- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Rasmussen's invariant and surfaces in some four-manifolds
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Rasmussen's invariant and surfaces in some four-manifolds Manolescu, Ciprian
Description
Back in 2004, Rasmussen extracted a numerical invariant from Khovanov-Lee homology, and used it to give a new proof of Milnor's conjecture about the slice genus of torus knots. In this talk, I will describe a generalization of Rasmussen's invariant to null-homologous links in connected sums of $S^1 \times S^2$. For certain links in $S^1 \times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of null-homologous surfaces with boundary in the following four-manifolds: $B^2 \times S^2, S^1 \times B^3, CP^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard. This is based on joint work with Marco Marengon, Sucharit Sarkar, and Mike Willis.
Item Metadata
Title |
Rasmussen's invariant and surfaces in some four-manifolds
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-12-03T11:12
|
Description |
Back in 2004, Rasmussen extracted a numerical invariant from Khovanov-Lee homology, and used it to give a new proof of Milnor's conjecture about the slice genus of torus knots. In this talk, I will describe a generalization of Rasmussen's invariant to null-homologous links in connected sums of $S^1 \times S^2$. For certain links in $S^1 \times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of null-homologous surfaces with boundary in the following four-manifolds: $B^2 \times S^2, S^1 \times B^3, CP^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard. This is based on joint work with Marco Marengon, Sucharit Sarkar, and Mike Willis.
|
Extent |
55.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: UCLA
|
Series | |
Date Available |
2020-06-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0391074
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International