- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Left relatively convex subgroups
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Left relatively convex subgroups Sunic, Zoran
Description
Let G be a group and H be a subgroup of G. We say that H is left relatively convex in G if the left G-set G/H has at least one G-invariant order. When G is left orderable, this holds if and only if H is convex in G under some left ordering of G. We give a criterion for H to be left relatively convex in G that generalizes a well known criterion of Burns and Hale. We then use this criterion to show that all maximal cyclic subgroups are left relatively convex in free groups, in right-angled Artin groups, and in surface groups that are not the Klein-bottle group. The free-group case extends a result of Duncan and Howie. We show that if G is left orderable, then each free factor of G is left relatively convex in G. More generally, for any graph of groups, if each edge group is left relatively convex in each of its vertex groups, then each vertex group is left relatively convex in the fundamental group; this generalizes a result of Chiswell. Finally, we show that all maximal cyclic subgroups in locally residually torsion-free nilpotent groups are left relatively convex. This is a joint work with Yago Antolin and Warren Dicks.
Item Metadata
Title |
Left relatively convex subgroups
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-06-20T15:00
|
Description |
Let G be a group and H be a subgroup of G. We say that H is left relatively convex in G if the left G-set G/H has at least one G-invariant order. When G is left orderable, this holds if and only if H is convex in G under some left ordering of G.
We give a criterion for H to be left relatively convex in G that generalizes a well known criterion of Burns and Hale. We then use this criterion to show that all maximal cyclic subgroups are left relatively convex in free groups, in right-angled Artin groups, and in surface groups that are not the Klein-bottle group. The free-group case extends a result of Duncan and Howie. We show that if G is left orderable, then each free factor of G is left relatively convex in G. More generally, for any graph of groups, if each edge group is left relatively convex in each of its vertex groups, then each vertex group is left relatively convex in the fundamental group; this generalizes a result of Chiswell. Finally, we show that all maximal cyclic subgroups in locally residually torsion-free nilpotent groups are left relatively convex.
This is a joint work with Yago Antolin and Warren Dicks.
|
Extent |
59.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Hofstra University
|
Series | |
Date Available |
2021-01-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395589
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International