- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Perfect matchings in subgraphs of random hypergraphs
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Perfect matchings in subgraphs of random hypergraphs Ferber, Asaf
Description
Let $m_d(k,n)$ be the minimal $m$ such that every $k$-uniform hypergraph on $n$ vertices and with minimum $d$-degree at least $m$ contains a perfect matching (of course, assuming that $n$ is divisible by $k$). The problem of determining $m_{d}(k,n)$ has attracted a lot of attention in the last few decades, and unfortunately is still far from being completely understood. For example, already the cases $d=1$ and $k\geq 6$ are unknown. In this talk we show that random hypergraphs typically behave as expected. Specifically, we prove (without knowing $m_d(k,n)$) that for a typical $H^k_{n,p}$ with $p\geq n^{-c(d,k)}$, every spanning subgraph with minimum $d$-degree at least $(1+o(1))m_d(k,n)p$ contains a perfect matching. This is clearly (asymptotically) best possible. Joint work with Matthew Kwan.
Item Metadata
Title |
Perfect matchings in subgraphs of random hypergraphs
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-09-02T16:12
|
Description |
Let $m_d(k,n)$ be the minimal $m$ such that every $k$-uniform hypergraph on $n$ vertices and with minimum $d$-degree at least $m$ contains a perfect matching (of course, assuming that $n$ is divisible by $k$).
The problem of determining $m_{d}(k,n)$ has attracted a lot of attention in the last few decades, and unfortunately is still far from being completely understood. For example, already the cases $d=1$ and $k\geq 6$ are unknown.
In this talk we show that random hypergraphs typically behave as expected. Specifically, we prove (without knowing $m_d(k,n)$) that for a typical $H^k_{n,p}$ with $p\geq n^{-c(d,k)}$, every spanning subgraph with minimum $d$-degree at least $(1+o(1))m_d(k,n)p$ contains a perfect matching. This is clearly (asymptotically) best possible.
Joint work with Matthew Kwan.
|
Extent |
25.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: MIT
|
Series | |
Date Available |
2020-09-05
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0394205
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International