- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Bordered Heegaard-Floer homology, category O, and higher...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Bordered Heegaard-Floer homology, category O, and higher representation theory Lauda, Aaron
Description
The Alexander polynomial for knots and links can be interpreted as a quantum knot invariant associated with the quantum group of the Lie superalgebra $\mathfrak{gl}(1|1)$. This polynomial has been famously categorified to a link homology theory, knot Floer homology, defined within the theory of Heegaard-Floer homology. Andy Manion showed that the Ozsvath-Szabo algebras used to efficiently compute knot Floer homology categorify certain tensor products of $\mathfrak{gl}(1|1)$ representations. For representation theorists, the work of Sartori provides a different categorification of these same tensors products using subquotients of BGG category $\mathcal{O}$. In this talk we will explain joint work with Andy Manion establishing a direct relationship between these two constructions. Given the radically different nature of these two constructions, transporting ideas between them provides a new perspective and allows for new results that would not have been apparent otherwise.
Item Metadata
Title |
Bordered Heegaard-Floer homology, category O, and higher representation theory
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-12-02T16:31
|
Description |
The Alexander polynomial for knots and links can be interpreted as a quantum knot invariant associated with the quantum group of the Lie superalgebra $\mathfrak{gl}(1|1)$. This polynomial has been famously categorified to a link homology theory, knot Floer homology, defined within the theory of Heegaard-Floer homology. Andy Manion showed that the Ozsvath-Szabo algebras used to efficiently compute knot Floer homology categorify certain tensor products of $\mathfrak{gl}(1|1)$ representations. For representation theorists, the work of Sartori provides a different categorification of these same tensors products using subquotients of BGG category $\mathcal{O}$. In this talk we will explain joint work with Andy Manion establishing a direct relationship between these two constructions. Given the radically different nature of these two constructions, transporting ideas between them provides a new perspective and allows for new results that would not have been apparent otherwise.
|
Extent |
58.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Southern California
|
Series | |
Date Available |
2020-05-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0391068
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International