- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- On the Comparison of Measures of Convex Bodies via...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
On the Comparison of Measures of Convex Bodies via Projections and Sections Hosle, Johannes
Description
We discuss inequalities between measures of convex bodies implied by comparison of their projections and sections. Recently, Giannopoulos and Koldobsky proved that if $K, L$ are convex bodies in $\mathbb{R}^n$ with $|K|\theta^{\perp}| \le |L\cap \theta^{\perp}|$ for all $\theta \in S^{n-1}$, then $|K| \le |L|$. Firstly, we study the reverse question: in particular, we show that if $K, L$ are origin-symmetric convex bodies in John's position with $|K \cap \theta^{\perp}| \le |L|\theta^{\perp}|$ for all $\theta \in S^{n-1}$, then $|K| \le \sqrt{n}|L|$. We also discuss an extension of the result of Giannopoulos and Koldobsky to log-concave measures and an extension of the Loomis-Whitney inequality to positively concave and positively homogeneous measures.
Item Metadata
Title |
On the Comparison of Measures of Convex Bodies via Projections and Sections
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2020-02-10T16:29
|
Description |
We discuss inequalities between measures of convex bodies implied by comparison of their projections and sections. Recently, Giannopoulos and Koldobsky proved that if $K, L$ are convex bodies in $\mathbb{R}^n$ with $|K|\theta^{\perp}| \le |L\cap \theta^{\perp}|$ for all $\theta \in S^{n-1}$, then $|K| \le |L|$. Firstly, we study the reverse question: in particular, we show that if $K, L$ are origin-symmetric convex bodies in John's position with $|K \cap \theta^{\perp}| \le |L|\theta^{\perp}|$ for all $\theta \in S^{n-1}$, then $|K| \le \sqrt{n}|L|$. We also discuss an extension of the result of Giannopoulos and Koldobsky to log-concave measures and an extension of the Loomis-Whitney inequality to positively concave and positively homogeneous measures.
|
Extent |
29.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: UCLA
|
Series | |
Date Available |
2020-08-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0392670
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Undergraduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International