- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Deeper understanding of mechanisms contributing to...
Open Collections
UBC Faculty Research and Publications
Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction Walley, Keith R. (Keith Robert)
Abstract
The inflammatory response of sepsis results in organ dysfunction, including myocardial dysfunction. Myocardial dysfunction is particularly important in patients with severe septic shock who progress to a hypodynamic pre-terminal phase. Multiple aspects of this septic inflammatory response contribute to the pathogenesis of decreased ventricular contractility. Inflammatory cytokines released by inflammatory cells contribute as does nitric oxide released by vascular endothelium and by cardiomyocytes. Endotoxins and other pathogen molecules induce an intramyocardial inflammatory response by binding Toll-like receptors on cardiomyocytes that then signal via NF-κB. These processes alter cardiomyocyte depolarization and, therefore, contractility. The particular role of the cardiomyocyte sodium current has not been characterized. Now new information suggests that the septic inflammatory response impairs normal depolarization by altering the cardiomyocyte sodium current. This results in decreased ventricular contractility. This is important because new targets for therapeutic intervention can be considered and new approaches to evaluation of this problem can be contemplated.
Item Metadata
Title |
Deeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction
|
Creator | |
Publisher |
BioMed Central
|
Date Issued |
2014-05-01
|
Description |
The inflammatory response of sepsis results in organ dysfunction, including myocardial dysfunction. Myocardial dysfunction is particularly important in patients with severe septic shock who progress to a hypodynamic pre-terminal phase. Multiple aspects of this septic inflammatory response contribute to the pathogenesis of decreased ventricular contractility. Inflammatory cytokines released by inflammatory cells contribute as does nitric oxide released by vascular endothelium and by cardiomyocytes. Endotoxins and other pathogen molecules induce an intramyocardial inflammatory response by binding Toll-like receptors on cardiomyocytes that then signal via NF-κB. These processes alter cardiomyocyte depolarization and, therefore, contractility. The particular role of the cardiomyocyte sodium current has not been characterized. Now new information suggests that the septic inflammatory response impairs normal depolarization by altering the cardiomyocyte sodium current. This results in decreased ventricular contractility. This is important because new targets for therapeutic intervention can be considered and new approaches to evaluation of this problem can be contemplated.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-01-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0223825
|
URI | |
Affiliation | |
Citation |
Critical Care. 2014 May 01;18(3):137
|
Publisher DOI |
10.1186/cc13853
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
The Author(s)
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)