- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- K-theoretic generalized Donaldson-Thomas invariants
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
K-theoretic generalized Donaldson-Thomas invariants Kiem, Young-Hoon
Description
For the moduli of derived category objects or the partial desingularizations of the moduli stack of semistable sheaves on Calabi-Yau 3-folds, there are no perfect obstruction theories but only semi-perfect obstruction theories. While a semi-perfect obstruction theory is sufficient for the construction of virtual cycles in Chow groups, it seems insufficient for virtual structure sheaves. In this talk, I will introduce the notion of an almost perfect obstruction theory, which lies in between a semi-perfect obstruction theory and an honest perfect obstruction theory. I will show that an almost perfect obstruction theory enables us to construct the virtual structure sheaf and hence K-theoretic virtual invariants. Examples of DM stacks with almost perfect obstruction theories include the Inaba-Lieblich moduli spaces of simple gluable perfect complexes and the partial desingularizations of moduli stacks of semistable sheaves on Calabi-Yau 3-folds. We thus obtain K-theoretic Donaldson-Thomas invariants of derived category objects and K-theoretic generalized Donaldson-Thomas invariants. Based on a joint work with Michail Savvas.
Item Metadata
| Title |
K-theoretic generalized Donaldson-Thomas invariants
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2019-11-19T11:43
|
| Description |
For the moduli of derived category objects or the partial desingularizations of the moduli stack of semistable sheaves on Calabi-Yau 3-folds, there are no perfect obstruction theories but only semi-perfect obstruction theories. While a semi-perfect obstruction theory is sufficient for the construction of virtual cycles in Chow groups, it seems insufficient for virtual structure sheaves. In this talk, I will introduce the notion of an almost perfect obstruction theory, which lies in between a semi-perfect obstruction theory and an honest perfect obstruction theory. I will show that an almost perfect obstruction theory enables us to construct the virtual structure sheaf and hence K-theoretic virtual invariants. Examples of DM stacks with almost perfect obstruction theories include the Inaba-Lieblich moduli spaces of simple gluable perfect complexes and the partial desingularizations of moduli stacks of semistable sheaves on Calabi-Yau 3-folds. We thus obtain K-theoretic Donaldson-Thomas invariants of derived category objects and K-theoretic generalized Donaldson-Thomas invariants. Based on a joint work with Michail Savvas.
|
| Extent |
59.0 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Seoul National University
|
| Series | |
| Date Available |
2020-05-18
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0390903
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International