- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Higher dimension partition principles in uncountable...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Higher dimension partition principles in uncountable Hausdorff spaces Lakerdas-Gayle, Joey
Description
We will consider two families of partition principles parameterized by dimension: Galvin's problem in dimension $d$ ($\mathsf{G}_d$) as studied by Raghavan and Todorcevic (2023), and the Polish grid principle in dimension $d$ ($\mathsf{PG}_d$) as studied by Lambie-Hanson and Zucker (2024). Both $\mathsf{G}_d$ and $\mathsf{PG}_d$ fail in models of $\mathsf{ZFC}+2^{\aleph_0}\leq\aleph_{d-2}$. We introduce a family of partition principles for colouring spaces of unordered products that generalizes both $\mathsf{G}_d$ and $\mathsf{PG}_d$, and recovers the common bound.
Item Metadata
| Title |
Higher dimension partition principles in uncountable Hausdorff spaces
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2025-11-24
|
| Description |
We will consider two families of partition principles parameterized by dimension: Galvin's problem in dimension $d$ ($\mathsf{G}_d$) as studied by Raghavan and Todorcevic (2023), and the Polish grid principle in dimension $d$ ($\mathsf{PG}_d$) as studied by Lambie-Hanson and Zucker (2024). Both $\mathsf{G}_d$ and $\mathsf{PG}_d$ fail in models of $\mathsf{ZFC}+2^{\aleph_0}\leq\aleph_{d-2}$. We introduce a family of partition principles for colouring spaces of unordered products that generalizes both $\mathsf{G}_d$ and $\mathsf{PG}_d$, and recovers the common bound.
|
| Extent |
10.0 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: University of Waterloo
|
| Series | |
| Date Available |
2025-12-01
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0450921
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International