- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Universal and non-universal behavior in Empirical Risk...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Universal and non-universal behavior in Empirical Risk Minimization Misiakiewicz, Theodor
Description
A major effort in modern high-dimensional statistics has been devoted to the analysis of linear predictors trained on nonlinear feature embeddings via empirical risk minimization (ERM). Gaussian equivalence theory (GET) has emerged as a powerful universality principle in this context: it states that the behavior of high-dimensional, complex features can be captured by Gaussian surrogates, which are more amenable to analysis. Despite its remarkable successes, numerical experiments show that this equivalence can fail even for simple embeddings -- such as polynomial maps -- under general scaling regimes.
We investigate this breakdown in the setting of random feature (RF) models in the quadratic scaling regime, where both the number of features and the sample size grow quadratically with the data dimension. We show that when the target function depends on a low-dimensional projection of the data, such as generalized linear models, GET yields incorrect predictions. To capture the correct asymptotics, we introduce a Conditional Gaussian Equivalent (CGE) model, which can be viewed as appending a low-dimensional non-Gaussian component to an otherwise high-dimensional Gaussian model. This hybrid model retains the tractability of the Gaussian framework and accurately describes RF models in the quadratic scaling regime. We derive sharp asymptotics for the training and test errors in this setting, which continue to agree with numerical simulations even when GET fails.
Item Metadata
| Title |
Universal and non-universal behavior in Empirical Risk Minimization
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2026-02-04
|
| Description |
A major effort in modern high-dimensional statistics has been devoted to the analysis of linear predictors trained on nonlinear feature embeddings via empirical risk minimization (ERM). Gaussian equivalence theory (GET) has emerged as a powerful universality principle in this context: it states that the behavior of high-dimensional, complex features can be captured by Gaussian surrogates, which are more amenable to analysis. Despite its remarkable successes, numerical experiments show that this equivalence can fail even for simple embeddings -- such as polynomial maps -- under general scaling regimes.
We investigate this breakdown in the setting of random feature (RF) models in the quadratic scaling regime, where both the number of features and the sample size grow quadratically with the data dimension. We show that when the target function depends on a low-dimensional projection of the data, such as generalized linear models, GET yields incorrect predictions. To capture the correct asymptotics, we introduce a Conditional Gaussian Equivalent (CGE) model, which can be viewed as appending a low-dimensional non-Gaussian component to an otherwise high-dimensional Gaussian model. This hybrid model retains the tractability of the Gaussian framework and accurately describes RF models in the quadratic scaling regime. We derive sharp asymptotics for the training and test errors in this setting, which continue to agree with numerical simulations even when GET fails.
|
| Extent |
45.0 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Yale University
|
| Series | |
| Date Available |
2026-02-09
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0451474
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Researcher
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International