- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Preferential Concentration of Particles in Forced Turbulent...
Open Collections
UBC Faculty Research and Publications
Preferential Concentration of Particles in Forced Turbulent Flows : Effects of Gravity Gai, Guodong; Thomine, Olivier; Hadjadj, Abdellah; Kudriakov, Sergey; Wachs, Anthony
Abstract
The impact of gravity on the particle preferential concentration is investigated by direct numerical simulations in an Eulerian–Lagrangian framework for a large range of Stokes numbers Stη=0.01∼4. For particles with small Stokes numbers such as Stη=0.01, the gravity has minor effects on the particle spatial distribution in the turbulence. With increasing Stη, stripped structures of the high number density of particles appear and expand along the gravity direction. Different evaluation methods of particle preferential concentration are discussed such as the spatial distribution, the box index, and the probability density function. The number density of particles in the accumulating regions reduced under the influence of gravity. The reduction becomes prominent for the particle cloud at Stokes number Stη≈1, especially in the clusters of high particle number density. For large Stokes number Stη, the slip velocity significantly increases due to the particle gravity. Due to the gravity, the particle concentration reduces globally, particularly in the low vorticity regions. For the Stokes number range explored in this paper, gravity has a considerable impact on the particle-turbulence interaction.
Item Metadata
| Title |
Preferential Concentration of Particles in Forced Turbulent Flows : Effects of Gravity
|
| Creator | |
| Publisher |
Multidisciplinary Digital Publishing Institute
|
| Date Issued |
2023-03-22
|
| Description |
The impact of gravity on the particle preferential concentration is investigated by direct numerical simulations in an Eulerian–Lagrangian framework for a large range of Stokes numbers Stη=0.01∼4. For particles with small Stokes numbers such as Stη=0.01, the gravity has minor effects on the particle spatial distribution in the turbulence. With increasing Stη, stripped structures of the high number density of particles appear and expand along the gravity direction. Different evaluation methods of particle preferential concentration are discussed such as the spatial distribution, the box index, and the probability density function. The number density of particles in the accumulating regions reduced under the influence of gravity. The reduction becomes prominent for the particle cloud at Stokes number Stη≈1, especially in the clusters of high particle number density. For large Stokes number Stη, the slip velocity significantly increases due to the particle gravity. Due to the gravity, the particle concentration reduces globally, particularly in the low vorticity regions. For the Stokes number range explored in this paper, gravity has a considerable impact on the particle-turbulence interaction.
|
| Subject | |
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-08-14
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
CC BY 4.0
|
| DOI |
10.14288/1.0449712
|
| URI | |
| Affiliation | |
| Citation |
Energies 16 (6): 2910 (2023)
|
| Publisher DOI |
10.3390/en16062910
|
| Peer Review Status |
Reviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0