- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Collective behavior in co-cultures of cells with different...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Collective behavior in co-cultures of cells with different mechano-adhesive properties Das, Moumita
Description
In many biological processes, whether the formation of embryos or of tumors, cells dynamically organize in a context-dependent and spatiotemporal manner. These cells live and actively migrate in a heterogeneous environment of many cell types with different physical properties. For example, in many types of cancers such as colon, melanoma, prostrate and breast cancers, experiments have shown that the cancer cells are mechanically more deformable than the corresponding non-tumorigenic cells. It is also known that while non-cancerous (epithelial) cells tend to adhere to each other due to the adhesion protein E-cadherin and form a confluent tissue, in cancerous (mesenchymal) cells the expression of this protein is often heavily down-regulated. Motivated by this, we study the organization in a co-culture of two types of self-propelled particles (cells) with different stiffness and adhesion. We observe that the system phase separates into clusters with distinct morphologies and dynamics. We investigate the structure and growth of these segregating clusters with time by studying distribution functions and density structure factors, and characterize differences in the migration of the two cell types by studying their mean square displacements. Our results may elucidate how changes in cell mechano-adhesive properties during tumor progression impact cellular organization and dynamics in tumors.
Item Metadata
Title |
Collective behavior in co-cultures of cells with different mechano-adhesive properties
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-06-17T20:14
|
Description |
In many biological processes, whether the formation of embryos or of tumors, cells dynamically organize in a context-dependent and spatiotemporal manner. These cells live and actively migrate in a heterogeneous environment of many cell types with different physical properties. For example, in many types of cancers such as colon, melanoma, prostrate and breast cancers, experiments have shown that the cancer cells are mechanically more deformable than the corresponding non-tumorigenic cells. It is also known that while non-cancerous (epithelial) cells tend to adhere to each other due to the adhesion protein E-cadherin and form a confluent tissue, in cancerous (mesenchymal) cells the expression of this protein is often heavily down-regulated. Motivated by this, we study the organization in a co-culture of two types of self-propelled particles (cells) with different stiffness and adhesion. We observe that the system phase separates into clusters with distinct morphologies and dynamics. We investigate the structure and growth of these segregating clusters with time by studying distribution functions and density structure factors, and characterize differences in the migration of the two cell types by studying their mean square displacements. Our results may elucidate how changes in cell mechano-adhesive properties during tumor progression impact cellular organization and dynamics in tumors.
|
Extent |
33.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Rochester Institute of Technology
|
Series | |
Date Available |
2020-09-07
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0394231
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International