BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Frobenius-Eilenberg-Moore objects in dagger 2-categories Poklewski-Koziell, Rowan


A Frobenius monad on a category is a monad-comonad pair whose multiplication and comultiplication are related via the Frobenius law. Street has given several equivalent definitions of Frobenius monads. In particular, they are those monads induced from ambidextrous adjunctions. On a dagger category, much of this comes for free: every monad on a dagger category is equivalently a comonad, and all adjunctions are ambidextrous. Heunen and Karvonen call a monad on a dagger category which satisfies the Frobenius law a dagger Frobenius monad. They also define the appropriate notion of an algebra for such a monad, and show that it captures quantum measurements and aspects of reversible computing. In this talk, we will show that these definitions are exactly what is needed for a formal theory of dagger Frobenius monads, with the usual elements of Eilenberg-Moore object and completion of a 2-category under such objects having dagger counterparts. This may pave the way for characterisations of categories of Frobenius objects in dagger monoidal categories and generalisations of distributive laws of monads on dagger categories.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International