UBC Faculty Research and Publications

Deep Learning-Based Urban Tree Species Mapping with High-Resolution Pléiades Imagery in Nanjing, China Cui, Xiaolei; Sun, Min; Chen, Zhili; Li, Mingshi; Zhang, Xiaowei

Abstract

In rapidly urbanizing regions, encroachment on native green spaces has exacerbated ecological issues such as urban heat islands and flooding. Accurate mapping of tree species distribution is therefore vital for sustainable urban management. However, the high heterogeneity of urban landscapes, resulting from the coexistence of diverse land covers, built infrastructure, and anthropogenic activities, often leads to reduced robustness and transferability of remote sensing classification methods across different images and regions. In this study, we used very high–resolution Pléiades imagery and field-verified samples of eight common urban trees and background land covers. By employing transfer learning with advanced segmentation networks, we evaluated each model’s accuracy, robustness, and efficiency. The best-performing network delivered markedly superior classification consistency and required substantially less training time than a model trained from scratch. These findings offer concise, practical guidance for selecting and deploying deep learning methods in urban tree species mapping, supporting improved ecological monitoring and planning.

Item Media