- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Tate blueshift for real oriented cohomology
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Tate blueshift for real oriented cohomology Quigley, J.D.
Description
This is joint work with Guchuan Li and Vitaly Lorman. The Johnson--Wilson spectra $E(n)$ play a fundamental role in chromatic homotopy theory. In the late 90's, Ando--Morava--Sadofsky showed that the Tate construction with respect to a trivial $\mathbb{Z}/p$-action on $E(n)$ splits into a wedge of $E(n-1)$'s. I will describe a $C_2$-equivariant lift of this result involving the Real Johnson--Wilson theories $E\mathbb{R}(n)$ studied by Hu--Kriz and Kitchloo--Lorman--Wilson. Our result simultaneously generalizes the work of Ando--Morava--Sadofsky (by taking underlying spectra) and a classical Tate splitting for real topological K-theory proven by Greenlees--May (by taking $C_2$-fixed points). I will outline the proof and highlight an essential tool, the parametrized Tate construction (developed in joint work with Jay Shah), which has other applications relevant to the workshop.
Item Metadata
Title |
Tate blueshift for real oriented cohomology
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2020-03-05T16:14
|
Description |
This is joint work with Guchuan Li and Vitaly Lorman. The Johnson--Wilson spectra $E(n)$ play a fundamental role in chromatic homotopy theory. In the late 90's, Ando--Morava--Sadofsky showed that the Tate construction with respect to a trivial $\mathbb{Z}/p$-action on $E(n)$ splits into a wedge of $E(n-1)$'s. I will describe a $C_2$-equivariant lift of this result involving the Real Johnson--Wilson theories $E\mathbb{R}(n)$ studied by Hu--Kriz and Kitchloo--Lorman--Wilson. Our result simultaneously generalizes the work of Ando--Morava--Sadofsky (by taking underlying spectra) and a classical Tate splitting for real topological K-theory proven by Greenlees--May (by taking $C_2$-fixed points). I will outline the proof and highlight an essential tool, the parametrized Tate construction (developed in joint work with Jay Shah), which has other applications relevant to the workshop.
|
Extent |
71.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Cornell University
|
Series | |
Date Available |
2020-09-22
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0394464
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International