BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Statistical Properties of the Navier-Stokes-Voigt Model Titi, Edriss


The Navier-Stokes-Voigt model of viscoelastic incompressible fluid has been proposed as a regularization of the three-dimensional Navier-Stokes equations for the purpose of direct numerical simulations. Besides the kinematic viscosity parameter, $\nu>0$, this model possesses a regularizing parameter, $\alpha> 0$, a given length scale parameter, so that $\frac{\alpha^2}{\nu}$ is the relaxation time of the viscoelastic fluid. In this talk I will derive several statistical properties of the invariant measures associated with the solutions of the three-dimensional Navier-Stokes-Voigt equations. Moreover, I will show that, for fixed viscosity, $\nu>0$, as the regularizing parameter $\alpha$ tends to zero, there exists a subsequence of probability invariant measures converging, in a suitable sense, to a strong stationary statistical solution of the three-dimensional Navier-Stokes equations, which is a regularized version of the notion of stationary statistical solutions - a generalization of the concept of invariant measure introduced and investigated by Foias. This fact is also supported by numerical observations, which provides an additional evidence that, for small values of the regularization parameter $\alpha$, the Navier-Stokes-Voigt model can indeed be considered as a model to study the statistical properties of the three-dimensional Navier-Stokes equations and turbulent flows via direct numerical simulations.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International