- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Spectral curves in surfaces
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Spectral curves in surfaces Norbury, Paul
Description
An embedded curve in a Poisson surface $\Sigma\subset X$ defines a smooth deformation space $\mathcal{B}$ of nearby embedded curves. In this talk we will describe a key idea of Kontsevich and Soibelman to equip the Poisson surface $X$ with a foliation in order to study the deformation space $\mathcal{B}$. For example, $X=TP^1\to P^1$ is a Poisson surface surface foliated by its fibres. The foliation, together with a vector space $V_\Sigma$ of meromorphic differentials on $\Sigma$, endows an embedded curve $\Sigma$ with the structure of the initial data of topological recursion, which defines a collection of symmetric tensors on $V_\Sigma$. These tensors produce a formal series, which turns out to be a formal Seiberg-Witten differential, that descends under a quotient to an analytic series.
Item Metadata
Title |
Spectral curves in surfaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2021-02-02T11:29
|
Description |
An embedded curve in a Poisson surface $\Sigma\subset X$ defines a smooth deformation space $\mathcal{B}$ of nearby embedded curves. In this talk we will describe a key idea of Kontsevich and Soibelman to equip the Poisson surface $X$ with a foliation in order to study the deformation space $\mathcal{B}$. For example, $X=TP^1\to P^1$ is a Poisson surface surface foliated by its fibres. The foliation, together with a vector space $V_\Sigma$ of meromorphic differentials on $\Sigma$, endows an embedded curve $\Sigma$ with the structure of the initial data of topological recursion, which defines a collection of symmetric tensors on $V_\Sigma$. These tensors produce a formal series, which turns out to be a formal Seiberg-Witten differential, that descends under a quotient to an analytic series.
|
Extent |
69.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Melbourne
|
Series | |
Date Available |
2021-08-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0401128
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International