- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- On the Geometric Langlands Conjecture and Non-Abelian...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
On the Geometric Langlands Conjecture and Non-Abelian Hodge Theory Donagi, Ron
Description
The Geometric Langlands Conjecture (GLC) for a curve \(C\) and a group \(G\) is a non-abelian generalization of the relation between a curve and its Jacobian. It claims the existence of Hecke eigensheaves on the moduli of \(G\)-bundles on \(C\). The parabolic GLC is a further extension to curves with punctures. After explaining and illustrating the conjectures, I will outline an approach to proving them using non-abelian Hodge theory. A key geometric ingredient is the locus of wobbly bundles: bundles that are stable but not very stable. If time allows, I will discuss two instances where this program has been implemented recently: GLC for \(G=GL(2)\) and genus 2 curves (with T. Pantev and C. Simson), and parabolic GLC for \(\mathbb{P}^1\) with marked points (with T. Pantev).
Item Metadata
Title |
On the Geometric Langlands Conjecture and Non-Abelian Hodge Theory
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-11-19T09:01
|
Description |
The Geometric Langlands Conjecture (GLC) for a curve \(C\) and a group \(G\) is a non-abelian generalization of the relation between a curve and its Jacobian. It claims the existence of Hecke eigensheaves on the moduli of \(G\)-bundles on \(C\). The parabolic GLC is a further extension to curves with punctures. After explaining and illustrating the conjectures, I will outline an approach to proving them using non-abelian Hodge theory. A key geometric ingredient is the locus of wobbly bundles: bundles that are stable but not very stable. If time allows, I will discuss two instances where this program has been implemented recently: GLC for \(G=GL(2)\) and genus 2 curves (with T. Pantev and C. Simson), and parabolic GLC for \(\mathbb{P}^1\) with marked points (with T. Pantev).
|
Extent |
62.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Pennsylvania
|
Series | |
Date Available |
2021-01-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395654
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International