- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Faculty Research and Publications /
- The evolution of paralogous enzymes MAT and MATX within...
Open Collections
UBC Faculty Research and Publications
The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond Szabová, Jana; Yubuki, Naoji; Leander, Brian S.; Triemer, Richard E.; Hampl, Vladimír
Abstract
Background. Methionine adenosyltransferase (MAT) is a ubiquitous essential enzyme that, in eukaryotes, occurs in two relatively divergent paralogues: MAT and MATX. MATX has a punctate distribution across the tree of eukaryotes and, except for a few cases, is mutually exclusive with MAT. This phylogenetic pattern could have arisen by either differential loss of old paralogues or the spread of one of these paralogues by horizontal gene transfer. Our aim was to map the distribution of MAT/MATX genes within the Euglenida in order to more comprehensively characterize the evolutionary history of MATX. Results: We generated 26 new sequences from 23 different lineages of euglenids and one prasinophyte alga Pyramimonas parkeae. MATX was present only in photoautotrophic euglenids. The mixotroph Rapaza viridis and the prasinophyte alga Pyramimonas parkeae, which harbors chloroplasts that are most closely related to the chloroplasts in photoautotrophic euglenids, both possessed only the MAT paralogue. We found both the MAT and MATX paralogues in two photoautotrophic species (Phacus orbicularis and Monomorphina pyrum). The significant conflict between eukaryotic phylogenies inferred from MATX and SSU rDNA data represents strong evidence that MATX paralogues have undergone horizontal gene transfer across the tree of eukaryotes. Conclusions: Our results suggest that MATX entered the euglenid lineage in a single horizontal gene transfer event that took place after the secondary endosymbiotic origin of the euglenid chloroplast. The origin of the MATX paralogue is unclear, and it cannot be excluded that it arose by a gene duplication event before the most recent common ancestor of eukaryotes.
Item Metadata
Title |
The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond
|
Creator | |
Contributor | |
Publisher |
BioMed Central
|
Date Issued |
2014-02-11
|
Description |
Background.
Methionine adenosyltransferase (MAT) is a ubiquitous essential enzyme that, in eukaryotes, occurs in two relatively divergent paralogues: MAT and MATX. MATX has a punctate distribution across the tree of eukaryotes and, except for a few cases, is mutually exclusive with MAT. This phylogenetic pattern could have arisen by either differential loss of old paralogues or the spread of one of these paralogues by horizontal gene transfer. Our aim was to map the distribution of MAT/MATX genes within the Euglenida in order to more comprehensively characterize the evolutionary history of MATX.
Results:
We generated 26 new sequences from 23 different lineages of euglenids and one prasinophyte alga Pyramimonas parkeae. MATX was present only in photoautotrophic euglenids. The mixotroph Rapaza viridis and the prasinophyte alga Pyramimonas parkeae, which harbors chloroplasts that are most closely related to the chloroplasts in photoautotrophic euglenids, both possessed only the MAT paralogue. We found both the MAT and MATX paralogues in two photoautotrophic species (Phacus orbicularis and Monomorphina pyrum). The significant conflict between eukaryotic phylogenies inferred from MATX and SSU rDNA data represents strong evidence that MATX paralogues have undergone horizontal gene transfer across the tree of eukaryotes.
Conclusions:
Our results suggest that MATX entered the euglenid lineage in a single horizontal gene transfer event that took place after the secondary endosymbiotic origin of the euglenid chloroplast. The origin of the MATX paralogue is unclear, and it cannot be excluded that it arose by a gene duplication event before the most recent common ancestor of eukaryotes.
|
Subject | |
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-10-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International (CC BY 4.0)
|
DOI |
10.14288/1.0132565
|
URI | |
Affiliation | |
Citation |
BMC Evolutionary Biology. 2014 Feb 11;14(1):25
|
Publisher DOI |
10.1186/1471-2148-14-25
|
Peer Review Status |
Reviewed
|
Scholarly Level |
Faculty
|
Copyright Holder |
Szabová et al.; licensee BioMed Central Ltd.
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International (CC BY 4.0)