterns on NuScenes, where barriers (68%) and pedestrians (32%) are most affected. Despite perturbations remaining within typical sensor error margins (mean L2 norm of 0.09% for KITTI, 0.05% for NuScenes, corresponding to 0.9–2.6 cm at typical urban distances), substantial detection failures occur. The key novelty is training a ConvNet to learn effective adversarial perturbations during a one-time training phase and then using the trained network for gradient-free robustness evaluation during inference, requiring only a forward pass through the ConvNet (1.2–2.0 ms overhead) instead of iterative gradient computation, making continuous vulnerability monitoring practical for autonomous driving safety assessment.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-10-15
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0450447
|
| URI | |
| Affiliation | |
| Citation |
Sensors 25 (19): 6026 (2025)
|
| Publisher DOI |
10.3390/s25196026
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0