- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- Polymeric nanocarriers for the treatment of systemic...
Open Collections
UBC Faculty Research and Publications
Polymeric nanocarriers for the treatment of systemic iron overload Hamilton, Jasmine L.; Kizhakkedathu, Jayachandran N.
Abstract
Desferrioxamine (DFO), deferiprone (L1) and desferasirox (ICL-670) are clinically approved iron chelators used to treat secondary iron overload. Although iron chelators have been utilized since the 1960s and there has been much improvement in available therapy, there is still the need for new drug candidates due to limited long-term efficacy and drug toxicity. Moreover, all currently approved iron chelators are of low molecular weight (MW) (<600 Da) and the objectives reported for the “ideal” chelator of low MW, including possessing the ability to promote iron excretion without causing toxic side effects, has proven difficult to realize in practice. With prolonged iron chelator use, patients may develop toxicities or become insensitive. In contrast, the limited research that has been geared towards developing higher MW, polymeric, long circulating iron chelators has shown promise. The inherent potential of polymeric iron chelators toward longer plasma half-lives and reduction in toxicity provides optimism and may be a significant addition to the currently available low MW iron chelators. This article reviews knowledge pertaining to this theme, highlights some unique advantages that these nanomedicines have in treating systemic iron overload as well as their potential utility in the treatment of other disease states.
Item Metadata
Title |
Polymeric nanocarriers for the treatment of systemic iron overload
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2015-03-24
|
Description |
Desferrioxamine (DFO), deferiprone (L1) and desferasirox (ICL-670) are clinically approved iron chelators used to treat secondary iron overload. Although iron chelators have been utilized since the 1960s and there has been much improvement in available therapy, there is still the need for new drug candidates due to limited long-term efficacy and drug toxicity. Moreover, all currently approved iron chelators are of low molecular weight (MW) (<600 Da) and the objectives reported for the “ideal” chelator of low MW, including possessing the ability to promote iron excretion without causing toxic side effects, has proven difficult to realize in practice. With prolonged iron chelator use, patients may develop toxicities or become insensitive. In contrast, the limited research that has been geared towards developing higher MW, polymeric, long circulating iron chelators has shown promise. The inherent potential of polymeric iron chelators toward longer plasma half-lives and reduction in toxicity provides optimism and may be a significant addition to the currently available low MW iron chelators. This article reviews knowledge pertaining to this theme, highlights some unique advantages that these nanomedicines have in treating systemic iron overload as well as their potential utility in the treatment of other disease states.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-11-05
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0215963
|
URI | |
Affiliation | |
Citation |
Molecular and Cellular Therapies. 2015 Mar 24;3(1):3
|
Publisher DOI |
10.1186/s40591-015-0039-1
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Hamilton and Kizhakkedathu; licensee BioMed Central.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)