- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Ringel duality for Soergel bimodules
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Ringel duality for Soergel bimodules Hazi, Amit
Description
The category of Soergel bimodules is a well-behaved categorification of the Hecke algebra of a Coxeter group. In many characteristic 0 realizations, the indecomposable objects in this category correspond to the Kazhdan-Lusztig basis, thereby giving an explanation for the positivity of Kazhdan-Lusztig polynomials. In characteristic $p>0$ the indecomposable objects give rise to another set of non-negative Laurent polynomials called $p$-Kazhdan-Lusztig polynomials, which can be used as a replacement for Kazhdan-Lusztig polynomials in modular representation theory. In this talk I will propose a non-negative replacement for inverse Kazhdan-Lusztig polynomials in positive characteristic.
Item Metadata
Title |
Ringel duality for Soergel bimodules
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-12-06T10:31
|
Description |
The category of Soergel bimodules is a well-behaved categorification of the Hecke algebra of a Coxeter group. In many characteristic 0 realizations, the indecomposable objects in this category correspond to the Kazhdan-Lusztig basis, thereby giving an explanation for the positivity of Kazhdan-Lusztig polynomials. In characteristic $p>0$ the indecomposable objects give rise to another set of non-negative Laurent polynomials called $p$-Kazhdan-Lusztig polynomials, which can be used as a replacement for Kazhdan-Lusztig polynomials in modular representation theory. In this talk I will propose a non-negative replacement for inverse Kazhdan-Lusztig polynomials in positive characteristic.
|
Extent |
29.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of London
|
Series | |
Date Available |
2021-01-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395609
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International