- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Globally Super-Convergent Conservative Hermite Methods...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Globally Super-Convergent Conservative Hermite Methods for the Scalar Wave Equation Appelo, Daniel
Description
The strengths of the schemes we will present are their high order of accuracy in both space and time combined with their ability to march in time with a time step at the domain of dependence limit independent of the order. Additionally, the methods are globally super-convergent, i.e. the number of degrees of freedom per cell is (m+1)^d but the methods achieve orders of accuracy 2m. We note that the L2 super-convergence holds globally in space and time, unlike most other spatial discretizations, where super-convergence is limited to a few specific points and often rely on the use of negative norms. Our primary interest of these schemes are as highly efficient building blocks in hybrid methods where most of the mesh can be taken to be rectilinear and where geometry is handled by more flexible (but less efficient) methods close to physical boundaries. In this work we restrict our consideration to square geometries with boundary conditions of Dirichlet, Neumann or periodic type. We provide stability and convergence results for one dimensional periodic domains. The analysis of the conservative method is quite different from the analysis of previous dissipative Hermite methods and introduces a, to our knowledge, novel technique for analyzing conservative schemes for wave equations in second order form. This is joint work with Thomas Hagstrom (SMU) and Arturo Vargas (Rice, LLNL)
Item Metadata
Title |
Globally Super-Convergent Conservative Hermite Methods for the Scalar Wave Equation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-06-15T17:07
|
Description |
The strengths of the schemes we will present are their high order of accuracy in both space and time combined with their ability to march in time with a time step at the domain of dependence limit independent of the order. Additionally, the methods are globally super-convergent, i.e. the number of degrees of freedom per cell is (m+1)^d but the methods achieve orders of accuracy 2m. We note that the L2 super-convergence holds globally in space and time, unlike most other spatial discretizations, where super-convergence is limited to a few specific points and often rely on the use of negative norms.
Our primary interest of these schemes are as highly efficient building blocks in hybrid methods where most of the mesh can be taken to be rectilinear and where geometry is handled by more flexible (but less efficient) methods close to physical boundaries. In this work we restrict our consideration to square geometries with boundary conditions of Dirichlet, Neumann or periodic type.
We provide stability and convergence results for one dimensional periodic domains. The analysis of the conservative method is quite different from the analysis of previous dissipative Hermite methods and introduces a, to our knowledge, novel technique for analyzing conservative schemes for wave equations in second order form.
This is joint work with Thomas Hagstrom (SMU) and Arturo Vargas (Rice, LLNL)
|
Extent |
28.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of New Mexico
|
Series | |
Date Available |
2020-12-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395152
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International