- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- RIPK2 Inhibition Blocks NOD2-Mediated IL-1β Production...
Open Collections
UBC Faculty Research and Publications
RIPK2 Inhibition Blocks NOD2-Mediated IL-1β Production by Macrophages In Vitro but Exacerbates Crohn’s Disease-like Ileitis in SHIP–/– Mice Pang, Yvonne C. F.; Ma, Wei Jen; Menzies, Susan C.; Sly, Laura M.
Abstract
Crohn’s disease is a chronic, idiopathic inflammatory bowel disease characterized by patchy, transmural inflammation that is influenced by genetic, environmental, and microbial factors. The NOD2 pathway mediates NFκB activation and pro-inflammatory cytokine production. In the SHIP–/– murine model of Crohn’s disease-like ileitis, macrophage-derived IL-1β production drives intestinal inflammation. SHIP reduces NOD2 signaling by preventing downstream interaction between RIPK2 and XIAP, leading us to hypothesize that blocking RIPK2 in SHIP–/– mice would ameliorate intestinal inflammation. We examined the effects of RIPK2 inhibition on pro-inflammatory cytokine production in SHIP+/+ and SHIP–/– macrophages and in mice, using the RIPK2 inhibitor, GSK2983559. We found that GSK2983559 blocked RIPK2 activation in SHIP+/+ and SHIP–/– bone marrow-derived macrophages (BMDMs), and reduced Il1b transcription and IL-1β production in (MDP+LPS)-stimulated SHIP–/– BMDMs. Despite the reduction of IL-1β production in BMDMs, in vivo treatment with GSK2983559 worsened intestinal inflammation and increased IL-1β concentrations in the ileal tissues of SHIP–/– mice. GSK2983559 only modestly reduced IL-1β in (MDP+LPS)-stimulated SHIP–/– peritoneal macrophages, and did not suppress pro-inflammatory cytokine production in response to TLR ligands in peritoneal macrophages from either SHIP+/+ or SHIP–/– mice. Taken together, our data suggest that although RIPK2 inhibition can block IL-1β production by (MDP+LPS)-stimulated macrophages in vitro, it is not an effective anti-inflammatory strategy in vivo, highlighting the limitations of targeting RIPK2 to treat intestinal inflammation in the context of SHIP deficiency.
Item Metadata
| Title |
RIPK2 Inhibition Blocks NOD2-Mediated IL-1β Production by Macrophages In Vitro but Exacerbates Crohn’s Disease-like Ileitis in SHIP–/– Mice
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-08-29
|
| Description |
Crohn’s disease is a chronic, idiopathic inflammatory bowel disease characterized by patchy, transmural inflammation that is influenced by genetic, environmental, and microbial factors. The NOD2 pathway mediates NFκB activation and pro-inflammatory cytokine production. In the SHIP–/– murine model of Crohn’s disease-like ileitis, macrophage-derived IL-1β production drives intestinal inflammation. SHIP reduces NOD2 signaling by preventing downstream interaction between RIPK2 and XIAP, leading us to hypothesize that blocking RIPK2 in SHIP–/– mice would ameliorate intestinal inflammation. We examined the effects of RIPK2 inhibition on pro-inflammatory cytokine production in SHIP+/+ and SHIP–/– macrophages and in mice, using the RIPK2 inhibitor, GSK2983559. We found that GSK2983559 blocked RIPK2 activation in SHIP+/+ and SHIP–/– bone marrow-derived macrophages (BMDMs), and reduced Il1b transcription and IL-1β production in (MDP+LPS)-stimulated SHIP–/– BMDMs. Despite the reduction of IL-1β production in BMDMs, in vivo treatment with GSK2983559 worsened intestinal inflammation and increased IL-1β concentrations in the ileal tissues of SHIP–/– mice. GSK2983559 only modestly reduced IL-1β in (MDP+LPS)-stimulated SHIP–/– peritoneal macrophages, and did not suppress pro-inflammatory cytokine production in response to TLR ligands in peritoneal macrophages from either SHIP+/+ or SHIP–/– mice. Taken together, our data suggest that although RIPK2 inhibition can block IL-1β production by (MDP+LPS)-stimulated macrophages in vitro, it is not an effective anti-inflammatory strategy in vivo, highlighting the limitations of targeting RIPK2 to treat intestinal inflammation in the context of SHIP deficiency.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-10-01
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0450284
|
| URI | |
| Affiliation | |
| Citation |
Immuno 5 (3): 37 (2025)
|
| Publisher DOI |
10.3390/immuno5030037
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0