- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Propagating terraces in multidimensional and spatially...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Propagating terraces in multidimensional and spatially periodic domains Giletti, Thomas
Description
This talk will be devoted to the existence of pulsating travelling front solutions for spatially periodic heterogeneous reaction-diffusion equations in arbitrary dimension, in the multistable case. In general, the notion of a single front is not sufficient to understand the dynamics of solutions, and we instead observe the appearance of a so-called propagating terrace. This roughly refers to a finite family of stacked fronts connecting intermediate stable steady states and whose speeds are ordered. Surprisingly, for a given equation, the shape of this terrace (i.e., the involved intermediate steady states or even their number) may depend on the direction of the propagation. This in turn raises some difficulties in the spreading shape of solutions of the evolution problem. The presented results come from a series of collaborations with W. Ding, A. Ducrot, H. Matano and L. Rossi.
Item Metadata
Title |
Propagating terraces in multidimensional and spatially periodic domains
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2020-08-04T07:00
|
Description |
This talk will be devoted to the existence of pulsating travelling front solutions for spatially periodic heterogeneous reaction-diffusion equations in arbitrary dimension, in the multistable case. In general, the notion of a single front is not sufficient to understand the dynamics of solutions, and we instead observe the appearance of a so-called propagating terrace. This roughly refers to a finite family of stacked fronts connecting intermediate stable steady states and whose speeds are ordered. Surprisingly, for a given equation, the shape of this terrace (i.e., the involved intermediate steady states or even their number) may depend on the direction of the propagation. This in turn raises some difficulties in the spreading shape of solutions of the evolution problem. The presented results come from a series of collaborations with W. Ding, A. Ducrot, H. Matano and L. Rossi.
|
Extent |
27.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Lorraine
|
Series | |
Date Available |
2021-02-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395798
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International