- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Electrospun Nanofiber-Based Biosensors for Foodborne...
Open Collections
UBC Faculty Research and Publications
Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection Yang, Haoming; Yan, Song; Yang, Tianxi
Abstract
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
Item Metadata
Title |
Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection
|
Creator | |
Contributor | |
Publisher |
Multidisciplinary Digital Publishing Institute
|
Date Issued |
2024-09-17
|
Description |
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-10-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
CC BY 4.0
|
DOI |
10.14288/1.0445551
|
URI | |
Affiliation | |
Citation |
Molecules 29 (18): 4415 (2024)
|
Publisher DOI |
10.3390/molecules29184415
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty; Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
CC BY 4.0