- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- A Multi-Dimensional Contribution-Based Framework for...
Open Collections
UBC Faculty Research and Publications
A Multi-Dimensional Contribution-Based Framework for Evaluating Urban Stormwater Management Efficiency Mao, Kun; Li, Junqi; Li, Jiawei
Abstract
Urbanization and climate change amplify urban flooding risks, demanding efficient, data-minimal tools to strengthen flood resilience. This study presents a pioneering multi-dimensional framework that quantifies the contributions of source reduction, stormwater pipes, and drainage/flood control systems, circumventing the need for intricate hydrological models. Leveraging rainfall depth (mm), runoff volume (m3), and peak flow rate (m3/h) provides a comprehensive evaluation of stormwater management efficacy. Applied to a hypothetical city, City A, under 30- and 50-year rainfall scenarios, the framework reveals efficiencies of 91.0% for rainfall depth and runoff volume, and 90.8% for peak flow in the 30-year case (9% shortfall), declining to 75.7% peak flow efficiency with a 24.3% deficit in the 50-year scenario, underscoring constraints in extreme-event response. Contributions analysis shows stormwater pipes (42.8–47.6%, mean: 46.0%) and drainage/flood control (40.8–43.2%, mean: 41.6%) predominate, while source reduction adds 11.6–14.0% (mean: 12.4%). A primary contribution lies in reducing data demands by approximately 70% compared to traditional approaches, rendering this framework a practical, scalable solution for flood management and sponge city design in data-limited settings. These findings elucidate system vulnerabilities and offer actionable strategies, advancing urban flood resilience both theoretically and practically.
Item Metadata
Title |
A Multi-Dimensional Contribution-Based Framework for Evaluating Urban Stormwater Management Efficiency
|
Creator | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2025-04-22
|
Description |
Urbanization and climate change amplify urban flooding risks, demanding efficient, data-minimal tools to strengthen flood resilience. This study presents a pioneering multi-dimensional framework that quantifies the contributions of source reduction, stormwater pipes, and drainage/flood control systems, circumventing the need for intricate hydrological models. Leveraging rainfall depth (mm), runoff volume (m3), and peak flow rate (m3/h) provides a comprehensive evaluation of stormwater management efficacy. Applied to a hypothetical city, City A, under 30- and 50-year rainfall scenarios, the framework reveals efficiencies of 91.0% for rainfall depth and runoff volume, and 90.8% for peak flow in the 30-year case (9% shortfall), declining to 75.7% peak flow efficiency with a 24.3% deficit in the 50-year scenario, underscoring constraints in extreme-event response. Contributions analysis shows stormwater pipes (42.8–47.6%, mean: 46.0%) and drainage/flood control (40.8–43.2%, mean: 41.6%) predominate, while source reduction adds 11.6–14.0% (mean: 12.4%). A primary contribution lies in reducing data demands by approximately 70% compared to traditional approaches, rendering this framework a practical, scalable solution for flood management and sponge city design in data-limited settings. These findings elucidate system vulnerabilities and offer actionable strategies, advancing urban flood resilience both theoretically and practically.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2025-05-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0448945
|
URI | |
Affiliation | |
Citation |
Water 17 (9): 1246 (2025)
|
Publisher DOI |
10.3390/w17091246
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0