- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Refinements of Strong Multiplicity One for $\rm{GL}(2)$
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Refinements of Strong Multiplicity One for $\rm{GL}(2)$ Wong, Peng-Jie
Description
Let $f_1$ and $f_2$ be (holomorphic) newforms of same weight and with same nebentypus, and let $a_{f_1}(n)$ and $a_{f_2}(n)$ denote the normalised Fourier coefficients of $f_1$ and $f_2$, respectively. If $a_{f_1}(p)=a_{f_2}(p)$ for almost all primes $p$, then it follows from the strong multiplicity one theorem that $f_1$ and $f_2$ are equivalent. Furthermore, a result of Ramakrishnan states that if $a_{f_1}(p)^2=a_{f_2}(p)^2$ outside a set of primes $p$ of density less than $\frac{1}{18}$, then $f_1$ and $f_2$ are twist-equivalent. In this talk, we will discuss some refinements of the strong multiplicity one theorem and Ramakrishnan's result for general $\rm{GL}(2)$-forms. In particular, we will analyse the set of primes $p$ for which $|a_{f_1}(p)| \neq |a_{f_2}(p)|$ when $f_1$ and $f_2$ are not twist-equivalent.
Item Metadata
Title |
Refinements of Strong Multiplicity One for $\rm{GL}(2)$
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2020-05-02T10:40
|
Description |
Let $f_1$ and $f_2$ be (holomorphic) newforms of same weight and with same nebentypus, and let $a_{f_1}(n)$ and $a_{f_2}(n)$ denote the normalised Fourier coefficients of $f_1$ and $f_2$, respectively. If $a_{f_1}(p)=a_{f_2}(p)$ for almost all primes $p$, then it follows from the strong multiplicity one theorem that $f_1$ and $f_2$ are equivalent. Furthermore, a result of Ramakrishnan states that if $a_{f_1}(p)^2=a_{f_2}(p)^2$ outside a set of primes $p$ of density less than $\frac{1}{18}$, then $f_1$ and $f_2$ are twist-equivalent.
In this talk, we will discuss some refinements of the strong multiplicity one theorem and Ramakrishnan's result for general $\rm{GL}(2)$-forms. In particular, we will analyse the set of primes $p$ for which $|a_{f_1}(p)| \neq |a_{f_2}(p)|$ when $f_1$ and $f_2$ are not twist-equivalent.
|
Extent |
29.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Lethbridge
|
Series | |
Date Available |
2020-10-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0394871
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International