- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Ball Lightning as a Profound Manifestation of Dark...
Open Collections
UBC Faculty Research and Publications
Ball Lightning as a Profound Manifestation of Dark Matter Physics Zhitnitsky, Ariel
Abstract
Ball lightning (BL) has been observed for centuries. There are a large number of books, review articles, and original scientific papers devoted to different aspects of the BL phenomenon. Yet, the basic features of this phenomenon have never been explained by known physics. The main problem is the source which could power the dynamics of BL. We advocate the idea that dark matter (DM) in the form of axion quark nuggets (AQNs) made of standard model quarks and gluons (similar to the old idea of Witten’s strangelets) could internally generate the required power. The AQN model was invented long ago without any relation to BL physics. It was invented with a single motivation to explain the observed similarity, ΩDM∼Ωvisible, between visible and DM components. This relation represents a very generic feature of this framework, not sensitive to any parameters of the construction. However, with the same set of parameters being fixed long ago, this model is capable of addressing the key elements of the BL phenomenology, including the source of the energy powering the BL events. In particular, we argue that the visible size of BL, its typical life time, the frequency of its appearance, etc., are all consistent with the suggested proposal that BL represents a profound manifestation of DM physics represented by AQN objects. In this work, we limit ourselves to the analysis of the thunderstorm-related BL phenomena, though weather-unrelated BL events are also known to occur. We also formulate a number of specific possible tests which can refute or unambiguously substantiate this unorthodox proposal on the nature of BL.
Item Metadata
| Title |
Ball Lightning as a Profound Manifestation of Dark Matter Physics
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2025-08-23
|
| Description |
Ball lightning (BL) has been observed for centuries. There are a large number of books, review articles, and original scientific papers devoted to different aspects of the BL phenomenon. Yet, the basic features of this phenomenon have never been explained by known physics. The main problem is the source which could power the dynamics of BL. We advocate the idea that dark matter (DM) in the form of axion quark nuggets (AQNs) made of standard model quarks and gluons (similar to the old idea of Witten’s strangelets) could internally generate the required power. The AQN model was invented long ago without any relation to BL physics. It was invented with a single motivation to explain the observed similarity, ΩDM∼Ωvisible, between visible and DM components. This relation represents a very generic feature of this framework, not sensitive to any parameters of the construction. However, with the same set of parameters being fixed long ago, this model is capable of addressing the key elements of the BL phenomenology, including the source of the energy powering the BL events. In particular, we argue that the visible size of BL, its typical life time, the frequency of its appearance, etc., are all consistent with the suggested proposal that BL represents a profound manifestation of DM physics represented by AQN objects. In this work, we limit ourselves to the analysis of the thunderstorm-related BL phenomena, though weather-unrelated BL events are also known to occur. We also formulate a number of specific possible tests which can refute or unambiguously substantiate this unorthodox proposal on the nature of BL.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-09-26
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0450261
|
| URI | |
| Affiliation | |
| Citation |
Universe 11 (9): 284 (2025)
|
| Publisher DOI |
10.3390/universe11090284
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0